
8

Extending Two-Variable Logic on Data Trees with Order on Data
Values and Its Automata

TONY TAN, Hasselt University and Transnational University of Limburg

Data trees are trees in which each node, besides carrying a label from a finite alphabet, also carries a data
value from an infinite domain. They have been used as an abstraction model for reasoning tasks on XML and
verification. However, most existing approaches consider the case where only equality test can be performed
on the data values.

In this article we study data trees in which the data values come from a linearly ordered domain, and in
addition to equality test, we can test whether the data value in a node is greater than the one in another
node. We introduce an automata model for them which we call ordered-data tree automata (ODTA), provide
its logical characterisation, and prove that its non-emptiness problem is decidable in 3-NEXPTIME. We also
show that the two-variable logic on unranked data trees, studied by Bojanczyk et al. [2009], corresponds
precisely to a special subclass of this automata model.

Then we define a slightly weaker version of ODTA, which we call weak ODTA, and provide its logical
characterisation. The complexity of the non-emptiness problem drops to NP. However, a number of existing
formalisms and models studied in the literature can be captured already by weak ODTA. We also show
that the definition of ODTA can be easily modified, to the case where the data values come from a tree-like
partially ordered domain, such as strings.

Categories and Subject Descriptors: F.1.1 [Computation by Abstract Devices]: Models of Computation—
Automata; F.4.1 [Mathematical Logic and Formal Languages]: Mathematical Logic—Computational
logic

General Terms: Languages

Additional Key Words and Phrases: Finite-state automata, two-variable logic, data trees, ordered data values

ACM Reference Format:
Tony Tan. 2014. Extending two-variable logic on data trees with order on data values and its automata.
ACM Trans. Comput. Logic 15, 1, Article 8 (February 2014), 39 pages.
DOI: http://dx.doi.org/10.1145/2559945

1. INTRODUCTION

Classical automata theory studies words and trees over finite alphabets. Recently there
has been a growing interest in the so-called data words and trees, that is, words and
trees in which each position, besides carrying a label from a finite alphabet, also carries
a data value from an infinite domain.

Interest in such structures with data springs due to their connection to XML [Alon
et al. 2003; Arenas et al. 2008; Björklund et al. 2008; David et al. 2012; Fan and
Libkin 2002; Figueira 2009; Neven 2002], as well as system specifications [Bouyer et al.
2001; Demri et al. 2007; Segoufin and Torunczyk 2011], where many properties simply
cannot be captured by finite alphabets. This has motivated various works on data

T. Tan was suppported under the FWO Pegasus Marie Curie fellowship.
The extended abstract of this article appears in Proceedings of the 27th Annual IEEE Symposium on Logic
in Computer Science (LICS’12).
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1529-3785/2014/02-ART8 $15.00

DOI: http://dx.doi.org/10.1145/2559945

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:2 T. Tan

words [Benedikt et al. 2010; Bojanczyk et al. 2011a; Demri and Lazić 2009; Grumberg
et al. 2010; Kaminski and Francez 1994; Neven et al. 2004], as well as on data trees
[Björklund and Bojanczyk 2007; Bojanczyk et al. 2009; Figueira 2012a; Figueira and
Segoufin 2011; Jurdzinski and Lazic 2011]. The common feature of these works is the
addition of equality test on the data values to the logic on trees. While for finitely-
labeled trees, many logical formalisms (e.g., the monadic second-order logic MSO) are
decidable by converting formulae to automata, even FO (first-order logic) on data words
extended with data-equality is already undecidable see, e.g., Bojanczyk et al. [2011a],
Fan and Libkin [2002], and Neven et al. [2004].

Thus, there is a need for expressive enough, while computationally well-behaved,
frameworks to reason about structures with data values. This has been quite a common
theme in XML and system specification research. It has largely followed two routes. The
first takes a specific reasoning task, or a set of similar tasks, and builds algorithms for
them (see, e.g., Arenas et al. [2008], Figueira [2011], Björklund et al. [2008], Schwentick
[2004], Fan and Libkin [2002], and Figueira [2009]). The second looks for sufficiently
general automata models that can express reasoning tasks of interest, but are still
decidable (see, e.g., Demri and Lazić [2009], Bojanczyk et al. [2009], Jurdzinski and
Lazic [2011], and Segoufin and Torunczyk [2011]).

Both approaches usually assume that data values come from an abstract set equipped
only with the equality predicate. This is already sufficient to capture a wide range
of interesting applications both in databases and verification. However, it has been
advocated in Deutsch et al. [2009] that comparisons based on a linear order over the
data values could be useful in many scenarios, including data-centric applications built
on top of a database.

So far, not many works have been done in this direction. A few works such as Manuel
[2010], Figueira [2011], Schwentick and Zeume [2010], and Segoufin and Torunczyk
[2011] are on words, while in most applications, we need to consider trees. Moreover,
these works are incomparable to some interesting existing formalisms [Fan and Libkin
2002; Bojanczyk et al. 2009; Arenas et al. 2008; David et al. 2012; Jurdzinski and
Lazic 2011; Demri and Lazić 2009; Lazić 2011] known to be able to capture various
interesting scenarios common in practice. On top of that, many useful techniques,
notably those introduced in Fan and Libkin [2002], Bojanczyk et al. [2011a], Bojanczyk
et al. [2009], and Jurdzinski and Lazic [2011], can deal only with data equality, and
are highly dependent on specific combinatorial properties of the formalisms. They are
rather hard to adapt to other more specific tasks, let alone being generalised to include
more relations on data values, and they tend to produce extremely high complexity
bounds, such as non-primitive-recursive, or at least as hard as the reachability problem
in Petri nets. Furthermore, many known decidability results are lost as soon as we add
the order relation on data values. Some exceptions are Figueira et al. [2010, 2012a].

In this article, we study the notion of data trees in which the data values come from
a linearly ordered domain, which we call ordered-data trees. In addition to equality
tests on the data values, in ordered-data trees, we are allowed to test whether the
data value in a node is greater than the data value in another node. To the extent it
is possible, we aim to unify various ad hoc methods introduced to reason about data
trees, and generalise them to ordered-data trees to make them more accessible and
applicable in practice. This article is the first step, where we introduce an automata
model for ordered-data trees, provide its logical characterisation, and prove that it has
decidable non-emptiness problem. Moreover, we also show that it can capture various
well known formalisms.

Brief Description of the Results in this Article. The trees, that we consider are un-
ranked trees where there is no a priori bound in the number of children of a node.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:3

Moreover, we also have an order on the children of each node. We consider a natural
logic for ordered-data trees, which consists of the following relations.

—The parent relation E↓, where E↓(x, y) means that node x is the parent of node y.
—The next-sibling relation E→, where E→(x, y) means that nodes x and y have the

same parent and y is the next sibling of x.
—The labeling predicates a(·)’s, where a(x) means that node x is labeled with symbol

a.
—The data equality predicate ∼, where x ∼ y means that nodes x and y have the same

data value.
—The order relation on data ≺, where x ≺ y means that the data value in node x is

less than the one in node y.
—The successive order relation on data ≺suc, where x≺suc y means that the data value

in node y is the minimal data value in the tree greater than the one in node x.

We introduce an automata model for ordered-data trees, which we call ordered-data
tree automata (ODTA), and provide its logical characterisation. Namely, we prove that
the class of languages accepted by ODTA corresponds precisely to those expressible by
formulas of the form:

∃X1 · · · ∃Xn ϕ ∧ ψ, (1)

where

—X1, . . . , Xn are monadic second-order predicates;
—ϕ is an FO formula restricted to two variables and using only the predicates E↓, E→,

∼, as well as the unary predicates X1, . . . , Xn and a’s;
—ψ is an FO formula using only the predicates ∼, ≺, ≺suc, as well as the unary

predicates X1, . . . , Xn and a’s.

We show that the logic ∃MSO2(E↓, E→,∼), first studied in Bojanczyk et al. [2009],
corresponds precisely to a special subclass of ODTA, where ∃MSO2(E↓, E→,∼) denotes
the set of formulas of the form of Eq. (1) in which ψ is a true formula. We then prove that
the non-emptiness problem of ODTA is decidable in 3-NEXPTIME. Our main idea here
is to show how to convert the ordered-data trees back to a string over finite alphabets
(see our notion of string representation of data values in Section 3). Such conversion
enables us to use the classical finite state automata to reason about data values.

Then we define a slightly weaker version of ODTA, which we call weak ODTA.
Essentially, the only feature of ODTA missing in weak ODTA is the ability to test
whether two adjacent nodes have the same data value. Without such simple feature, the
complexity of the non-emptiness problem surprisingly drops three-fold exponentially
to NP. We provide its logical characterisation by showing that it corresponds precisely
to the languages expressible by the formulas of the form of Eq. (1), where ϕ does not
use the predicate ∼. We show that a number of existing formalisms and models can be
captured already by weak ODTA, that is, those in Fan and Libkin [2002], David et al.
[2012], and Manuel [2010].

We should remark that David et al. [2012] studies a formalism which consists of
tree automata and a collection of set and linear constraints.1 It is shown that the sat-
isfiability problem of such formalism is NP-complete. In fact, it is also shown [David
et al. 2012] that a single set constraint (without tree automaton and linear constraint)
already yields NP-hardness. Weak ODTA are essentially equivalent to the formalism
in David et al. [2012] extended with the full expressive power of the first-order logic

1We will later define formally what set and linear constraints are.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:4 T. Tan

FO(∼,≺,≺suc). It is worth to note that despite such extension, the non-emptiness prob-
lem remains in NP.

Finally, we also show that the definition of ODTA can be easily modified to the case
where the data values come from a partially ordered domain, such as strings. This
work can be seen as a generalisation of the works in David et al. [2010] and Kara et al.
[2012]. However, it must be noted that David et al. [2010] and Kara et al. [2012] deal
only with data words, where only equality test is allowed on the data values and there
is no order on them.

Related Works. Most of the existing works in this area are on data words. Bojanczyk
et al. [2011a] introduce the model data automata, and it was shown that it captures
the logic ∃MSO2(∼,<,+1), the fragment of existential monadic second-order logic in
which the first-order part uses only two variables and the predicates: the data equality
∼, as well as the order < and the successor +1 on the domain.

An important feature of data automata is that their non-emptiness problem is de-
cidable, even for infinite words, but is at least as hard as reachability for Petri nets. It
was also shown that the satisfiability problem for the three-variable first-order logic
is undecidable. Later, in David et al. [2010], an alternative proof was given for the de-
cidability of the weaker logic ∃MSO2(+1,∼). The proof gives a decision procedure with
an elementary upper bound for the satisfiability problem of ∃MSO2(+1,∼) on strings.
Recently, in Kara et al. [2012], an automata model that captures precisely the logic
∃MSO2(+1,∼), both on finite and infinite words, is proposed.

Another logical approach is via the so called linear temporal logic with freeze quanti-
fier, introduced in Demri and Lazić [2009]. Intuitively, these are LTL formulas equipped
with a finite number of registers to store the data values. We denote by LTL↓

n[X, U], the
LTL with freeze quantifier, where n denotes the number of registers and the only tem-
poral operators allowed are the neXt operator X and the Until operator U. It was shown
that alternating register automata with n registers (RAn) accept all LTL↓

n[X, U] lan-
guage, and the non-emptiness problem for alternating RA1 is decidable. However, the
complexity is nonprimitive recursive. Hence, the satisfiability problem for LTL↓

1(X, U)
is decidable as well. Adding one more register or past time operator U−1 to LTL↓

1(X, U)
makes the satisfiability problem undecidable. Figueira et al. [2010, Figueira 2012a], it
is shown that alternating RA1 can be extended to strings with linearly ordered data
values, and the emptiness problem is still decidable. In Lazić [2011], a weaker version
of alternating RA1, called safety alternating RA1, is considered, and the non-emptiness
problem is shown to be EXPSPACE-complete.

A model for data words with linearly ordered data values was proposed in Segoufin
and Torunczyk [2011]. The model consists of an automaton equipped with a finite
number of registers, and its transitions are based on constraints on the data values
stored in the registers. It is shown that the non-emptiness problem for this model
is decidable in PSPACE. However, no logical characterisation is provided for such a
model.

