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1. INTRODUCTION

The spectrum of a first-order sentence � (with the equality predicate), denoted by
SPEC(�), is the set of natural numbers that are cardinalities of finite models of �.
More formally, SPEC(�) = {n | � has a model with universe of cardinality n}. A set is a
spectrum if it is the spectrum of a first-order sentence. We let SPEC denote the class of
all spectra. Without the equality predicate, it is known that if a sentence has a model
of cardinality n, then it also has a model of cardinality n + 1.

The notion of the spectrum was introduced by Scholz, where he also asked whether
there exists a necessary and sufficient condition for a set to be a spectrum [Scholz
1952]. Since its publication, Scholz’s question and many of its variants have been
investigated by many researchers for the past 60 years. Arguably, one of the main open
problems on spectra is the one asked by Asser, known as Asser’s conjecture, whether
the complement of a spectrum is also a spectrum [Asser 1955].

Although seemingly unrelated, it turns out that the notion of spectra has a tight
connection with complexity theory. In fact, Asser’s conjecture is shown to be equivalent
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to the problem NE versus CO-NE,1 when Jones and Selman, as well as Fagin indepen-
dently showed that a set of integers is a spectrum if and only if its binary representation
is in NE [Jones and Selman 1974; Fagin 1973, 1974]. It also immediately implies that if
Asser’s conjecture is false, i.e., there is a spectrum whose complement is not a spectrum,
then NP �= CO-NP, hence NP �= P.

In this article, we study the following hierarchy of spectra, which we call the variable
hierarchy: for every integer k ≥ 1, define

SPECk = {SPEC(�) | � uses only up to k variables}.
Obviously, we have SPEC1 ⊆ SPEC2 ⊆ · · · . It was conjectured that the variable hierarchy
collapses to three variables, because three variables are enough to describe the compu-
tation of a Turing machine. For more discussion on this conjecture, we refer the reader
to a recent survey by Durand et al. [2012].

In this article, we show the opposite: the variable hierarchy has an infinite number
of levels. In other words, for every k ≥ 3, SPECk � SPEC2k+2 (Corollary 4.2). Here we
should note that it is already known that SPEC1 � SPEC2 � SPEC3. More discussion is
provided in the next section.

Our proof follows from the following observations:

—To describe a computation of a nondeterministic Turing machine with runtime
O(Nk)—for a fixed integer k ≥ 1—with a first-order sentence acting on a structure of
cardinality N, 2k + 1 variables are sufficient.

—Conversely, for each first-order sentence � with k variables, checking whether a
structure of cardinality N is a model of � can be done on a nondeterministic Turing
machine in time O(Nk(log N)2) [Grandjean 1984, 1985; Grandjean and Olive 2004].

Curiously, despite the infinity of the variable hierarchy, by standard padding argument,
our proof implies that the class of first-order spectra is closed under complement if
and only if the complement of every spectrum of three-variable sentence (using only
binary relations) is also a spectrum (Corollary 3.5). This means that to settle Asser’s
conjecture, it is sufficient to consider only three-variable sentences using only binary
relations.

This article is organized as follows. In Section 2, we discuss some related results. In
Section 3, we present a rather loose hierarchy: for every integer k ≥ 3, SPECk � SPEC2k+3.
Then in Section 4, we show that by more careful bookkeeping, we obtain a tighter
hierarchy: for every integer k ≥ 3, SPECk � SPEC2k+2. In Section 5, we briefly discuss
how our results can be translated to the setting of generalized spectra. We conclude in
Section 6.

2. RELATED WORKS

In this section, we briefly review the spectra problem and discuss some related results.
We refer the reader to a recent survey by Durand et al. [2012] for a more comprehensive
treatment on the spectra problem and its history. Fagin’s paper [Fagin 1993] covers the
relation between the spectra problem and finite model theory and its connection with
descriptive complexity nicely.

First, we remark that our result SPECk � SPEC2k+2, for each integer k ≥ 3 complements
the previous known result that SPEC1 � SPEC2 � SPEC3 [Durand et al. 2012], which can
be proved as follows. First, a model of first-order sentence with only one variable
remains a model after cloning elements, and thus SPEC1 only includes the empty set

1NE is the class of languages accepted by a nondeterministic (and possibly multitape) Turing machine with
runtime O(2kn) for some constant k > 0.
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and sets of form {n : n ≥ k}. In another article, we show that the class of spectra of
two-variable logic with counting quantifiers is exactly the class of semilinear sets and
closed under complement [Kopczyński and Tan 2015]. Using the same methods, one
can show that SPEC2 is the class of finite and cofinite sets, thus separating SPEC2 from
SPEC1. On the other hand, three variables are enough to simulate an arbitrary Turing
machine, so it is not difficult to construct a set in SPEC3 that is not even semilinear, say,
for example, {n2 | n is the length of an accepting run of a Turing machine M}, hence
separating SPEC3 from SPEC2.

