Homework 4: due 18:30, Thursday, 11 January 2018

(1) [1 point] Define a language L to be coNLog-complete, if $L \in \text{coNLog}$ and for every language $L' \in \text{coNLog}$, $L' \leq_{\text{log}} L$.

Prove that the language REACH defined in lesson 14 is also coNLog-complete.

(2) [2 points] Prove that the class NP is closed under union and intersection. That is,

- if $L_1, L_2 \in \text{NP}$, then $L_1 \cup L_2 \in \text{NP}$,
- if $L_1, L_2 \in \text{NP}$, then $L_1 \cap L_2 \in \text{NP}$.

(3) [4 points] Prove that the class coNP is closed under union and intersection. That is,

- if $L_1, L_2 \in \text{coNP}$, then $L_1 \cup L_2 \in \text{coNP}$,
- if $L_1, L_2 \in \text{coNP}$, then $L_1 \cap L_2 \in \text{coNP}$.

(4) [3 points] Prove that if $\text{SAT} \in \text{coNP}$, then $\text{NP} \subseteq \text{coNP}$, and hence, $\text{NP} = \text{coNP}$.

Hint: Use the fact that SAT is NP-hard.