In Bojanczyk et al. [2011b] another type of register automata for words was intro-
duced and studied, which is a generalisation of the original register automata intro-
duced by Kaminski and Francez [1994], where the data values also can come from a
linearly ordered domain. Thus, the order comparison, not just equality, can be per-
formed on data values. The generalisation is done via the notion of monoid for data
words and is incomparable with our model here. In the terminology of the original reg-
ister automata defined in Kaminski and Francez [1994], it is simply register automata
extended with testing whether the data value currently read is bigger/smaller than
those in the registers.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:5

It is shown in Manuel [2010] that the satisfiability problem for FO2(+1,≺suc) over
text is decidable. A text is simply a data word in which all the data values are different
and they range over the positive integers from 1 to n, for some n ≥ 1. We will see later
that the satisfiability problem for FO2(+1,≺suc) can be reduced to the non-emptiness
problem of our model.

In Schwentick and Zeume [2010], it is shown that the satisfiability problem of the
logic FO2(<,≺) on words is decidable. This logic is incomparable with our model.
However, it should be noted that FO2(<) cannot capture the whole class of regular
languages.

The work on data trees that we are aware of is in Bojanczyk et al. [2009] and
Jurdzinski and Lazic [2011]. In Bojanczyk et al. [2009], it was shown that the satis-
fiability problem for the logic ∃MSO2(E↓, E→,∼) over unranked trees is decidable in
3-NEXPTIME. However, no automata model is provided. We will see later how this logic
corresponds precisely to a special subclass of ODTA.

In Jurdzinski and Lazic [2011], alternating tree register automata were introduced
for trees. They are essentially the generalisation of the alternating RA1 to the tree
case. It was shown that this model captures the forward XPath queries. However, no
logical characterisation is provided, and the nonemptiness problem, though decidable,
is nonprimitive recursive.

As mentioned earlier, the main idea in this article is the conversion of the data
values from an infinite domain back to string over a finite alphabet. Roughly speaking,
it works as follows. Given an ordered-data tree t, we show how to construct a string w
over a finite alphabet whose domain corresponds precisely to the data values in t. We
then use the classical finite state automaton to reason about w, and thus, also about the
data values in t. This idea is the main difference between our article and the existing
works. Most of the existing techniques rely on some specific combinatorial properties
of the formalisms considered, which make them highly independent of one another. As
we will see later, our model captures quite a few other formalisms without significant
jump in complexity.

Organisation. This article is organised as follows. In Section 2, we give some pre-
liminary background. In Section 3, we formally define the logic for ordered-data
trees and present a few examples as well as notations that we need in this article.
In Section 4, we present two lemmas that we are going to need later on. We prove them
in a quite general setting, as we think they are interesting in their own. We introduce
the ordered-data tree automata (ODTA) in Section 5 and weak ODTA in Section 6.
In Section 7, we discuss a couple of the undecidable extensions of weak ODTA. In
Section 8, we describe how to modify the definition of ODTA when the data values are
strings, that is, when they come from a partially ordered domain. Finally we conclude
with some concluding remarks in Section 9.

2. PRELIMINARIES

In this section, we review some definitions that we are going to use later on. We usually
use � and � to denote finite alphabets. We write 2� to denote an alphabet in which
each symbol corresponds to a subset of �. In some cases, we may need the alphabet
22�

—an alphabet in which each symbol corresponds to a set of subsets of �. We denote
the set of natural numbers {0, 1, 2, . . .} by N.

Usually we write L to denote a language, for both string and tree languages. When it
is clear from the context, we use the term language to mean either a string language,
or a tree language.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:6 T. Tan

2.1. Finite-State Automata over Strings and Commutative Regular Languages

We usually write M to denote a finite-state automaton on strings. The language ac-
cepted by the automaton M is denoted by L(M).

Let � = {a1, . . . , a�}. For a word w ∈ �∗, the Parikh image of w is Parikh(w) =
(n1, . . . , n�), where ni is the number of appearances of ai in w. For a vector n̄, the inverse
of the Parikh image of n̄ is Parikh−1(n̄) = {w | w ∈ �∗ and Parikh(w) = n̄}.

For 1 ≤ i ≤ �, a vector v̄ = (n1, . . . , n�) ∈ N
� is called an i-base, if ni �= 0 and nj = 0,

for all j �= i. A language L is periodic, if there exist (�+1) vectors ū, v̄1, . . . , v̄� such that
ū ∈ N

� and each v̄i is an i-base and

L =
⋃

h1,...,h�≥0

Parikh−1(ū + h1v̄1 + · · · + h�v̄�).

We denote such language L by L(ū, v̄1, . . . , v̄�).
A language L is commutative if it is closed under reordering, that is, if w = b1 · · · bm ∈

L, and σ is a permutation on {1, . . . , m}, then bσ (1) · · · bσ (m) ∈ L.
The following result is a kind of folklore and can be proved easily.

THEOREM 2.1. A language is commutative and regular if and only if it is a finite
union of periodic languages.

2.2. Unranked Trees, Tree Automata and Transducers

An unranked finite tree domain is a prefix-closed finite subset D of N
∗ (words over N)

such that u · i ∈ D implies u · j ∈ D for all j < i and u ∈ N
∗. Given a finite labeling

alphabet �, a �-labeled unranked tree t is a structure

〈D, E↓, E→, {a(·)}a∈�〉,
where

—D is an unranked tree domain,
—E↓ is the child relation: (u, u · i) ∈ E↓ for all u, u · i ∈ D,
—E→ is the next-sibling relation: (u · i, u · (i + 1)) ∈ E→ for all u · i, u · (i + 1) ∈ D, and
—the a(·)’s are labeling predicates, that is, for each node u, exactly one of a(u), with

a ∈ �, is true.

We write Dom(t) to denote the domain D. The label of a node u in t is denoted by �abt(u).
If �abt(u) = a, then we say that u is an a-node.

An unranked tree automaton [Comon et al. 2007; Thatcher 1967] over �-labeled trees
is a tuple A = 〈Q, �, δ, F〉, where Q is a finite set of states, F ⊆ Q is the set of final
states, and δ : Q × � → 2(Q∗) is a transition function; we require δ(q, a)’s to be regular
languages over Q for all q ∈ Q and a ∈ �.

A run of A over a tree t is a function ρA : Dom(t) → Q such that for each node u
with n children u · 0, . . . , u · (n− 1), the word ρA(u · 0) · · · ρA(u · (n− 1)) is in the language
δ(ρA(u), �abt(u)). For a leaf u labeled a, this means that u could be assigned a state q if
and only if the empty word ε is in δ(q, a). A run is accepting if ρA(ε) ∈ F, that is, if the
root is assigned a final state. A tree t is accepted by A if there exists an accepting run
of A on t. The set of all trees accepted by A is denoted by L(A).

An unranked tree (letter-to-letter) transducer with the input alphabet � and output
alphabet � is a tuple T = 〈A, μ〉, where A is a tree automaton with the set of states Q,
and μ ⊆ Q× � × � is an output relation. We call such T a transducer from � to �.

Let t be a �-labeled tree, and t′ a �-labeled tree such that Dom(t) = Dom(t′). We say
that a tree t′ is an output of T on t, if there is an accepting run ρA of A on t and for each
u ∈ Dom(t), it holds that (ρA(u), �abt(u), �abt′ (u)) ∈ μ. We call T an identity transducer,

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:7

if �abt(u) = �abt′(u) for all u ∈ Dom(t). We will often view an automaton A as an identity
transducer.

2.3. Automata with Presburger Constraints (APC)

An automaton with Presburger constraints (APC) is a tuple 〈A, ξ 〉, where A is an
unranked tree automaton with states q0, . . . , qm and ξ is an existential Presburger
formula with free variables x0, . . . , xm. A tree t is accepted by 〈A, ξ 〉, denoted by t ∈
L(A, ξ), if there is an accepting run ρA of A on w such that ξ (n0, . . . , nm) is true, where
ni is the number of appearances of qi in ρA.

THEOREM 2.2 [SEIDL ET AL. 2004; VERMA ET AL. 2005]. The non-emptiness problem for
APC is decidable in NP.

It is worth noting also that the class of languages accepted by APC is closed under
union and intersection.

Oftentimes, instead of counting the number of states in the accepting run, we need
to count the number of occurrences of alphabet symbols in the tree. Since we can easily
embed the alphabet symbols inside the states, we always assume that the Presburger
formula ξ has the free variables xa’s to denote the number of appearances of the symbol
a in the tree.

As in the word case, we let Parikh(t) denote the Parikh image of the tree t. We will
need the following proposition.

PROPOSITION 2.3 [SEIDL ET AL. 2004; VERMA ET AL. 2005]. Given an unranked tree au-
tomaton A, one can construct, in polynomial time, an existential Presburger formula
ξA(x1, . . . , x�) such that the following hold.

—For every tree t ∈ L(A), ξA(Parikh(t)) holds.
—For every n̄ = (n1, . . . , n�) such that ξA(n̄) holds, there exists a tree t ∈ L(A) with

Parikh(t) = n̄.

3. ORDERED-DATA TREES AND THEIR LOGIC

An ordered-data tree over the alphabet � is a tree in which each node, besides carrying
a label from the finite alphabet �, also carries a data value from N = {0, 1, . . .}.2

Let t be an ordered-data tree over � and u ∈ Dom(t). We write va�t(u) to denote the
data value in the node u. The set of all data values in the a-nodes in t is denoted by
Vt(a), that is, Vt(a) = {va�t(u) | �abt(u) = a and u ∈ Dom(t)}. We write Vt to denote
the set of data values found in the tree t. We also write #t(a) to denote the number of
a-nodes in t.

The profile of a node u is a triplet (l, p, r) ∈ {�,⊥, ∗} × {�,⊥, ∗} × {�,⊥, ∗}, where
l = � and l = ⊥ indicate that the node u has the same data value and different data
value as its left sibling, respectively; l = ∗ indicates that u does not have a left sibling.
Similarly, p = �, p = ⊥, and p = ∗ have the same meaning in relation to the parent
of the node u, while r = �, r = ⊥, and r = ∗ means the same in relation to the right
sibling of the node u. For an ordered-data tree t over �, the profile tree of t, denoted
by Profile(t), is a tree over � × {�,⊥, ∗}3 obtained by augmenting to each node of t its
profile.

We write Proj(t) to denote the � projection of the ordered-data tree t, that is, Proj(t)
is t without the data values. When we say that an ordered-data tree t is accepted by
an automaton A, we mean that Proj(t) is accepted by A. An ordered-data tree t′ is an

2Here we use the natural numbers as data values just to be concrete. The results in our article apply trivially
for any linearly ordered domain.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:8 T. Tan

Fig. 1. An example of an ordered-data tree (on the left) and its profile (on the right).

output of a transducer T on an ordered-data tree t, if Proj(t′) is an output of T on Proj(t),
and for all u ∈ Dom(t′), we have va�t′ (u) = va�t(u).

Figure 1 shows an example of an ordered-data tree t over the alphabet {a, b, c} with
its profile tree. The notation

(a
d

)
means that the node is labeled with a and has data

value d.

3.1. String Representations of Data Values

Let t be an ordered-data tree over �. For a set S ⊆ �, let

[S]t =
⋂
a∈S

Vt(a) ∩
⋂
b/∈S

Vt(b).

That is, [S]t is the set of data values that are found in a-positions for all a ∈ S but are
not found in any b-position for b �∈ S. Note that the sets [S]t ’s are disjoint, and that for
each a ∈ �,

Vt(a) =
⋃

S s.t. a∈S

[S]t.

Moreover, |Vt(a)| =∑S s.t. a∈S |[S]t|.
Let d1 < · · · < dm be all the data values found in t. The string representation of the

data values in t, denoted by V�(t), is the string S1 · · · Sm over the alphabet 2� − {∅}
of length m such that di ∈ [Si]t, for each i = 1, . . . , m. The notation [S]t is already
introduced in David et al. [2010, 2012], but not V�(t).

Consider the example of the tree t in Figure 1. The data values in t are 1, 2, 4, 6, 7,
where

[{b, c}]t = {1},
[{a, b, c}]t = {2},

[{a, b}]t = {4, 7},
[{a, c}]t = {6},

[S]t = ∅, for all the other S’s.