Related to the variable hierarchy is the arity hierarchy. Let SPEC(arity k) denote the
spectra of first-order sentences using only relations of arity at most k. Fagin showed
that if there exists k such that SPEC(arity k) = SPEC(arity k + 1), the arity hierarchy
collapses to k [Fagin 1975].

Lynch [1982] showed that NTIME[Nk] ⊆ SPEC(arity k), where NTIME[Nk] denotes
the class of sets of positive integers (written in unary form) accepted by nondeter-
ministic multitape Turing machine in time O(Nk), where N is the input integer. The
converse is still open and seems difficult. A proof for SPEC(arity k) ⊆ NTIME[Nk] seems
to require that model checking for first-order sentences (of arity k) on structures with
universe of cardinality N can be done in NTIME[Nk]. However, a result by Chen et al.
states that checking whether a graph of N vertices contains a k-clique, which is of con-
stant arity 2, cannot be done in time O(No(k)) unless the exponential time hypothesis
fails [Chen et al. 2004, 2006; Impagliazzo and Paturi 1999].

Grandjean, Olive, and Pudlak provide another body of related works that established
the variable hierarchy for spectra of sentences using relation and function symbols
[Grandjean 1984, 1985, 1990; Grandjean and Olive 2004; Pudlák 1975]. Let F-SPECk
denote the spectra of first-order sentences using up to k variables with vocabulary
consisting of relation and function symbols, and let F-SPEC(k∀) denote the restriction of
F-SPECk to sentences written in prenex normal form with universal quantifiers only and
using only k variables. In his series of papers, Grandjean showed that NRAM[Nk] =
F-SPEC(k∀), for each positive integer k, where NRAM[Nk] denotes the class of sets of
positive integers accepted by nondeterministic RAM in time O(Nk) and N is the input
integer [Grandjean 1984, 1985, 1990]. By Skolemisation, it is shown that F-SPECk =
F-SPEC(k∀) = NRAM[Nk] for all k ≥ 1 [Grandjean and Olive 2004, Theorem 3.1].
Combined with Cook’s hierarchy of nondeterministic time [Cook 1973] and the known
inclusions NTIME[T (n) log T (n)] ⊆ NRAM[T (n)] ⊆ T (n) log2 T (n), for each function
T (n) ≥ n (see Grandjean [1985]), it implies F-SPECk � F-SPECk+1, for all k ≥ 1.

This does not imply our hierarchy here: SPECk � SPEC2k+2. Obviously, every function
can be translated into a relation in first-order logic. However, such translation requires
at least one new variable for each function. It is not clear whether there is a translation
in which the number of new variables introduced depends only on the arity of the
functions and not on the number of functions. At this point, we should also remark
that F-SPECk = F-SPEC(k∀) can be much more expressive than SPECk. Take, for example,
k = 1. The class SPEC1 consists of only empty set and sets of the form {n, n + 1, . . .},
whereas the class F-SPEC(1∀) contains PRIMES, the set of prime numbers [Grandjean
1990].

3. AN EASIER HIERARCHY

For a positive integer N, we write BINARY(N) to denote its binary representation.
Correspondingly, for a set A ⊆ N, we write BINARY(A) ⊆ {1, 0}∗ to denote the set of the
binary representations of the numbers in A. To make a comparison between languages
and sets of positive integers, for a function T : N → N, we define NTIME[T (n)] to be
the class of sets of positive integers whose binary representations are accepted by a
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nondeterministic (possibly multitape) Turing machine with runtime O(T (n)). The class
NE denotes

⋃
k>0 NTIME[2kn].

Note that our definition implies that languages in NTIME[T (n)] consist of strings
that start with 1. This does not effect the generality of our results here. For every
language L, we can define L′ = {1} · L, and any Turing machine that accepts L can be
easily modified to one that accepts L′ without any change in complexity.

In the following for a positive integer n, we let [n] = {0, 1, 2, . . . , n − 1}. The proof of
the following proposition will set a framework that we will use again later in the proofs
of Theorems 3.2 and 4.1.

PROPOSITION 3.1. NTIME[2n] ⊆ SPEC3. More precisely, for every set of positive integers
A where BINARY(A) ∈ NTIME[2n], there is a first-order sentence � using only three
variables and binary relations such that SPEC(�) = A.