The string V�(t) is S1 S2 S3 S4 S5, where S1 = {b, c}, S2 = {a, b, c}, S3 = S5 = {a, b}, and
S4 = {a, c}.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:9

3.2. A Logic for Ordered-Data Trees

An ordered-data tree t over the alphabet � can be viewed as a structure

t = 〈D, {a(·)}a∈�, E↓, E→,∼,≺,≺suc〉,
where

—the relations {a(·)}a∈�, E↓, E→ are as defined in Section 2.2,
—u ∼ v holds, if va�t(u) = va�t(v),
—u ≺ v holds, if va�t(u) < va�t(v),
—u≺suc v holds, if va�t(v) is the minimal data value in t greater than va�t(u).

Obviously, x≺suc y can be expressed equivalently as x ≺ y ∧ ∀z(¬(x ≺ z ∧ z ≺ y)).
We include ≺suc for the sake of convenience. We also assume that we have the predi-
cates root(x), first-sibling(x), last-sibling(x), and leaf(x) which stand for ∀y(¬E↓(y, x)),
∀y(¬E→(y, x)), ∀y(¬E→(x, y)), and ∀y(¬E↓(x, y)), respectively. We also write x � y to
denote ¬(x ∼ y).

For O ⊆ {E↓, E→,∼,≺,≺suc}, we let FO(O) stand for the first-order logic with the
vocabulary O, MSO(O) for its monadic second-order logic (which extends FO(O) with
quantification over sets of nodes), and ∃MSO(O) for its existential monadic second
order logic, that is, formulas of the form ∃X1 . . . ∃Xm ψ , where ψ is an FO(O) formula
over the vocabulary O extended with the unary predicates X1, . . . , Xm.

We let FO2(O) stand for FO(O) with two variables, that is, the set of FO(O) formulae
that only use two variables x and y. The set of all formulae of the form ∃X1 . . . ∃Xm ψ ,
where ψ is an FO2(O) formula is denoted by ∃MSO2(O). Note that ∃MSO2(E↓, E→) is
equivalent in expressive power to MSO(E↓, E→) over the usual (without data) trees.
That is, it defines precisely the regular tree languages [Thomas 1997].

As usual, we define Ldata(ϕ) as the set of ordered-data trees that satisfy the formula
ϕ. In such case, we say that the formula ϕ expresses the language Ldata(ϕ).3

The following theorem is well known. It shows how even extending FO(E↓, E→) with
equality test on data values immediately yields undecidability.

THEOREM 3.1 (E.G., [NEVEN ET AL. 2004]). The satisfiability problem for the logic
FO(E↓, E→,∼) is undecidable.

One of the deepest results in this area is the following decidability result for the logic
∃MSO2(E↓, E→,∼).

THEOREM 3.2 [BOJANCZYK ET AL. 2009]. The satisfiability problem for the logic
∃MSO2(E↓, E→,∼) is decidable.

3.3. A Few Examples

In this section, we present a few examples of properties of ordered-data trees. Some of
them are special cases of more general techniques that will be used later on.

Example 3.3. Let � = {a, b}. Consider the language La
data of ordered-data trees

over �, where an ordered-data tree t ∈ La
data if and only if there exist two a-nodes u

and v such that u is an ancestor of v and either v ∼ u or v ≺ u. This language can be
expressed with the formula ∃X∃Y∃Z ϕ, where ϕ states that X contains only the node u,
Y contains only the node v, Z contains precisely the nodes in the path from u to v, and
v ∼ u or v ≺ u.

3To avoid confusion, we put the subscript data on Ldata to denote a language of ordered-data trees. We use
the symbol L without the subscript data to denote the usual language of trees/strings without data.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:10 T. Tan

Example 3.4. For a fixed set S ⊆ � and an integer m ≥ 1, we consider the language
LS,m

data such that t ∈ LS,m
data if and only if |[S]t| = m.

We pick an arbitrary symbol a ∈ S. The language LS,m
data can be expressed in

∃MSO2(E↓, E→,∼) with the formula of the form ∃X1 · · · ∃Xm ϕ, where ϕ is a conjunction
of the following.

—That the predicates X1, . . . , Xm are disjoint, and each of them contains exactly one
node, which is an a-node.

—That the data values found in nodes in X1, . . . , Xm are all different.
—That for each i ∈ {1, . . . , m}, if a data value is found in a node in Xi, then it must also

be found in some b-node, for every b ∈ S.
—That for each i ∈ {1, . . . , m}, if a data value found in a node in Xi, then it must not be

found in any b-node, for every b /∈ S.
—That for every a-node (recall that a ∈ S) that does not belong to the Xi ’s, either it has

the same data value as the data value in a node belongs to one of the Xi ’s, or it has
the data value not in [S]t.
That its data value does not belong to [S]t can be stated as the negation of the
following.
—For each b ∈ S, there is a b-node with the same data value.
—The data value cannot be found in any b-node, for every b /∈ S.

To express all these intended meanings, it is sufficient that ϕ ∈ FO2(E↓, E→,∼).

Example 3.5. For a fixed set S ⊆ � and an integer m ≥ 1, we consider the language
LS, (mod m)

data such that t ∈ LS, (mod m)
data if and only if |[S]t| ≡ 0 (mod m).

This language LS, (mod m)
data can be expressed in ∃MSO2(E↓, E→,∼) with a formula of

the form

∃X0 · · · ∃Xm−1∃Y0 · · · ∃Ym−1∃Z ψ,

where the intended meanings of X0, . . . , Xm−1, Y0, . . . , Ym−1, Z are as follows. For a node
u in an ordered-data tree t ∈ Ldata, the following hold.

—The number of nodes belonging to Z is precisely |[S]t|; and if Z(u) holds in t, then the
data value in the node u belongs to [S]t.

—Xi(u) holds in t if and only if in the subtree t′ rooted in u we have |[S]t′ | ≡ i (mod m).
—If v1, . . . , vk are all the left-siblings of u, and Xi1 (v1), . . . , Xik(vk) holds, then Yi(u) holds

if and only if i1 + · · · + ik ≡ i (mod m).

To express all these intended meanings, it is sufficient that ψ ∈ FO2(E↓, E→,∼).

Example 3.6. Let � = {a, b}. Consider the language La∗
data of ordered-data trees over

� where an ordered-data tree t ∈ La∗
data if and only if all the a-nodes with data values

different from the ones in their parents satisfy the following conditions:

—the data values found in these nodes are all different;
—one of the these data values must be the largest in the tree t.

The language La∗
data can be expressed in ∃MSO2(E↓,∼,≺) with the following formula.

∃X
(
∀x
(
X(x) ⇐⇒ a(x) ∧ ∃y(E↓(y, x) ∧ y � x)

)
∧ ∀x∀y(X(x) ∧ X(y) ∧ x ∼ y → x = y)

∧ ∃x
(
X(x) ∧ ∀y(y ≺ x ∨ x ∼ y)

))
.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:11

4. TWO USEFUL LEMMAS

In this section, we prove two lemmas which will be used later on. The first is combina-
torial by nature, and we will use it in our proof of the decidability of ODTA. The second
is an Ehrenfeucht-Fraı̈ssé type lemma for ordered-data trees, and we will use it in our
proof of the logical characterization of ODTA.

4.1. A Combinatorial Lemma

Let G be an (undirected and finite) graph. For simplicity, we consider only the graph
without self-loop. We denote by V (G) the set of vertices in G and E(G) the set of edges.
For a node u ∈ V (G), we write deg(u) to denote the degree of the node u and deg(G) to
denote max{deg(u) | u ∈ V (G)}.

A data graph over the alphabet � is a graph G in which each node carries a label
from � and a data value from N. A node u ∈ V (G) is called an a-node if its label is a, in
which case we write �abG(u) = a. We denote by va�G(u) the data value found in node u,
and ValG(a) the set of data values found in a-nodes in G.

LEMMA 4.1. Let G be a data graph over �. Suppose for each a ∈ �, we have |VG(a)| ≥
deg(G)|�|+deg(G)+1. Then we can reassign the data values in the nodes in G to obtain
another data graph G′ such that V (G) = V (G′) and E(G) = E(G′) and

(1) for each u ∈ V (G′), �abG(u) = �abG′(u);
(2) for each a ∈ �, ValG(a) = ValG′(a);
(3) for each u, v ∈ V (G), if (u, v) ∈ E(G′), then va�G′(u) �= va�G′(v).

PROOF. Note that in the lemma, the data graph G′ differs from G only in the data
values on the nodes, where we require that adjacent nodes in G′ have different data
values.

In the following, we write #G(a) to denote the number of a-nodes in G and K = deg(G).
First, we perform some partial reassignment of the data values on some nodes. For each
a ∈ �, we pick |ValG(a)| number of a-nodes in G′. Then we assign to these a-nodes the
data values from ValG(a). One a-node gets one data value. Such assignment can be done,
since obviously #G(a) ≥ |ValG(a)|. If #G(a) > |ValG(a)|, then there will be some a-nodes
in G′ that do not have data values. We write va�G′(u) = �, if u does not have data value.
From this step we already obtain that ValG′(a) = ValG(a) for each a ∈ �.

However, reassigning the data values just like that, there may exist an edge (u, v)
such that va�G′(u) = va�G′(v) and va�G′(u), va�G′(v) �= �. We call such an edge a conflict
edge. We are going to reassign the data values one more time so that there is no conflict
edge.

Suppose there exists an edge (u, v) ∈ E such that va�G′(u) = va�G′(v) = d, and
suppose that u is an a-node, for some a ∈ �. The data value d can only be found in
at most |�| nodes in G′. Since deg(G) = K, the neighbours of those nodes (with data
value d) are at most K|�| nodes. Now |ValG(a)| = |ValG′(a)| ≥ K|�| + K + 1, there are
at least K + 1 number of a-nodes whose neighbours do not get the data value d. Let
u1, . . . , um be such a-nodes, where m ≥ K +1. From these nodes, there exists i such that
va�G′(ui) /∈ {va�G′(x) | (u, x) ∈ E}.

We can then swap the data values on the nodes u and ui, and this results in one
less conflict edge. We repeat this process until there is no conflict edge. Now it is
straightforward that

(1) for each u ∈ V , �abG(u) = �abG′(u);
(2) for each a ∈ �, ValG(a) = ValG′(a);
(3) for each u, v ∈ V , if (u, v) ∈ E and va�G′(u), va�G′(v) �= �, then va�G′(u) �= va�G′(v).

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:12 T. Tan

What is left to do now is to assign data values to the nodes u, where va�G′(u) = �.
For each a-node, where va�G′(u) = �, we pick the data value d ∈ ValG′(a) = ValG(a)
which is not assigned to any its neighbour. Such data value exists, since |ValG′(a)| ≥
K|�| + K + 1 ≥ K + 1. Such assignment will not violate condition (3), thus, we get the
desired data graph G′. This completes the proof of Lemma 4.1.

4.2. An Ehrenfeucht-Fraı̈ssé Type Lemma

We need the following notation. A k-characteristic function on the alphabet � is a
function f : � → {0, 1, 2, . . . , k}. Let F�,k be the set of all such k-characteristic functions
on �. A function f ∈ F�,k is a k-characteristic function for a set S ⊆ � if f (a) ∈
{1, 2, . . . , k}, for all a ∈ S, and f (a) = 0, for all a /∈ S.

An ordered-dataset U over the alphabet � consists of a finite set U , in which each
element u ∈ U carries a label �abU(u) ∈ � and a data value va�U(u) ∈ N. An element
u ∈ U is called an a-element, if �abU(u) = a. In other words, an ordered-dataset is
similar to an ordered-data tree, but without the relations E↓ and E→. It can be viewed
as a structure U = 〈U, {a(·)}a∈�,∼,≺,≺suc〉, where

—for each a ∈ � and u ∈ U , the relation a(u) holds if �abU(u) = a,
—u ∼ v holds, if va�U(u) = va�U(v),
—u ≺ v holds, if va�U(u) < va�U(v),
—u≺suc v holds, if va�U(v) is the minimal data value found in U greater than va�U(u).

Let U be an ordered-dataset and d1 < · · · < dm be the data values found in U. The
k-extended representation of U is the string Vk

�(U) = (S1, f1) · · · (Sm, fm) ∈ 2� ×F�,k such
that S1 · · · Sm = V�(U) and for each i ∈ {1, 2, . . . , m} and for each a ∈ �,

(1) fi is a k-characteristic function for the set Si,
(2) if 1 ≤ fi(a) ≤ k− 1, then there are fi(a) number of a-elements in U with data value

di,
(3) if fi(a) = k, then there are at least k number of a-elements in U with data value di.