PROOF. The proof is via the standard encoding of an accepting run of a nondetermin-
istic Turing machine with a square grid representing the space-time diagram. Let A
be a set of positive integers, where A ∈ NTIME[2n]. Let M be a t-tape nondeterministic
Turing machine accepting BINARY(A) in time O(2n) and space O(2n); or, equivalently,
for every N ∈ A, M accepts BINARY(N) in time and space O(N). By linear speed-up
[Papadimitriou 1994, Theorem 2.2], we can assume that M accepts BINARY(N) in time
and space ≤ N. This assumes that N is big enough (greater than some N0), and this
is not a problem for spectra—numbers smaller than N0 can always be considered on a
case-by-case basis.

For N ∈ A, the accepting run of M on BINARY(N) can be described as a square-grid
[N] × [N], where each point (x, y) ∈ [N] × [N] depicting cell x in time y is labeled
according to the transitions of M. We will construct a first-order sentence � such
that the models of � are precisely such grids encoded as first-order structures of the
universe [N] with binary relations representing the labels of points (x, y) ∈ [N] × [N],
and therefore SPEC(�) = A.

The sentence � will be a conjunction of axioms that confirm that various parts of the
model work as expected. The proof will consist of two parts:

—Depicting the computation of M with just three variables. Essentially, in this part,
we want to describe that the labels on the points (x − 1, y), (x, y), (x + 1, y) and the
labels on its surrounding points (x−1, y+1), (x, y+1), and (x+1, y+1) must “match”
according to the transitions of M.

—Verifying that the input to M is the binary representation of the cardinality of the
universe.

The details are as follows.
Depicting the computation of M with just three variables. We first declare a successor

SUC and a total ordering < on the universe using three variables; this allows us to
identify the universe with [N] and is done simply by adding the well-known total
order and successor axioms to �. The predicates MIN(x) and MAX(x) state that x is the
minimal and maximal element (0 and N − 1), respectively.

For a formula φ(x, y) with two free variables x and y, we take the third variable z
and define the operators �hφ(x, y), �hφ(x, y), and �vφ(x, y), where h and v stand for
horizontal and vertical, respectively, as follows:

�hφ(x, y) := ∀z SUC(x, z) ⇒ φ(z, y)
�hφ(x, y) := ∀z SUC(z, x) ⇒ φ(z, y)
�vφ(x, y) := ∀z SUC(y, z) ⇒ φ(x, z).
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It is straightforward to see that for every (x, y) when x is not the minimal and the
maximal elements and y is not the maximal elements,

—�hφ(x, y) holds if and only if φ(x + 1, y) holds;
—�hφ(x, y) holds if and only if φ(x − 1, y) holds; and
—�vφ(x, y) holds if and only if φ(x, y + 1) holds.

Let the alphabet of M be �, and Q be the set of states of M. We will require the
following relations to simulate the machine:

—SYMBOLi
a(x, y), which holds if and only if the x-th cell of the i-th tape contains the

symbol a at time y.
—STATEi

q(x, y), which holds if and only if the head on the i-th tape at time y is over the
x-th cell, and the state is q.

Now, to make sure that � depicts a computation of M correctly, we state the following.
On every “step” y = 0, . . . , N − 1, if the heads are in states q1, . . . , qt, then for every cell
x = 0, . . . , N − 1, the labels on (x − 1, y), (x, y), (x + 1, y) and the labels on (x − 1, y + 1),
(x, y + 1), and (x + 1, y + 1) must “match” according to the transitions of M.

Formally, it can be written as follows:

∧
q̄=(q1,...,qt)∈Qt

∀y

⎛
⎝

⎛
⎝ ∧

1≤i≤t

∃x STATEi
qi

(x, y)

⎞
⎠ →

⎛
⎝∧

φ

∀x φ(x, y) → ψφ,q̄(x, y)

⎞
⎠

⎞
⎠ ,

where the intuitive meaning of φ and ψφ,q̄ are as follows:

—The φ in the conjunction
∧

φ runs through all possible labels of (x − 1, y), (x, y) and
(x + 1, y), where each φ is of form

�h �ab1(x, y) ∧ �ab2(x, y) ∧ �h �ab3(x, y).

Intuitively, it means that (x − 1, y), (x, y), and (x + 1, y) are labeled with �ab1, �ab2,
and �ab3, respectively, where each �ab1, �ab2, and �ab3 is a conjunction of the atomic
relations STATEi

q, and SYMBOLi
a, as well as MIN and MAX, and their negations to

indicate whether x or y is the minimal or maximal element.
—The formula ψφ,q̄(x, y) is a disjunction of all possible labels on the points (x−1, y+1),

(x, y+1), and (x+1, y+1) according to the transitions of M, when the points (x−1, y),
(x, y), and (x+1, y) satisfy φ and the states of the heads are q̄ = (q1, . . . , qt). Formally,
ψφ,q̄(x, y) is of form

ψφ,q̄(x, y) := �v

(
�hψ

′
φ,q̄(x, y) ∧ ψ ′′

φ,q̄(x, y) ∧ �hψ
′′′
φ,q̄(x, y)

)
,

where ψ ′
φ,q̄, ψ

′′
φ,q̄, ψ

′′′
φ,q̄ are all the disjunctions of all possible labels on (x − 1, y + 1),

(x, y + 1), and (x + 1, y + 1), respectively, that are permitted by the transitions of M,
when the points (x − 1, y), (x, y), and (x + 1, y) satisfy φ and the states of the heads
are q̄.

Of course, we also have to state that for every step y = 0, . . . , N − 1, there are only t
heads—that is, on every step y = 0, . . . , N − 1, for every i = 1, . . . , t, there is exactly
one cell x where (x, y) is labeled with STATEi

q. This is straightforward.
Verifying the input to the Turing machine. The input will be provided in binary. Recall

that the elements of universe correspond to the numbers from 0 to N − 1. We will need
the following axioms:
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—The relation DOUBLE(x, y), which holds if and only if x = 2y. It is defined inductively
by x = y = 0 and (x − 2) = 2(y − 1):

∀x∀y
(

DOUBLE(x, y) ⇔ (MIN(x) ∧ MIN(y)) ∨
(∃z (SUC(z, x) ∧ ∃x (SUC(x, z) ∧ ∃z(SUC(z, y) ∧ DOUBLE(x, z)))))

)
.

—The relation HALF(x, y), which holds if and only if x = �y/2�—that is, y = 2x or
y = 2x + 1:

∀x∀y (HALF(x, y) ⇔ DOUBLE(y, x) ∨ ∃z (DOUBLE(z, x) ∧ SUC(z, y))).

—The relation DIV(x, y), which holds if and only if x = �(N − 1)/2y�. It is defined
inductively by �(N − 1)/20� = N − 1 and �(N − 1)/2y� = ��(N − 1)/2y−1�/2�):

∀x∀y
(

DIV(x, y) ⇔ (MAX(x) ∧ MIN(y)) ∨
∃z(SUC(z, y) ∧ ∃y(DIV(y, z) ∧ HALF(x, y)))

)
.

—The relation BIT(y), which holds if and only if the bit by of the binary representation
bN−1 · · · b1b0 of N − 1 is 1—that is, the integer x = �(N − 1)/2y� is odd:

∀y (BIT(y) ⇔ ∃x(DIV(x, y) ∧ ¬∃zDOUBLE(x, z))).

Finally, notice that because the relation BIT encodes the binary representation of N−1,
the relation denoted by INPUT that encodes the input string (i.e., the binary represen-
tation of N) is defined by the following axiom:

∃x
(

¬BIT(x) ∧ INPUT(x) ∧
( ∀y < x (BIT(y) ∧ ¬INPUT(y)) ∧

∀y > x (INPUT(y) ⇔ BIT(y))

) )
.

This completes our proof of Proposition 3.1.

Proposition 3.1 can be generalized to NTIME[2kn] as stated in the following theorem.

THEOREM 3.2. For every integer k ≥ 1, NTIME[2kn] ⊆ SPEC2k+1.

PROOF. The proof follows the same outline as the proof of Proposition 3.1. Let A
be a set of positive integers such that BINARY(A) ∈ NTIME[2kn] and M be a t-tape
nondeterministic Turing machine accepting BINARY(A) in time Nk and space Nk. So
the space-time diagram is an [Nk] × [Nk] grid.

We identify numbers in [Nk] with vectors (pk, pk−1, . . . , p1) ∈ [N]k. The lexicograph-
ical successor relation SUC(pk, . . . , p1, qk, . . . , q1) can be defined as 1 + ∑

i pi Ni−1 =∑
i qi Ni−1.
As in the proof of Proposition 3.1, the first-order sentence essentially states the

following. On every “step” ȳ ∈ [N]k, if the heads are in states q1, . . . , qt, then for every cell
x̄ ∈ [N]k, the labels on (x̄′′, ȳ), (x̄, ȳ), and (x̄′, ȳ) and the labels on (x̄′′, ȳ′), (x̄, ȳ′), and (x̄′, ȳ′)
must “match” according to the transitions in M, where x̄′ and ȳ′ are the lexicographical
successors of x̄ and ȳ, respectively, and x̄′′ is the lexicographical predecessor of x̄.