We assume that in every formula in MSO(∼,≺,≺suc), all the monadic second-order
quantifiers precede the first-order part. That is, sentences in MSO(∼,≺,≺suc) are of
the form: ϕ := Q1 X1 · · · Qs Xs ψ , where the Xi ’s are monadic second-order variables, the
Qi ’s are ∃ or ∀ and ψ ∈ FO(∼,≺,≺suc) extended with the unary predicates X1, . . . , Xs.
We call the integer s, the MSO quantifier rank of ϕ, denoted by MSO-qr(ϕ) = s, while
we write FO-qr(ϕ) to denote the quantifier rank of ψ , that is, the quantifier rank of the
first-order part of ϕ.

LEMMA 4.2. Let U1 and U2 be ordered-datasets over � such that Vk2s

� (U1) = Vk2s

� (U2).
For any MSO(∼,≺,≺suc) sentence ϕ such that MSO-qr(ϕ) ≤ s and FO-qr(ϕ) ≤ k, U1 |=
ϕ if and only if U2 |= ϕ.

PROOF. The proof is by Ehrenfeucht-Fraı̈ssé game for MSO of (s + k) rounds, with s
rounds of set-moves and k rounds of point-moves. We can assume that the set-moves
precede the point-moves (see, e.g., [Libkin 2004] for the definition of Ehrenfeucht-
Fraı̈ssé game).

Before we go to the proof, we need a few notations. Let U1 and U2 be ordered-datasets
over �. For (a, d) ∈ � × N, we write PU1 (a, d) = {u | �abU1 (u) = a and va�U1 (u) = d} – the
set of elements in U1 with label a and data value d. We can define similarly PU2 (a, d)
for U2.

Let O ⊆ {∼,≺,≺suc}. Let u1, . . . , uk ∈ U1 and v1, . . . , vk ∈ U2, for some ordered-
datasets U1 and U2. The mapping (u1, . . . , uk) �→ (v1, . . . , vk) is a partial O-isomorphism

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:13

(with equality) from U1 to U2, if it is a partial isomorphism with regards to the vocab-
ulary O, and if ul = ul′ , then vl = vl′ .

We are going to describe Duplicator’s strategy for winning the Ehrenfeucht-Fraı̈ssé
game for MSO of s rounds of set-moves, followed by k rounds of point moves. We start
with the set-moves.

Duplicator’s Strategy for Set-Moves. Suppose that the game is already played for l
rounds, where X1, . . . , Xl and Y1, . . . , Yl are the sets of positions chosen in U1 and U2,
respectively. For each I ⊆ {1, . . . , l}, define the following set:

PU1 (a, d; I) = PU1 (a, d) ∩
⋂
i∈I

Xi ∩
⋂
j /∈I

Xj,

PU2 (a, d; I) = PU2 (a, d) ∩
⋂
i∈I

Yi ∩
⋂
j /∈I

Y j .

Duplicator’s strategy is to preserve the following identity: for every (a, d) ∈ � × N and
every I ⊆ {1, . . . , l}.
—If the cardinality |PU1 (a, d; I)| < k2m−l, then |PU1 (a, d; I)| = |PU2 (a, d; I)|.
—If the cardinality |PU1 (a, d; I)| ≥ k2m−l, then also |PU2 (a, d; I)| ≥ k2m−l.

Now suppose that on the (l + 1)th set-move, Spoiler chooses a set X of positions on U1.
Duplicator chooses a set Y of positions on U2 as follows. For each I ⊆ {1, . . . , l}, there
are four cases.

(1) |PU1 (a, d; I) ∩ X| and |PU1 (a, d; I) ∩ X| < k2m−l−1. Then, |PU1 (a, d; I)| < k2m−l, which
by induction hypothesis, implies |PU2 (a, d; I)| = |PU1 (a, d; I)|. Duplicator picks
|PU1 (a, d; I) ∩ X| number of points from PU2 (a, d; I), and declares them to “belong to
Y .” The rest of the points from PU2 (a, d; I) are declared to “not belong to Y .”
Obviously, |PU1 (a, d; I) ∩ X| = |PU2 (a, d; I) ∩ Y | < k2m−l−1 and |PU1 (a, d; I) ∩ X| =
|PU2 (a, d; I) ∩ Y | < k2m−l−1.

(2) |PU1 (a, d; I) ∩ X| < k2m−l−1 and |PU1 (a, d; I) ∩ X| ≥ k2m−l−1. In this case, either
PU1 (a, d; I) < k2m or ≥ k2m. In either case there are |PU1 (a, d; I) ∩ X| number of
points from PU2 (a, d; I) which Duplicator declares to “belong to Y .” The rest of the
points from PU2 (a, d; I) are declared to “not belong to Y .”
Obviously, |PU1 (a, d; I) ∩ X| = |PU2 (a, d; I) ∩ Y | and |PU2 (a, d; I) ∩ Y | ≥ k2m−l−1.

(3) |PU1 (a, d; I) ∩ X| ≥ k2m−l−1 and |PU1 (a, d; I) ∩ X| < k2m−l−1. Similar to Case 2.
(4) |PU1 (a, d; I)∩X| ≥ k2m−l−1 and |PU1 (a, d; I)∩X| ≥ k2m−l−1. Then, |PU1 (a, d; I)| ≥ k2m−l,

and so |PU2 (a, d; I)| ≥ k2m−l. Duplicator declares half of the points in PU2 (a, d; I) to
“belong to Y ” and the other half to “not belong to Y .”
Obviously, |PU2 (a, d; I) ∩ Y | and |PU2 (a, d; I) ∩ Y | ≥ k2m−l−1.

Now after mrounds of set-moves, we have the following identity: for every (a, d) ∈ �×N

and every I ⊆ {1, . . . , m}.
—If the cardinality |PU1 (a, d; I)| < k, then |PU1 (a, d; I)| = |PU2 (a, d; I)|.
—If the cardinality |PU1 (a, d; I)| ≥ k, then also |PU2 (a, d; I)| ≥ k.

This ends our description of Duplicator’s strategy for set-moves. Now we describe
Duplicator’s strategy for point-moves.

Duplicator’s Strategy for Point-Moves. Suppose that the game is now on lth step. Let
(u1, . . . , ul) �→ (v1, . . . , vl) be a partial {∼,≺,≺suc}-isomorphism, where 0 ≤ l ≤ k − 1.
Suppose Spoiler chooses an element ul+1 from U1 such that va�U1 (ul+1) is the jth largest
data value in U1.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:14 T. Tan

—If ul+1 = ul′ , for some l′ ∈ {1, . . . , l}, Duplicator chooses vl+1 = vl′ from U2.
—If ul+1 /∈ {u1, . . . , ul}, Duplicator chooses vl+1 from U2 such that vl+1 /∈ {v1, . . . , vl} and

�abU1 (ul+1) = �abU2 (vl+1) and va�U2 (vl+1) is the jth largest data value in U2. Such an
element exists, as Vk2m

(U1) = Vk2m
(U2).

In either case, (u1, . . . , ul+1) �→ (v1, . . . , vl+1) is a partial {∼,≺,≺suc}-isomorphism. This
completes the description of Duplicator’s strategy and hence, our proof.

Now, we define the k-extended representation of an ordered-data tree t over the
alphabet �, denoted by Vk

�(t) is the k-extended representation of the ordered-dataset
U obtained by ignoring the relations E↓ and E→ in t. The following corollary is an
immediate consequence of Lemma 4.2.

COROLLARY 4.3. Let t1 and t2 be ordered-data trees over � such that Vk2s

� (t1) = Vk2s

� (t2).
For any MSO(∼,≺,≺suc) sentence ϕ such that MSO-qr(ϕ) ≤ s and FO-qr(ϕ) ≤ k, t1 |=
ϕ if and only if t2 |= ϕ.

PROOF. Since the predicates E↓ and E→ are not used in the formula ϕ ∈ MSO(∼,≺,
≺suc), we can ignore them in t1 and t2 and view both t1 and t2 as ordered-datasets. Our
corollary follows immediately from Lemma 4.2.

5. AUTOMATA FOR ORDERED-DATA TREE

In this section, we are going to introduce an automata model for ordered-data trees
and study its expressive power.

Definition 5.1. An ordered-data tree automaton, in short ODTA, over the alphabet
� is a triplet S = 〈T ,M, �0〉, where T is a letter-to-letter nondeterministic transducer
from � × {�,⊥, ∗}3 to the output alphabet �; M is an automaton on strings over the
alphabet 2�; and �0 ⊆ �.

An ordered-data tree t is accepted by S, denoted by t ∈ Ldata(S), if there exists an
ordered-data tree t′ over � such that

—on input Profile(t), the transducer T outputs t′;
—the automaton M accepts the string V�(t′); and
—for every a ∈ �0, all the a-nodes in t′ have different data values.

We describe a few examples of ODTA that accept the languages described in
Examples 3.3, 3.4, 3.5, and 3.6.

Example 5.2. An ODTA Sa = 〈T ,M, �0〉 that accepts the language La
data in

Example 3.3 can be defined as follows. The output alphabet of the transducer T is
� = {α, β, γ }. On an input tree t, the transducer T marks the nodes in t as follows.
There is only one node marked with α, one node marked with β, and the α-node is an
ancestor of β. The automaton M accepts all the strings in which the position labeled
with S � β is less than or equal to the position labeled with S′ � α. (These two positions
can be equal, which means S = S′.) Finally, �0 = ∅.

Example 5.3. An ODTA SS,m = 〈T ,M, �0〉 that accepts the language LS,m
data in

Example 3.4 can be defined as follows. The transducer T is an identity transducer.
The automaton M accepts all the strings in which the symbol S appears exactly m
times, and �0 = ∅.

Example 5.4. An ODTA SS, (mod m) = 〈T ,M, �0〉 that accepts the language
LS, (mod m)

data in Example 3.5 can be defined as follows. The transducer T is an identity

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:15

transducer. The automaton M accepts a string in which the number of appearances of
the symbol S is a multiple of m, and �0 = ∅.

Example 5.5. An ODTA Sa∗ = 〈T ,M, �0〉 that accepts the language La∗
data in Exam-

ple 3.6 can be defined as follows. The output alphabet of the transducer T is � = {α, β}.
The transducer T marks the nodes as follows. A node is marked with α if and only if
it is an a-node and it has different data value from the one of its parent. All the other
nodes are marked with β. The automaton M accepts a string v if and only if the last
symbol in v contains the symbol α, while �0 = {α}.

The following proposition states that ODTA languages are closed under union and
intersection but not under negation. We would like to remark that being not closed
under negation is rather common for decidable models for data trees. Often models
that are closed under negation have undecidable non-emptiness/satisfiability problem.

PROPOSITION 5.6. The class of languages accepted by ODTA is closed under union
and intersection but not under negation.

PROOF. For closure under union and intersection, let S1 = 〈T 1,M1, �
1
0〉 and S2 =

〈T 2,M2, �
2
0〉 be ODTA. The union Ldata(S1) ∪ Ldata(S2) is accepted by an ODTA which

non-deterministically chooses to simulate eitherS1 or S2 on the input ordered-data tree.
The ODTA for the intersection Ldata(S1) ∩ Ldata(S2) can be obtained by the standard
cross product between S1 and S2.

We now prove hat ODTA languages are not closed under negation. Consider the
negation of the language in Example 3.3, whose equivalent ODTA Sa is presented in
Example 5.2. Every tree t /∈ L(Sa) has the following property. If u, v are two a-nodes in
t and u is an ancestor of v, then u ≺ v.

Now suppose to the contrary that there exists an ODTA S = 〈T ,M, �0〉 that accepts
the negation of L(Sa). Let � be the output alphabet of T . Let t ∈ L(S) be a data tree
with |�| + 1 nodes, where each node is labeled with a and has at most one child. This
implies that the data values in t are all different and appear in increasing order from
the root node to the leaf node.

Let t′ ∈ T (t). Since t has |�| + 1 nodes, and hence so does t′, there are two nodes in
u and v in t′ with the same label. Let t′′ be a data tree obtained from t by swapping
the data values between u and v, so t′′ ∈ L(Sa). Since Profile(t) = Profile(t′′), on input
Profile(t′′), the transducer T can also output t′, which means that t′′ ∈ L(S). This
contradicts the fact that L(S) is the complement of L(Sa). This completes the proof of
Proposition 5.6.