Accordingly, the relations SYMBOLi
a and STATEi

q are of arity 2k. The only significant
difference is the shift operators �h, �h, and �v, which use only one extra variable, z,
in their expansion. Let x̄ = (xk, . . . , x1) and ȳ = (yk, . . . , y1). The operator �h is defined
on any formula φ(x̄, ȳ) as follows:

�hφ(x̄, ȳ) :=
k∨

i=2

∃z
i−1∧
j=1

(
MAX(xj) ∧ SUC(xi, z) ∧

∃x1(MIN(x1) ∧ φ(xk, . . . , xi+1, z, x1, . . . , x1, ȳ))

)

∨ (∃z SUC(x1, z) ∧ φ(xk, . . . , x2, z, ȳ)).

The operators �h and �v can be defined in a similar manner. As earlier, it is straight-
forward to see that
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—�hφ(x̄, ȳ) holds if and only if φ(x̄′, ȳ) holds, where x̄′ is the lexicographical successor
of x̄, and

—�hφ(x̄, ȳ) holds if and only if φ(x̄′, ȳ) holds, where x̄ is the lexicographical successor
of x̄′, and

—�vφ(x̄, ȳ) holds if and only if φ(x̄, ȳ′) holds, where ȳ′ is the lexicographical successor
of ȳ.

This completes the definition of the space-time grid structure and thus completes our
proof of Theorem 3.2.

Next we recall a result by Grandjean stating that k-variable spectra, even if we use
function symbols, can be computed effectively.

THEOREM 3.3 ([GRANDJEAN 1984; GRANDJEAN AND OLIVE 2004]). For every integer k ≥ 1,
F-SPECk ⊆ NTIME[n22kn].

Combining Theorems 3.2 and 3.3, we obtain the following hierarchy.

COROLLARY 3.4. For every integer k ≥ 3, SPECk � SPEC2k+3.

PROOF. The strict inclusion follows from

SPECk ⊆ NTIME[n22kn] � NTIME[2(k+1)n] ⊆ SPEC2(k+1)+1 = SPEC2k+3.

The first inclusion follows from Theorem 3.3 and the third from Theorem 3.2. The
second strict inclusion follows from Cook’s nondeterministic time hierarchy theorem
[Cook 1973; Arora and Barak 2009, Theorem 3.2].

The following corollary shows that to settle Asser’s conjecture, it is sufficient to
consider sentences using three variables and binary relations.

Define the following class:

CO-SPEC
bin
3 :=

{
N+ − S S = SPEC(φ) and φ uses only

three variables and binary relations

}
.

COROLLARY 3.5. NE = CO-NE if and only if CO-SPEC
bin
3 ⊆ SPEC.

PROOF. The “only if” direction is trivial. The “if” direction is as follows. Suppose that
CO-SPEC

bin
3 ⊆ SPEC. Since NTIME[2n] ⊆ SPEC3 (and uses only binary relations), this

means that for every A ∈ NTIME[2n], the complement N+ − A ∈ SPEC and hence also
N+ − A ∈ NE. By padding the argument, this implies that for every set A ∈ NE, the
complement N+ − A also belongs to NE.

To end this section, we present a slightly weaker result of Theorem 3.3—that is,
SPECk ⊆ NTIME[n22kn], which is already sufficient to yield the hierarchy in Corol-
lary 3.4. First we show the following normalization of first-order logic with k variables.

PROPOSITION 3.6 (NORMALIZATION OF FIRST-ORDER LOGIC WITH k VARIABLES). Each first-
order sentence φ with at most k distinct variables x̄ = (x1, . . . , xk) is equivalent to
an existential second-order sentence of the form � := ∃R1 · · · ∃Rm φ′, where each Ri is a
relation symbol of arity ≤ k and φ′ is a conjunction of first-order sentences with variables
x̄ = (x1, . . . , xk) of either of the following forms (1) and (2):

(1) ∀x1 · · · ∀xk−1 ∀xk ψ(x1, . . . , xk),
(2) ∀x1 · · · ∀xk−1 ∃xk ψ(x1, . . . , xk),

where ψ(x1, . . . , xk) is a quantifier-free formula in disjunctive normal form.

PROOF. First we assume that all negations in φ are pushed inside to the atomic
formulae.
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We associate each subformula θ (v1, . . . , vq) of φ, where 0 ≤ q ≤ k and each vi ∈ x̄,
including the sentence φ, with a new relation symbol Rθ of arity q. The relation symbol
Rθ intuitively represents θ . Note that a relation symbol of arity 0 is a Boolean variable
that can be either true or false.