We should remark that in Section 7, we will discuss that extending ODTA with the
complement of languages of the form in Example 5.2 will immediately yield undecid-
ability.

Theorems 5.7, 5.8, and 5.9 are the main results in this article. Theorem 5.7 provides
the ODTA characterisation of the logic ∃MSO2(E↓, E→,∼), and its proof can be found
in Section 5.1.

THEOREM 5.7. A language Ldata is expressible with an ∃MSO2(E↓, E→,∼) formula if
and only if it is accepted by an ODTA S = 〈T ,M, �0〉, where L(M) is a commutative lan-
guage. Moreover, the translation from ∃MSO2(E↓, E→,∼) formulas to ODTA takes triple
exponential time, while from ODTA to ∃MSO2(E↓, E→,∼) formulas, takes exponential
time.

Theorem 5.8 provides the logical characterisation of ODTA. The proof can be found
in Section 5.2.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:16 T. Tan

THEOREM 5.8. A language Ldata is accepted by an ODTA if and only if it is expressible
with a formula of the form: ∃X1 · · · ∃Xm ϕ∧ψ , where ϕ is a formula from FO2(E↓, E→,∼),
and ψ from FO(∼,≺,≺suc), both extended with the unary predicates X1, . . . , Xm and a(·).
Moreover, the translation from ODTA to formula is of polynomial time, and from formula
to ODTA is effective, but non-elementary.

Finally, we show that the non-emptiness problem for ODTA is decidable in
Theorem 5.9. The proof can be found in Section 5.3.

THEOREM 5.9. The non-emptiness problem for ODTA is decidable in 3-NEXPTIME.

The best lower bound known up to date is NP-hard. See Fan and Libkin [2002], David
et al. [2012].

5.1. Proof of Theorem 5.7

In the proof, we assume that the ordered-data trees are over the finite alphabet �. We
will need the following proposition which states that every ∃MSO2(E↓, E→,∼) formula
can be syntactically rewritten to a normal form for ∃MSO2(E↓, E→,∼).

PROPOSITION 5.10 ([BOJANCZYK ET AL. 2009, PROPOSITION 3.8]). Every formula ψ ∈
∃MSO2(E↓, E→,∼) can be rewritten into a normal form of exponential size of the form:
∃Y1 · · · ∃Yn ϕ, where ϕ is a conjunction of formulae of the form:

(N1) ∀x∀y (α(x) ∧ δ(x, y) ∧ ξ (x, y) → β(y)),
(N2) ∀x (root(x) → α(y)),
(N3) ∀x (first-sibling(x) → α(y)),
(N4) ∀x (last-sibling(x) → α(y)),
(N5) ∀x (leaf(x) → α(y)),
(N6) ∀x∀y (α(x) ∧ α(y) ∧ x ∼ y → x = y),
(N7) ∀x∃y (α(x) → β(y) ∧ x ∼ y),

where α(x), β(x) is a conjunction of some unary predicates and its negations, δ(x, y) is
either E↓(x, y) or E→(x, y), and ξ (x, y) is either x ∼ y or x � y.

We should remark that if ϕ is a conjunction of formulae of the forms (N1)–(N5), then
there exists a tree automaton A over the alphabet � × {�,⊥, ∗}3 such that for every
ordered-data tree t,

t |= � if and only if Profile(t) is accepted by A.

Such construction is straightforward from the classical automata theory (see, e.g.,
[Thomas 1997]). We next divide the proof of Theorem 5.7 into Lemmas 5.11 and 5.12.

LEMMA 5.11. For every formula � ∈ ∃MSO2(E↓, E→,∼), there exists an ODTA S� =
〈T ,M, �0〉 such that Ldata(�) = Ldata(S�) and L(M) is commutative. Moreover, the
construction of S� is effective and takes triple exponential time in the size of the formula
�.

PROOF. Applying Proposition 5.10, we can rewrite the formula � in its normal form
∃Y1 · · · ∃Yn�

′. Furthermore, we can rewrite the formula � into the form ∃X1 · · · ∃Xm ϕ,
where m = 2n, and ϕ is a conjunction of formulas of the following form.

(N0′) X1, . . . , Xm are pairwise disjoint, and
∧

a∈� ∀x(a(x) → α′(x)).
(N1′) ∀x∀y (α′(x) ∧ δ(x, y) ∧ ξ (x, y) → β ′(y)),
(N2′) ∀x (root(x) → α′(y)),
(N3′) ∀x (first-sibling(x) → α′(y)),
(N4′) ∀x (last-sibling(x) → α′(y)),

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:17

(N5′) ∀x (leaf(x) → α′(y)),
(N6′) ∀x∀y (α′(x) ∧ α′(y) ∧ x ∼ y → x = y),
(N7′) ∀x∃y (α′(x) → β ′(y) ∧ x ∼ y),

where α′(x), β ′(x) are disjunctions of some of the Xi ’s, and δ(x, y) and ξ (x, y) are the
same as before. Intuitively, the unary predicates X1, . . . , Xm correspond to subsets of
{Y1, . . . , Yn}.

The ODTA S� = 〈T ,M, �0〉 is defined as follows.

—The transducer T checks whether the formulas (N0′)–(N5′) are satisfied, with the
output alphabet � = {X1, . . . , Xm}, where a node is labeled with Xi if and only if it
belongs to Xi.
The construction of such transducer is straightforward, thus, omitted (see, e.g.,
[Thomas 1997]).

—�0 consists of the Xi ’s, where there exists A ⊆ {X1, . . . , Xm} and Xi ∈ A and a formula
of the form (N6′)

∀x∀y

⎛
⎝∨

Xj∈A

Xj(x) ∧
∨

Xj∈A

Xj(y) ∧ x ∼ y → x = y

⎞
⎠ ,

in ϕ.
—The automaton M accepts the language (2{X1,...,Xm} − (P1 ∪ P2))∗, where

P1 :=
{

S

∣∣∣∣∣
there exists a formula

∀x∃y (
∨

X∈A X(x) →∨
X∈B X(y) ∧ x ∼ y)

in ϕ such that S ∩ A �= ∅ but S ∩ B = ∅

}
,

P2 :=
{

S

∣∣∣∣∣
there exists a formula

∀x∀y (
∨

X∈A X(x) ∧∨X∈A X(y) ∧ x ∼ y → x = y)
in ϕ such that |S ∩ A| ≥ 2

}
.

That L(M) is commutative is trivial. That S accepts precisely the language Ldata(�)
can be deduced from the following.

—That T ensures that formulas N0′–N5′ are satisfied.
—That �0 contains precisely the symbols Xi ’s, where all Xi-nodes are supposed to

contain different data values.
—That for every ordered-data tree t,

t |= ∀x∃y

(∨
X∈A

X(x) →
∨
X∈B

X(y) ∧ x ∼ y

)
,

if and only if [S]t = ∅ for all S such that S ∩ A �= ∅ but S ∩ B = ∅.
—That for every ordered-data tree t,

t |= ∀x∀y

(∨
X∈A

X(x) ∧
∨
X∈A

X(y) ∧ x ∼ y → x = y

)
,

if and only if the following hold.
—[S]t = ∅ for all S such that |S ∩ A| ≥ 2.
—For all X ∈ A, t |= ∀x∀y (X(x) ∧ X(y) ∧ x ∼ y → x = y), which is captured by the

condition imposed by �0.

The analysis of the complexity is as follows. The first step, applying Proposition 5.10,
induces an exponential blow-up in the size of the input. The second step to construct
the formula ∃X1 · · · ∃Xm ϕ takes exponential time in n, and n is exponential in the
size of the input. The construction of T takes polynomial time in the size of ϕ, since

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:18 T. Tan

(N0′)–(N5′) are already in the “automata transition” format. The construction of �0
takes polynomial time in m, while the construction of M induces another exponential
blow-up in m. Altogether, the complexity of our constructing S� is triple exponential
time in the size of �. This concludes the proof of Lemma 5.11.

For the complexity analysis in Lemma 5.12, we assume that a commutative automa-
ton M is given as a set of vectors (in binary format) indicating its Parikh images. That
is, M is given as a set I = {(ū1, v̄1,1, . . . , v̄1,�), . . . , (ūn, v̄n,1, . . . , v̄n,�)}, where⋃

(ū,v̄1,...,v̄�)∈I

L(ū, v̄1, . . . , v̄�) = L(M),

and each number in the vectors in I is written in the standard binary form.

LEMMA 5.12. For every ODTA S = 〈T ,M, �0〉, where L(M) is a commutative lan-
guage, there exists a formula ϕ ∈ ∃MSO2(E↓, E→,∼) such that Ldata(ϕ) = Ldata(S).
Moreover, the construction of ϕ takes exponential time in the size of S.

PROOF. Let QT = {q0, . . . , qm} and � = {α1, . . . , αk} be the set of states and the output
alphabet of the transducer T , respectively. Let � = 2|�| − 1.

By Theorem 2.1, L(M) is a finite union of periodic languages. Let I be the finite set
of (� + 1)-tuple of N

�-vectors such that⋃
(ū,v̄1,...,v̄�)∈I

L(ū, v̄1, . . . , v̄�) = L(M).

Let I = {(ū1, v̄1,1, . . . , v̄1,�), . . . , (ūn, v̄n,1, . . . , v̄n,�)} and S1, . . . , S� be the enumeration of
nonempty subsets of �. First, for (ū, v̄1, . . . , v̄�) ∈ I, we construct an ∃MSO2(E↓, E→,∼)
formula �(ū,v̄1,...,v̄�), where

t ∈ �(ū,v̄1,...,v̄�) if and only if
[

there exists h1, . . . , h� ≥ 0 such that
(|[S1]t|, . . . , |[S�]t|) = ū + h1v̄1 + · · · + h�v̄�

]
.

We denote by vi the nonzero entry of v̄i. This formula �(ū,v̄1,...,v̄�) is as follows.

∃W1,1 · · · W1,u1 · · · · · · ∃W�,1 · · · W�,u�

∃X1,0 · · · X1,v1−1 ∃Y1,0 · · · Y1,v1−1 Z1

. . .
∃X�,0 · · · X�,v�−1 ∃Y�,0 · · · Y�,v�−1 Z�∧

i

Wi,1, . . . , Wi,ui ∩ Zi = ∅

∧
∧

i

ϕ|[Si]|=ui (Wi,1, . . . , Wi,ui)

∧
∧

i

ϕ|[Si]|≡vi (mod m)(Xi,0, . . . , Xi,vi−1, Yi,0, . . . , Yi,vi−1, Zi),

where ϕSi ,ui (Wi,1, . . . , Wi,ui) and ϕSi , (mod vi)(Xi,0, . . . , Xi,vi−1, Yi,0, . . . , Yi,vi−1, Zi) are the for-
mulas for the languages LSi ,ui

data and LSi , (mod ui)
data in Examples 3.4 and 3.5, respectively.

The desired formula ϕ is

∃Xq0 · · · ∃Xqm ∃Xα1 · · · ∃Xαk ∃X(ū1,v̄1,1,...,v̄1,�) · · · ∃X(ūn,v̄n,1,...,v̄n,�)

ϕ�0 ∧ ϕT ∧
∨

(ū,v̄1,...,v̄�)∈I

ϕ(ū,v̄1,...,v̄�),

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:19

where the following hold.

—The formula ϕ�0 expresses the fact that the data values found under nodes labeled
with a symbol from �0 are all different.

—The unary predicates Xq0 , . . . , Xqm, Xα1 , . . . , Xαk are supposed to represent the states
and the output alphabets of T , respectively.

—The formula ϕT expresses the behaviour of the transducer T , that is, a tree satisfies
ϕT in which for every node u ∈ Dom(t), Xqi (u) and Xα j (u) holds, if there exists an
accepting run of T on t in which the node u is labeled with qi and output α j .

—The predicates X(ūi ,v̄i,1,...,v̄i,�)’s and the formulas ϕ(ūi ,v̄i,1,...,v̄i,�)’s are as in the formula
�(ū,v̄1,...,v̄�) previously defined.

The analysis of the complexity is as follows. The size of the formula ϕSi ,ui and ϕSi , (mod vi)
are exponential in the size of Si, ui, vi. Hence, the construction of �(ū,v̄1,...,v̄�) takes expo-
nential time in the size of (ū, v̄1, . . . , v̄�). The construction of ϕ�0 and ϕT takes polynomial
time in the size of �0 and T , respectively. Hence, the total time to construct the formula
ϕ is exponential in the size of S. This completes the proof of the lemma.

5.2. Proof of Theorem 5.8

In this section, for every ordered-data tree t, we assume that the data values in t are
precisely the natural numbers in the range [1..m], for a positive integer m ≥ 1. That is,
if d1 < d2 < · · · < dm are the data values in t, then d1 = 1, d2 = 2, . . . , dm = m.

We start with the following lemma.

LEMMA 5.13. Let ψ ∈ FO(∼,≺) be of quantifier rank k. Let � = {a1, . . . , a�} be the set
of unary predicates used in ψ . There exists a finite state automaton C over the alphabet
� ∪ (2� × F�,k) such that the following holds.

—The automaton C accepts words of the form

f1(a1)︷ ︸︸ ︷
a1 · · · a1 · · ·

f1(a�)︷ ︸︸ ︷
a� · · · a� (S1, f1) · · · · · ·

fm(a1)︷ ︸︸ ︷
a1 · · · a1 · · ·

fm(a�)︷ ︸︸ ︷
a� · · · a� (Sm, fm),

where each Si = {a | fi(a) ≥ 1}.
—For every ordered-data tree t |= ψ , if V (k) = (S1, f1), . . . , (Sm, fm), then there exists a

word in L(C) of the form

f1(a1)︷ ︸︸ ︷
a1 · · · a1 · · ·

f1(a�)︷ ︸︸ ︷
a� · · · a� (S1, f1) · · · · · ·

fm(a1)︷ ︸︸ ︷
a1 · · · a1 · · ·

fm(a�)︷ ︸︸ ︷
a� · · · a� (Sm, fm).

—For every word w ∈ L(C), if w is

f1(a1)︷ ︸︸ ︷
a1 · · · a1 · · ·

f1(a�)︷ ︸︸ ︷
a� · · · a� (S1, f1) · · · · · ·

fm(a1)︷ ︸︸ ︷
a1 · · · a1 · · ·

fm(a�)︷ ︸︸ ︷
a� · · · a� (Sm, fm),

then there exists a tree t |= ψ , where V (k)(t) = (S1, f1) · · · (sm, fm).

PROOF. Let ψ ∈ FO(∼,≺) be of quantifier rank k. Let � = {a1, . . . , a�} be the set of
unary predicates used in ϕ. We define the following sentence ψ ∈ FO(<) (i.e., over
strings) inductively from ψ as follows.

—If ψ is Qx ξ , where Q ∈ {∀, ∃}, then ψ is

Qx
∨
a∈�

a(x) → ξ .

—If ψ is x = y, then ψ is also x = y.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:20 T. Tan

—If ψ is x ∼ y, then ψ states “there is no position in between x and y labeled with any
symbol from 2� × F�,k.”

—If ψ is x ≺ y, then ψ states “there is at least one position in between x and y labeled
with a symbol from 2� × F�,k.”

We have the following claim.

CLAIM 1. (1) For every ordered-data tree t |= ψ , if V (k) = (S1, f1), . . . , (Sm, fm), then
there exists a word w |= ψ of the form

f1(a1)︷ ︸︸ ︷
a1 · · · a1 · · ·

f1(a�)︷ ︸︸ ︷
a� · · · a� (S1, f1) · · · · · ·

fm(a1)︷ ︸︸ ︷
a1 · · · a1 · · ·

fm(a�)︷ ︸︸ ︷
a� · · · a� (Sm, fm).

(2) For every word w |= ψ , if w is
f1(a1)︷ ︸︸ ︷

a1 · · · a1 · · ·
f1(a�)︷ ︸︸ ︷

a� · · · a� (S1, f1) · · · · · ·
fm(a1)︷ ︸︸ ︷

a1 · · · a1 · · ·
fm(a�)︷ ︸︸ ︷

a� · · · a� (Sm, fm),

then there exists a tree t |= ψ , where V (k)(t) = (S1, f1) · · · (sm, fm).

PROOF. We first prove item (1). Let t be an ordered-data tree over the alphabet � and
let Vk(t) = (S1, f1) · · · (Sm, fm) be its k-extended string representation of data values in
t. Let t′ be the following data string.

f1(a1)︷ ︸︸ ︷(
a1

1

)
· · ·
(

a1

1

)
· · ·

f1(a�)︷ ︸︸ ︷(
a�

1

)
· · ·
(

a�

1

)
· · · · · · · · · · · ·

fm(a1)︷ ︸︸ ︷(
a1

m

)
· · ·
(

a1

m

)
· · ·

fm(a�)︷ ︸︸ ︷(
a�

m

)
· · ·
(

a�

m

)
.

When t′ is viewed as a data tree4, V (k)
� (t) = V (k)(t′). Hence, by Corollary 4.3,

t |= ψ if and only if t′ |= ψ.

By straightforward induction on ψ , we can show that for every t′ |= ψ of the form

f1(a1)︷ ︸︸ ︷(
a1

1

)
· · ·
(

a1

1

)
· · ·

f1(a�)︷ ︸︸ ︷(
a�

1

)
· · ·
(

a�

1

)
· · · · · · · · · · · ·

fm(a1)︷ ︸︸ ︷(
a1

m

)
· · ·
(

a1

m

)
· · ·

fm(a�)︷ ︸︸ ︷(
a�

m

)
· · ·
(

a�

m

)
,

there exists a word w |= ψ of the form

f1(a1)︷ ︸︸ ︷
a1 · · · a1 · · ·

f1(a�)︷ ︸︸ ︷
a� · · · a� (S1, f1) · · · · · ·

fm(a1)︷ ︸︸ ︷
a1 · · · a1 · · ·

fm(a�)︷ ︸︸ ︷
a� · · · a� (Sm, fm).

Similarly, to prove (2), we can prove by straightforward induction on ψ that for every
word w |= ψ of the form

f1(a1)︷ ︸︸ ︷
a1 · · · a1 · · ·

f1(a�)︷ ︸︸ ︷
a� · · · a� (S1, f1) · · · · · ·

fm(a1)︷ ︸︸ ︷
a1 · · · a1 · · ·

fm(a�)︷ ︸︸ ︷
a� · · · a� (Sm, fm),

there exists a tree t |= ψ of the form

f1(a1)︷ ︸︸ ︷(
a1

1

)
· · ·
(

a1

1

)
· · ·

f1(a�)︷ ︸︸ ︷(
a�

1

)
· · ·
(

a�

1

)
· · · · · · · · · · · ·

fm(a1)︷ ︸︸ ︷(
a1

m

)
· · ·
(

a1

m

)
· · ·

fm(a�)︷ ︸︸ ︷(
a�

m

)
· · ·
(

a�

m

)
This completes the proof of our claim.

4That is, a data string is a data tree in which each node has at most one child.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:21

Let C be an automaton over the alphabet � ∪ (2� × F�,k) that expresses the formula
ψ and that it accepts only words of the form

f1(a1)︷ ︸︸ ︷
a1 · · · a1 · · ·

f1(a�)︷ ︸︸ ︷
a� · · · a� (S1, f1) · · · · · ·

fm(a1)︷ ︸︸ ︷
a1 · · · a1 · · ·

fm(a�)︷ ︸︸ ︷
a� · · · a� (Sm, fm),

where each Si = {a | fi(a) ≥ 1}. The construction of C from the formula ψ is rather
standard, but non-elementary. See, for example, Thomas [1997]. That the automaton
C is the desired automaton is immediate. This completes our proof of Lemma 5.13.

LEMMA 5.14. Let ψ ∈ FO(∼,≺) be of quantifier rank k. Let � = {a1, . . . , a�} be the set
of unary predicates used in ψ . There exists a finite state automaton M over the alphabet
2� × F�,k such that L(M) = {V (k)

�,k(t) | t |= ψ}.
PROOF. Let C be the automaton obtained by applying Lemma 5.13 on the formula ψ .

Then let M be the automaton obtained from C, where every symbol from � is projected
to empty string. The automaton M is the desired automaton, and this completes our
proof of Lemma 5.14.

Now we are ready to prove Theorem 5.8. We start with the “if” direction. Let � be a
formula of the form

∃Y1 · · · ∃Yn ϕ ∧ ψ,

ϕ is a formula from FO2(E↓, E→,∼) and ψ from FO(∼,≺), both extended with the unary
predicates Y1, . . . , Yn.

By Proposition 5.10, we can rewrite (with additional unary predicates) the formula
ϕ into a conjunction of formulae of the form N1–N7 as stated in Proposition 5.10. Then
we further rewrite it into the form

∃X1 · · · ∃Xm ϕ′ ∧ ψ ′,

where m = 2n and ϕ is a formula from FO2(E↓, E→,∼) and ψ from FO(∼,≺), both
extended with the unary predicates X1, . . . , Xm, and that the formula ϕ′ is conjunction
of the following form.

(N0′) a formula ξ that states that X1, . . . , Xm are pairwise disjoint and that∧
a∈�

∀x (a(x) → α(x)),

(N1′) ∀x∀y (α(x) ∧ δ(x, y) ∧ ξ (x, y) → β(y)),
(N2′) ∀x (root(x) → α(y)),
(N3′) ∀x (first-sibling(x) → α(y)),
(N4′) ∀x (last-sibling(x) → α(y)),
(N5′) ∀x (leaf(x) → α(y)),
(N6′) ∀x∀y (α(x) ∧ α(y) ∧ x ∼ y → x = y),
(N7′) ∀x∃y (α(x) → β(y) ∧ x ∼ y),

where α(x), β(x) are disjunctions of some of the unary predicates X1, . . . , Xm.
We will describe the ODTA S = 〈T ,M, �0〉 for the formula �, where the transducer

T expresses the formula N0′–N5′ with the output alphabet � = {X1, . . . , Xm}, the au-
tomaton M expresses the formula N6′, N7′ and ψ ′, and �0 is the set of symbols that
appear in formula N6′. Formally, it is defined as follows.

—The output alphabet of T is � = {X1, . . . , Xm}.
—The transducer expresses the preceding formula N0′–N5′. In particular, the input

and output symbols of each node must satisfy the formula N0′.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:22 T. Tan

This step take polynomial time, since the formula N0′–N5′ is already in the transition
format.

—The set �0 = {Xi | Xi appears in N6′}.
This step takes polynomial time.

—The automaton M expresses the formulas N6′, N7′, and ψ ′, obtained by applying
Lemma 5.14.
This step is constructive but non-elementary due to the conversion from a formula
to its finite state automaton.

It is straightforward to show that Ldata(S) = {t | t |= �}.
Now we prove the “only if” direction. Let L = Ldata(S), where S = 〈T ,M, �0〉, and

—Q = {q1, . . . , qn} be the states of T ;
—P = {p1, . . . , ps} be the states of M, and p1 is the initial state of M;
—� = {α1, . . . , α�} be the output alphabet of T .

We denote by � the input alphabet of T .
The desired formula for L is of the form:

∃Xq1 · · · ∃Xqn ∃Xα1 · · · ∃Xα�
∃Xp1 · · · ∃Xps �T ∧ �M ∧ ��0 ,

where the following hold.

—the unary predicates Xq1 , . . . , Xqn, Xα1 , . . . , Xα�
, Xp1 , . . . , Xps are supposed to represent

the states, the output alphabets of T , and the states of M, respectively;
—The formula �T expresses the behaviour of the transducer T , that is, a tree satisfies

�T in which for every node u ∈ Dom(t), Xqi (u) and Xα j (u) holds, if there exists an
accepting run of T on t in which the node u is labeled with qi and output α j ;

—the formula �M expresses the behaviour of the automaton M;
—the formula ��0 expresses the property that for every αi ∈ �0, all the nodes belonging

to Xαi contain different data values, which is∧
α∈�0

∀x∀y(Xα(x) ∧ Xα(y) ∧ x ∼ y → x = y).

The construction of the formula �T is rather standard, thus, omitted. We will show the
construction of the formula �M. Let �[S](x) denote the following formula∨

αi∈S

Xαi (x) ∧
∧
αi∈S

∃y(Xαi (x) ∧ x ∼ y) ∧
∧
α j /∈S

∀y(Xα j (y) → x � y),

which states that the data value on the node x belongs to [S]. The formula �M expresses
the following properties.