The formula φ′ is the conjunction of the atomic relation Rφ of arity 0 and the formula
δθ corresponding to subformula θ (v1, . . . , vq) of φ defined inductively as follows:

—If θ is a negation of an atomic formula S(v1, . . . , vq), then

δθ := ∀v1 · · · ∀vq Rθ (v1, . . . , vq) ⇔ ¬S(v1, . . . , vq).

—If θ is of the form θ1 � θ2, with free variables v1, . . . , vq, where � ∈ {∧,∨}, then

δθ := ∀v1 · · · ∀vq Rθ (v1, . . . , vq) ⇔ Rθ1 (v1, . . . , vq) � Rθ2 (v1, . . . , vq).

Note that if θ has no free variable, then δθ is Rθ ⇔ Rθ1 � Rθ2 .
—If θ is ∀vq θ ′(v1, . . . , vq−1, vq), then

δθ := ∀v1 · · · ∀vq−1 Rθ (v1, . . . , vq−1) ⇔ ∀vq Rθ ′ (v1, . . . , vq),

which is equivalent to

δθ := (∀v1 · · · ∀vq−1∀vq Rθ (v1, . . . , vq−1) ⇒ Rθ ′ (v1, . . . , vq)
) ∧(∀v1 · · · ∀vq−1∃vq Rθ ′ (v1, . . . , vq) ⇒ Rθ (v1, . . . , vq−1)
)
.

—If θ is ∃vq θ ′(v1, . . . , vq−1, vq), then

δθ := ∀v1 · · · ∀vq−1 Rθ (v1, . . . , vq−1) ⇔ ∃vq Rθ ′ (v1, . . . , vq),

which is equivalent to

δθ := (∀v1 · · · ∀vq−1∃vq Rθ (v1, . . . , vq−1) ⇒ Rθ ′ (v1, . . . , vq)
) ∧(∀v1 · · · ∀vq−1∀vq Rθ ′ (v1, . . . , vq) ⇒ Rθ (v1, . . . , vq−1)
)
.

Note that in the preceding definition, if θ is an atomic formula, then Rθ is θ itself.
Written formally,

� := ∃R1 · · · ∃Rm Rφ ∧
∧
θ

δθ ,

where R1, . . . , Rm are all of the Rθ ’s and θ spans over all subformulae of φ. It is straight-
forward to see that � and φ are equivalent.

The following complexity result is an easy consequence of the normalization lemma.

COROLLARY 3.7. For every positive integer k, SPECk ⊆ NTIME[2knn2].

PROOF. By the preceding lemma, each first-order sentence φ using k variables is
equivalent to the normalized formula � := ∃R1 · · · ∃Rm φ′. By our construction, the
quantification depth of φ′ is k. Hence, on the domain [N], where N = 
(2n), one can
obtain a propositional Boolean formula Fφ,N with size O(Nk)2 such that N ∈ SPEC(φ) if
and only if Fφ,N is satisfiable.

It is well known that the satisfiability of problem of a propositional Boolean formula
F of size � with variables pi of indices i ≤ �, hence, of total length |F| = O(� log �)
(in a fixed finite alphabet), can be solved in time O(� log2

�) on a nondeterministic
Turing machine. We present it here in our specific case, where as a straightforward
consequence of Proposition 3.6, the Boolean formula Fφ,N so obtained is a conjunction

2The size of a propositional Boolean formula is the total sum of the number of appearances of each atom.
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of DNF formulae (i.e., of the form Fφ,N : C1 ∧ · · · Cm) and each Ci is a DNF formula. It
is easy to see that the satisfiability problem of a formula in such a form can be decided
by the following nondeterministic algorithm:

—For each conjunct Ci, choose (nondeterministically) a disjunct γi of Ci. Note that γi is
a conjunction of literals.

—Check deterministically whether the conjunction G := γ1 ∧ · · · ∧ γm, which is a con-
junction �1 ∧ · · · ∧ �q of literals, is satisfiable. This can be done by sorting the list
of literals �1, . . . , �q of G in lexicographical order and checking that the sorted list
contains no pair of contiguous contradictory literals p,¬p.

It is a folklore result that a list of nonempty words w1, . . . , wq can be sorted in lexico-
graphical order on a multitape Turing machine in O(λ log λ), where λ = |w1|+· · ·+|wq|.
Here we have λ = |G| ≤ |Fφ,N| = O(� log �). Altogether, it takes O(� log2

�) time.

4. A FINER HIERARCHY

In this section, we present a finer hierarchy of the spectra: for every integer k ≥ 3,
SPECk � SPEC2k+2. The outline of the proof follows the one in the previous section.

THEOREM 4.1. For every integer k ≥ 2, NTIME[2(k+ 1
2 )n] ⊆ SPEC2k+2.

PROOF. We follow the outline of Proposition 3.1 and Theorem 3.2. Now, M is a
nondeterministic Turing machine that accepts BINARY(N) in time NkR and space
NkR, where R = �√N − 1�. The space-time diagram of the computation of M is then
depicted as an [Nk · R] × [Nk · R] grid.

Each point in the [Nk·R]×[Nk·R] grid can be identified as a point in [N]k×[R]×[N]k×
[R]. By the converse of the pairing function (r) �→ (πx(r), πy(r)), where πx(r) = r mod R =
r1, and πy(r) = �(r/R)� = r2, each point in ((x̄, r1), (ȳ, r2)) ∈ [N]k × [R] × [N]k × [R] can
be represented as (x̄, ȳ, r) ∈ [N]k × [N]k × [N], where r = r1 + r2 R.

So the computation of M can be viewed as labeling of the point (x̄, ȳ, r) ∈ [N]k ×
[N]k × [N]. The only difference now is that we need to define the shift operators �r

h,
�

r
h, and �r

v, the analog of the shift operators �h, �h, and �v, respectively, in the proof
of Theorem 3.2.

As earlier, we define the order <, minimum MIN, maximum MAX, and the induced
successor relation SUC. We also define the following relations:

—ADD(x, y, z), which holds if and only if x + y = z:

∀x∀y∀z

⎛
⎝ ADD(x, y, z) ⇔(

(MIN(y) ∧ x = z) ∨
(∃y′ ∃z′ SUC(y′, y) ∧ SUC(z′, z) ∧ ADD(x, y′, z′))

) ⎞
⎠ .

—MUL(x, y, z), which holds if and only if xy = z:

∀x∀y∀z

⎛
⎝ MUL(x, y, z) ⇔(

(MIN(y) ∧ MIN(z)) ∨
∃y′ ∃z′ (SUC(y′, y) ∧ MUL(x, y′, z′) ∧ ADD(z′, x, z)

) ⎞
⎠ .

—IS-R(x), which holds if and only if x = R

∀x ( IS-R(x) ⇔ (∃y MUL(x, x, y) ∧ ¬∃x′∃y′ x′ > x ∧ MUL(x′, x′, y′))).

—LESS-R(x), which holds if and only if x < R:

∀x (LESS-R(x) ⇔ ∃y y > x ∧ IS-R(y)).
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—LESS-R2(x), which holds if and only if x < R2:

∀x
(

LESS-R2(x) ⇔ ∃y ∃z IS-R(y) ∧ MUL(y, y, z) ∧ x < z
)
.

—PROJECT(r, x, y), which holds if and only if x = πx(r) = r mod R and y = πy(r) =
�r/R�:

∀r∀x∀y

⎛
⎝ PROJECT(r, x, y) ⇔(

LESS-R2(r) ∧ LESS-R(x) ∧ LESS-R(y)∧
∃z ∃z′ (IS-R(z′) ∧ MUL(y, z′, z) ∧ ADD(x, z, r)

) ⎞
⎠ .

Using the preceding relations, it is straightforward to write the following definitions
as first-order axioms using at most five variables:

—Cyclic successor in [R]:
RCYC(x, y) if and only if x, y ∈ [R], and either y = x + 1 or x = R − 1 and y = 0.

—Horizontal successor in [R2]:
SUCX(r, r′) if and only if r, r′ ∈ [R2], πy(r) = πy(r′), and RCYC(πx(r), πx(r′)).

—Vertical successor in [R2]:
SUCY(r, r′) if and only if r, r′ ∈ [R2], πx(r) = πx(r′), and RCYC(πy(r), πy(r′)).

—Horizontal minimum in [R2]:
MINX(r) if and only if r ∈ [R2] and πx(r) = 0.

—Vertical minimum in [R2]:
MINY(r) if and only if r ∈ [R2] and πy(r) = 0.

All of the preceding definitions use at most five variables, which is ≤ 2k + 2, for each
integer k ≥ 2.