—That the node contains the minimal data value belongs to Xp1 . Formally, it can be
written as follows.

∀x(∀yx ≺ y ∨ x ∼ y → Xp1 (x)).

—That the transition μ of M must be “respected.” Formally, it can be written as follows.∧
(pi ,S,pj)∈μ

(
∀x∀y(Xpi (x) ∧ �[S](x) ∧ x≺suc y → Xpj (y))

)
,

where x≺suc y stands for x ≺ y ∧ ∀z(¬(x ≺ z ∧ z ≺ y)).

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:23

—That the node contains the maximal data value belongs to one of the final states of
M, denoted by F. Formally, it can be written as follows.

∀x(∀y (y ≺ x ∨ y ∼ x) →
∨
pi∈F

Xpi (x)).

That the construction takes polynomial time is straightforward. This completes our
proof of Theorem 5.8.

5.3. Proof of Theorem 5.9

The proof of Theorem 5.9 consists of two main steps.

(1) We prove that for each ODTA S, if Ldata(S) �= ∅, then Ldata(S) contains a data tree
with small model property (Lemma 5.15).

(2) We describe a procedure, that given an ODTA S, checks whether L(S) contains a
data tree with small model property, by converting the ODTA S into an APC (A, ξ).
Since the non-emptiness of APC is decidable, Theorem 5.9 follows immediately.

The first step (Lemma 5.15) is adapted from the proof of Bojanczyk et al. [2009, Propo-
sition 3.10]. It is in the second step that our proof differs from theirs. The decision
procedure in Bojanczyk et al. [2009] relies on intricate counting argument of the so
called dog and sheep symbols (see [Bojanczyk et al. 2009, page 36]), and it seems that
it cannot be generalised to the case of ODTA. On the other hand, our decision procedure
relies mainly on Proposition 2.3, Lemma 4.1, and counting the cardinality of each [S].

We need a few terminologies. A set of nodes in a data tree t is called connected if it
is connected in the graph induced by E↓ and E→. A zone in a data tree t is a maximal
connected set of nodes with the same data value. The outdegree of a zone Z is the
number of different zones to which there is an edge (either E↓ or E→) from Z.

Let S = 〈T ,M, �0〉 be an ODTA, where T is a transducer from � to �. Let Q be the
set of states of T . For a tree t ∈ Ldata(S), its extended tree t̃ (with respect to the ODTA
S) is a tree over the alphabet � × {�,⊥, ∗}3 × Q× �, where

—the projection of t̃ to � × {�,⊥, ∗}3 is Profile(t);
—the projection of t̃ to Q is an accepting run of T on t;
—the projection of t̃ to � is an output of T on t.

The following Lemma is simply an adaptation of Bojanczyk et al. [2009, Proposi-
tion 3.10] to the case of ODTA. The proof is via cut-and-paste, where given an ordered-
data tree t over the alphabet �, where t has many zones in which the outdegree is
large, we can cut some nodes in t and paste it in another part of t without affecting the
set Vt(a)’s for each a ∈ �. The aim of such cut-and-paste is to reduce the number of
zones in t with large outdegree. We give the following formal statement.

LEMMA 5.15 (COMPARE [BOJANCZYK ET AL. 2009, PROPOSITION 3.10]). For every ODTA
S = 〈T ,M, �0〉 over the alphabet �, if Ldata(S) �= ∅, then there exists a data tree
t ∈ Ldata(S) in which there are at most KO(K2) zones with outdegree ≥ K(K3), where
K = O(|�| · |Q| · |�|) and Q is the set of states of T and � the output alphabet of T .

PROOF. Let S = 〈T ,M, �0〉 be an ODTA over the alphabet �, and Q is the set of
states of T and � the output alphabet of T . Suppose that t0 ∈ Ldata(S). We will work on
the extended tree t̃0 of t0. The aim is to convert t̃0 into another tree t̃ over the alphabet
� × {�,⊥, ∗}3 × Q× � such that

(1) the number of zones in t̃ with outdegree ≥ K(K3) is bounded by KO(K2),
(2) the {�,⊥, ∗}3 projection of t̃ is the profile of each node,

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:24 T. Tan

(3) the Q projection of t̃ is an accepting run of T on the � × {�,⊥, ∗}3 projection of t̃
and the output is its � projection,

(4) for each (a, (l, p, r), q, b) ∈ � ×{�,⊥, ∗}3 × Q×�, the set of data values found in the
(a, (l, p, r), q, b)-nodes in t̃0 is the same as the set of those found in (a, (l, p, r), q, b)-
nodes in t̃,

(5) the � projection of t̃ is accepted by S.

Intuitively, the tree t̃ is obtained via repeated applications of “pumping lemma” on both
E↓- and E→-directions in the tree t.

Next, we give a brief summary of the proof adapted from the proof of Bojanczyk et al.
[2009, Proposition 3.10]. We need the following terminologies, all of them are from
Bojanczyk et al. [2009].

—Two nodes in a tree are called siblings if they have the same parent node.
—The set of all children of a node is called a sibling group.
—A contiguous sequence of siblings is called an interval.

We write [u, v] for an interval in which u and v are the leftmost and rightmost nodes,
respectively, in the interval.

—An interval [u, v] is complete if the following hold.
—If a node u′ exists such that E→(u′, u), then u′

� u.
—If a node v′ exists such that E→(v, v′), then u′

� u.
—An interval is pure if all of its nodes have the same data value.
—A pure interval with the data value d is called a d-pure interval.
—If the parent of an interval (or, a sibling group) has data value d, then it is called a

d-parent interval (or a d-parent sibling group).
—A zone with the data value d is called a d-zone.

The construction of t̃ from t̃0 is as follows.

(1) Convert t̃0 to another tree t̃1 such that
—for every data value d ∈ Vt̃1 , there are at most O(K) complete d-pure intervals of

size more than O(K);
—Vt̃1 (a, (l, p, r), q, b) = Vt̃0 (a, (l, p, r), q, b), for every (a, (l, p, r), q, b) ∈ � ×

{�,⊥, ∗}3 × Q× �;
—t̃1 is an extended tree of its � projection with respect to S.
This step is adapted from Bojanczyk et al. [2009, Proposition 3.12]. The idea is to
cut an interval (together with its subtree) and paste it in another interval; and
while doing so, the data values in the interval remain untouched.

(2) Convert t̃1 to another tree t̃2 such that
—for every data value d ∈ Vt̃2 , there are at most O(K) d-parent sibling group with

more than KO(K) complete pure intervals:
—Vt̃2 (a, (l, p, r), q, b) = Vt̃1 (a, (l, p, r), q, b), for every (a, (l, p, r), q, b) ∈ � ×

{�,⊥, ∗}3 × Q× �;
—t̃2 is an extended tree of its � projection with respect to S.
This step is adapted from Bojanczyk et al. [2009, Proposition 3.14]. Again when the
cut-and-paste is performed the data values in the sibling groups remain untouched.

(3) Convert t̃2 to another tree t̃3 such that
—for every data value d ∈ Vt̃3 , there are at most O(K) d-zones containing a path

with more than O(K) nodes;
—Vt̃3 (a, (l, p, r), q, b) = Vt̃2 (a, (l, p, r), q, b), for every (a, (l, p, r), q, b) ∈ � ×

{�,⊥, ∗}3 × Q× �;
—t̃3 is an extended tree of its � projection with respect to S.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:25

This step is adapted from Bojanczyk et al. [2009, Proposition 3.17]. Again, when
the cut-and-paste is performed, the data values in the zones remain untouched.

(4) Convert t̃3 to another tree t̃4 such that
—there are at most KO(K2) complete pure intervals with more than O(K2) nodes;
—Vt̃3 (a, (l, p, r), q, b) = Vt̃4 (a, (l, p, r), q, b), for every (a, (l, p, r), q, b) ∈ � ×

{�,⊥, ∗}3 × Q× �;
—t̃4 is an extended tree of its � projection with respect to S.
This step is adapted from Bojanczyk et al. [2009, Proposition 3.20]. Here, actually,
when the cut-and-paste is performed, the data values in some zones have to be
changed. However, those changes are only applied to the safe zones, where a zone is
safe if for every node in it there is another node outside the zone with the same label
(from �×{�,⊥, ∗}×Q×�) and the same data value (see [Bojanczyk et al. 2009, page
23].) More specifically, these changes are done by applying Bojanczyk et al. [2009,
Lemma 3.19] on the safe zones. That it is applied only on safe zones is important so
that after changing the data values, constraints such as ∀x∃y(a(x) → x ∼ y ∧ b(y))
are still satisfied.

(5) Convert t̃4 to another tree t̃5 such that
—there are at most KO(K2) sibling groups containing more than KO(K) complete pure

intervals;
—Vt̃4 (a, (l, p, r), q, b) = Vt̃5 (a, (l, p, r), q, b), for every (a, (l, p, r), q, b) ∈ � ×

{�,⊥, ∗}3 × Q× �;
—t̃5 is an extended tree of its � projection with respect to S.
This step is adapted from Bojanczyk et al. [2009, Proposition 3.21]. Here there are
also changes of data values when performing cut-and-paste. However, as in the
previous step, they are only applied to the safe zones. These changes are also done
by applying Bojanczyk et al. [2009, Lemma 3.19] on the safe zones.

(6) Convert t̃5 to another tree t̃6 such that
—there are at most KO(K2) zones containing paths with more than O(K2) nodes;
—Vt̃5 (a, (l, p, r), q, b) = Vt̃6 (a, (l, p, r), q, b), for every (a, (l, p, r), q, b) ∈ � ×

{�,⊥, ∗}3 × Q× �;
—t̃6 is an extended tree of its � projection with respect to S.
This step is adapted from Bojanczyk et al. [2009, Proposition 3.25]. Here there
are also changes of data values when performing cut-and-paste. However, as in
the previous step, they are only applied to the safe zones. More specifically, these
changes are done by applying Bojanczyk et al. [2009, Lemma 3.24] on the safe
zones.

The extended tree t̃6 is the desired extended tree. It is a rather straightforward com-
putation that there are at most KO(K2) zones in t̃6 with outdegree ≥ K(K3).

To describe the decision procedure for Theorem 5.9, we need a few more additional
terminologies. For a data tree t over the alphabet � and S ⊆ �, an S-zone is a zone
in which the labels of the nodes are precisely S. We write V zone

t (S) to denote the set of
data values found in S-zones in t. For P ⊆ 2�,

[P]zone
t =

⋂
S∈P

V zone
t (S) ∩

⋂
R/∈P

V zone
t (R).

Suppose d1 < · · · < dm are all the data values in t. The zonal string representation of
the data values in t, denoted by Vzone

� (t), is the string P1 · · · Pm over the alphabet 22�

such that for each i ∈ {1, . . . , m}, di ∈ [Pi]zone
t .

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:26 T. Tan

A zonal ODTA is S ′ = 〈T ,M′, �0〉, where T and �0 are as in the definition of ODTA,
and M′ is a finite state automaton over the alphabet 22�

. A data tree t is accepted by
the zonal ODTA S ′, if the following holds.

—Profile(t) is accepted by T , yielding an output tree t′ over the alphabet �.
—The string Vzone

� (t′) is accepted by M′.
—For each a ∈ �0, all the data values found in the a-nodes in t′ are different.

PROPOSITION 5.16. For every ODTA S, one can construct in EXPTIME its equivalent
zonal ODTA.

PROOF. Let S = 〈T ,M, �0〉 and M = 〈Q, q0, δ, F〉. Its equivalent zonal ODTA is
defined as S ′ = 〈T ,M′, �0〉, where M′ = 〈Q, q0, δ

′, F〉 and δ′ = {(q, P, q′) ∈ Q× 22� × Q |
∃(q, S, q′) ∈ δ such that

⋃
R∈P R = S}. It is straightforward to show that Ldata(S ′) =

Ldata(S).
Note that the only difference between S and S ′ is the transitions δ and δ′ in M and

M′, respectively. The membership (q, P, q′) ∈ δ′ can be checked in polynomial time in
the size of (q, P, q′) and δ. Since there are exponentially many (q, P, q′), the exponential
time upper bound holds immediately. This completes the proof of Proposition 5.16.