The operators �r
hφ, �

r
hφ, and �r

vφ are defined as follows:

�r
hφ(x̄, ȳ, r) := ∀z

(
SUCX(r, z) ⇒

(
(MINX(z) ∧ �hφ(x̄, ȳ, z)) ∨
(¬MINX(z) ∧ φ(x̄, ȳ, z)))

) )

�
r
hφ(x̄, ȳ, r) := ∀z

(
SUCX(z, r) ⇒

(
(MINX(r) ∧ �hφ(x̄, ȳ, z)) ∨
(¬MINX(r) ∧ φ(x̄, ȳ, z)))

) )

�r
vφ(x̄, ȳ, r) := ∀z

(
SUCY(r, z) ⇒

(
(MINY(z) ∧ �vφ(x̄, ȳ, z)) ∨
(¬MINY(z) ∧ φ(x̄, ȳ, z)))

) )
,

where �h is to access the successor of x̄, �h the predecessor of x̄, and �v the successor
of ȳ. They are all defined just like in the proof of Theorem 3.2. This completes our proof
of Theorem 4.1.

Now, combining both Theorems 4.1 and 3.3, as well as the argument in the proof of
Corollary 3.4, we obtain that

SPECk ⊆ NTIME[n22kn] � NTIME[2(k+ 1
2 )n] ⊆ SPEC2k+2,

hence establishing the following hierarchy.

COROLLARY 4.2. For every integer k ≥ 3, SPECk � SPEC2k+2.

5. TRANSLATING OUR RESULTS TO CLASSES NP AND SO∃
In this section, we show how our results can be translated into relations between the
class NP and the class of existential second-order sentences SO∃. We provide a brief
review of their definitions here. For more details, we refer the reader to Immerman’s
textbook [Immerman 1999].
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Let SO∃ denote the class of existential second-order sentences. A sentence � ∈ SO∃
defines a class of structures {A | A |= �}. A celebrated result of Fagin states that
SO∃ = NP, where the input to the NP Turing machine is the binary encoding of the
structures.

Let SO∃(var k) be the class SO∃ where the first-order sentences use only up to k
variables. Now, Theorems 3.2 and 4.1 can be respectively rewritten as

For any integer k ≥ 1, NTIME[nk] ⊆ SO∃(var 2k + 1) (1)

For any integer k ≥ 2, NTIME[nk+1/2] ⊆ SO∃(var 2k + 2). (2)

Indeed, let M be a nondeterministic Turing machine accepting a binary language L
within time O(nk), where n is the length of the input string w = w0 . . . wn−1 ∈ {0, 1}∗.
The input can be viewed as a structure over [n] with vocabulary the binary successor
relation SUC and the unary predicate S, where S(x) holds if and only if wx = 1.

The formula � constructed in the proof of Theorem 3.2 (resp. Theorem 4.1) can be
viewed as an SO∃(var 2k + 1) (resp. SO∃(var 2k + 2)) formula, where the predicates
SYMBOLi

a and STATEi
q, as well as DOUBLE, HALF, DIV, BIT, and so on, are existentially

quantified.
On the other hand, Theorem 3.3 can be rewritten as

SO∃(var k) ⊆ NTIME[nk log2 n]. (3)

Equations (3) and (2) then yield the chain of inclusions:

SO∃(var k) ⊆ NTIME[nk log2 n] � NTIME[nk+1/2] ⊆ SO∃(var 2k + 2),

and hence SO∃(var k) � SO∃(var 2k + 2) for each k ≥ 3.

6. CONCLUDING REMARKS

In this article, we present two results that we believe contribute to our understanding
of the spectra problem. The first is that there is an infinite hierarchy of first-order
spectra based on the number of variables: SPECk � SPEC2k+2. The proof is based on tight
relationships between the class NE and first-order spectra SPEC.

The second result is that to settle Asser’s conjecture, it is sufficient to consider
sentences using three variables and binary relations. This seems to be the furthest
we can go. As mentioned in Section 2, we recently showed that the class of spectra of
two-variable logic with counting quantifiers is exactly the class of semilinear sets and
closed under complement [Kopczyński and Tan 2015].
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G. Asser. 1955. Das repräsentenproblem in prädikatenkalkül der ersten Stufe mit identität. Zeitschrift für

mathematische Logik und Grundlagen der Mathematik 1, 252–263.
J. Chen, X. Huang, I. A. Kanj, and G. Xia. 2004. Linear FPT reductions and computational lower bounds. In

Proceedings of the 36th Annual ACM Symposium on Theory of Computing. 212–221.
J. Chen, X. Huang, I. A. Kanj, and G. Xia. 2006. Strong computational lower bounds via parameterized

complexity. Journal of Computer and System Sciences 72, 8, 1346–1367.

ACM Transactions on Computational Logic, Vol. 16, No. 2, Article 17, Publication date: April 2015.



17:12 E. Kopczyński and T. Tan
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