Briefly, our decision procedure for Theorem 5.9 works as follows. Let S = 〈T ,M, �0〉
be the given ODTA, where � is the input alphabet of T , � the output alphabet, and
Q the set of states of T . Let K = 27 · |�| · |Q| · |�|. The decision procedure constructs
an APC (A, ξ) such that S accepts an ordered-data tree t in which there are at most
KO(K2) zones with outdegree ≥ K(K3) if and only if (A, ξ) accepts an extended tree of t
with respect to S.

Its precise description is given as follows.

(1) Compute K = 27 · |�| · |Q| · |�|.
(2) Convert S into its zonal ODTA S ′ = 〈T ,M′, �0〉.
(3) Guess the following items.

(a) A set P ⊆ 22�

.
(b) For each P ∈ P, guess an integer MP ≤ 2 · KK3 · 2K + 2 · KK3 + 1 and a set of MP

constants CP = {c1, . . . , cMP }.5
(c) Two integers N, N′ such that N′ ≤ N ≤ KO(K2) and a set of N′ constants

D = {d1, . . . , dN′ }.
The intuitive meaning of N′ and N are the number of zones with outdegree
≥ K(K3) and the number of data values found in them, respectively. We also
remark that the constants in D may overlap with the constants in some CP .

(d) For each d ∈ D, guess a set Pd ⊆ 2�.
(4) Construct the following automaton A over the alphabet � × {�,⊥, ∗}3 × Q× �.

(a) A accepts only the extended trees of L(T) in which there are at most N zones
with outdegree ≥ K(K3).

(b) The automaton A can remember the constants in its states.

5The purpose of the number 2 · KK3 ·2K +2 · KK3
is the application of Lemma 4.1 later on, where we consider

the graph where the nodes are the zones. Each zone is labeled with a symbol from 2�×{�,⊥,∗}3×Q×� , which is
of size 2K. If a zone has outdegree ≤ K(K3), then it has only at most K(K3) nodes, which means that its degree
(the sum of indegree and outdegree) is bounded by 2 · KK3

. Now P is intended to contain all those P ’s in
which |[P]zone

t | ≤ 2 · KK3 · 2K + 2 · KK3 + 1 so that we can “guess” some constants as elements of [P]zone
t and

make sure by automaton that the same constant is not “assigned” to adjacent zones. For P not in P, we can
apply Lemma 4.1 to make sure the same data value from [P]zone

t is not assigned to adjacent zones.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:27

(c) For every P ∈ P, for every c ∈ CP , the automaton A′ assigns the constant c in
an S-zone, for every S ∈ P, but not in any R-zone, for every R /∈ P.

(d) The automaton A assigns every zone with outdegree ≥ K(K3) with a constant
from D.

(e) For every d ∈ D, for every S ∈ Pd, the automaton A assigns the constant d in
an S-zone, for every S ∈ Pd, but in no R-zone, for every R /∈ Pd.

(f) For each a ∈ �0, there is at most one a-node in every zone, and for every two
zones that contains a-nodes, if they are assigned with some constants from CP ’s
and D, then these constants must be different.

(g) For every two adjacent zones, if they are assigned with constants from CP ’s and
D, then these constants must be different.

The automaton A assigns a constant to a zone by remembering the constant in the
state when A is reading the zone.

(5) Let P1, . . . , Pm be the enumeration of nonempty subsets of 2�.
Applying Lemma 2.3, convert the automaton M′ into its Presburger formula
ξM′(zP1 , . . . , zPm), where the intended meaning of zPi ’s is the number of appearances
of the label Pi.

(6) Let � = {a1, . . . , a�} and S1, . . . , Sk be the enumeration of nonempty subsets of �.
Define the formula ξ (xa1 , . . . , xa�

, xS1 , . . . , xSk) :
∃zP1 · · · ∃zPm ξM′(zP1 , . . . , zPm), (2)

∧
∧
Pi∈P

zPi = MPi , (3)

∧
∧
Pi /∈P

zPi ≥ 2 · KK3 · 2K + 2 · K(K3) + 1, (4)

∧
∧
S⊆�

⎛
⎝xS ≥

∑
Pi�S and Pi /∈P

zPi

⎞
⎠ , (5)

∧
∧
a∈�0

⎛
⎜⎜⎜⎝xa =

∑
there exists S such that

a ∈ S and S ∈ Pi and Pi /∈ P

zPi

⎞
⎟⎟⎟⎠ , (6)

∧
∧
Pi /∈P

zPi ≥ |{d ∈ D | Pd = Pi}|. (7)

The meaning of xa is the number of a-nodes occurring in the zone not assigned with
any constants from CP ’s and D; and xS is the number S-zones not assigned with
any constants from CP ’s and D. The intuition behind items (2)–(6) is rather clear.
The intuition behind item (7) is as follows. Recall that in Step (3), for each d ∈ D,
we guess a set Pd. The meaning is that d ∈ [Pd]zone

t for some t ∈ Ldata(S). So for every
Pi /∈ P, the number of d such that Pd = Pi should not exceed zPi . This is precisely
what is stated in item (7).

(7) Test the nonemptiness of the APC (A, ξ).

Before we proceed to prove its correctness, we first present the analysis of its com-
plexity.

—Step (1) is trivial and Step (2) takes exponential time.
—Step (3) takes nondeterministic exponential time in the size of S. The analysis is as

follows. Step (3a) takes nondeterministic exponential time in the size of 2�, which

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:28 T. Tan

is bounded by the size of M in S. (Recall that the alphabet in M is 2�.) Step (3b)
can guess up exponentially many constant in each CP , and there are exponentially
many different CP , hence it takes double exponential time in the size of 2�. Steps (3c)
and (3d) take nondeterministic exponential time.

—Step (4) takes deterministic triple exponential time and can produce the automaton
A of size up to triple exponential. The analysis is as follows. The automaton A has
to remember in its states the outdegree of each zone up to K(K3) and the number of
zones with out degree ≥ K(K3). This induces an exponential blow-up in the size of T .
The number of constants in guessed in Step (3) is double exponential in the size of
T . Then A has to remember in its states which constant is assigned to which zone (of
outdegree ≥ K(K3)), which induces another exponential blow-up. Altogether the size
of A can be triple exponential in the size of T .

—By Proposition 2.3, Step (5) takes polynomial time in the size M′, which is of size
exponential in the size of the original M.

—The length of the formula in Step (6) is double exponential in the size of S, since the
number of constants in D can be double exponential in the size of 2�, and hence S.

—Step (7) takes nondeterministic polynomial time in the size of (A, ξ), and hence
nondeterministic triple exponential time in the size of the input S.

The following claim immediately implies the correctness of our algorithm.

CLAIM 2. (1) For every ordered-data tree t ∈ Ldata(S), in which there are at most
KO(K2) zones with outdegree ≥ K(K3), there exists an extended tree of t which is
accepted by the APC (A, ξ).

(2) For every t′ ∈ L(A, ξ), there exists an ordered-data tree t ∈ Ldata(S) such that t′ is an
extended tree of t with respect to S.

PROOF. We prove (1) first. Let t ∈ Ldata(S) be an ordered-data tree in which there
are at most KO(K2) zones with outdegree ≥ K(K3). Let t0 be the output of T on t so that
Vzone(t0) is accepted by M and all nodes in t0 labeled with a symbol in �0 have different
data values.

We have the following items guessed in Step 3 in our preceding algorithm.

—P = {P | |[P]zone
t | ≤ 2 · KK3 · 2K + 2 · K(K3) + 1}.

—For each P ∈ P, CP = [P]zone
t0 , and MP = |CP |.

—N be the number of zones in t with outdegree ≥ K(O(K2)) and N′ be the number of
data values found in these zones.

—D = {d | d is found in a zone with outdegree ≥ K(K3)}.
—For each d ∈ D, Pd is the set such that d ∈ [Pd]zone

t0 .

Now let t′ be an extended tree of t with respect to S, and A and ξ be the automaton
and formula as constructed in Steps (4)–(6). We are going to show that t′ ∈ L(A, ξ).
Obviously, t′ ∈ L(A). To show that the formula ξ is satisfied, we take Parikh(Vzone(t0))
as witness to (zP1 , . . . , zPm). Since Vzone(t0) ∈ L(M′), by Proposition 2.3, the formula
ξM′(Parikh(Vzone(t0))) holds. It is straightforward from the definitions of the items P,
MP ’s, N, N′, D, and Pd’s that the formula ξ in Step (6) is satisfied with xa’s and xS’s
interpreted as intended.

Now we prove (2). The proof is more delicate than the proof of (1). Suppose t′ ∈
L(A′, ξ). We are going to construct an ordered-data tree t from t′ such that t′ is an
extended tree of t with respect to S. Let P, MP ’s, CP ’s, N, N′, D, and Pd’s the items as
guessed in Step (3) and the following.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:29

—For each ai ∈ �, let nai be the number of ai-nodes in t′ occurring in a zone without
any constants from CP ’s and D.

—For each Si ⊆ �, let nSi be the number of Si-zones in t′ without any constants from
CP ’s and D.

Suppose (kP1 , . . . , kPm) be the witness to zP1 , . . . , zPm such that

ξ (na1 , . . . , na�
, nS1 , . . . , nSl) holds.

By Proposition 2.3, this means that there exists a word w ∈ L(M′) such that Parikh(w) =
(kP1 , . . . , kPm). For each Pi, we let

N Pi = { j | position j in w is labeled Pi}.
We will assign a data value to each node in t such that

[Pi]zone
t = N Pi ,

and Vzone(t) = w. The assignment is done according to the three following cases.

Case 1. For the nodes that are assigned with some constants from CPi ’s.
In this case, Pi ∈ P. We define bijections fPi : CPi �→ N Pi . There is always a bijection

from CPi to N Pi since they have the same cardinality MPi , due to the following condition
in the formula ξ . ∧

Pi∈P
zPi = MPi .

The data value assignment to nodes of this case can be done by replacing every constant
c ∈ CPi with fPi (c).

Case 2. For the nodes that are assigned some constants from D.
We define a 1-1 mapping f : D �→ {1, . . . , |w|} such that f (d) ∈ N Pd, where Pd is the

set guessed in Step 3. Such 1-1 mapping exists because the following condition in the
formula ξ : ∧

Pi /∈P
zPi ≥ |{d′ ∈ D | Pd′ = Pi}|.

The data value assignment to nodes of this case can be done by replacing every constant
d ∈ D with f (d).

Case 3. For the nodes that are not assigned any constants from CP ’s and D.
First we assign each of such zone in t with a data value6 such that for each S ⊆ �,

V zone
t (S) =

⋃
Pi�S and Pi /∈P

N Pi .

This step can be done as follows. The number of such S-zone in t is greater than∑
Pi�S and Pi /∈P |N Pi |, due to the following condition in the formula ξ :

xS ≥
∑

Pi�S and Pi /∈P
zPi .

Thus, we can simply assign every S-zone with a data value from
⋃

Pi�S and Pi /∈P N Pi and
make sure every data value from

⋃
Pi�S and Pi /∈P N Pi appears in some S-zone.

6A zone in t can be recognised from the profile information in t′.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:30 T. Tan

However, by assigning data values like that, some adjacent zones may get the same data
values. Here we apply Lemma 4.1. Since for each Pi /∈ P, |N Pi | ≥ 2·KK3 ·2K +2·K(K3)+1,
by the following condition in the formula ξ∧

Pi /∈P
zPi ≥ 2 · KK3 · 2K + 2 · K(K3) + 1,

the cardinality∣∣∣ ⋃
Pi�S and Pi /∈P

N Pi

∣∣∣ = ∑
Pi�S and Pi /∈P

|N Pi | ≥ 2 · KK3 · 2K + 2 · K(K3) + 1.

The outdegree of such zone is ≤ K(K3), hence, the number of nodes in the zone is also
≤ K(K3). Since each node can have indegree at most 1, the degree of each of such zone is
≤ 2 · K(K3). By applying Lemma 4.1, where deg(G) = 2 · K(K3), we can reassign the data
value in such zone so that each adjacent zone get different data value.

This completes the proof of our claim.

6. WEAK ODTA

A weak ODTA over � is a triplet S = 〈T ,M, �0〉, where T is a letter-to-letter transducer
from � to the output alphabet �, and M is a finite state automaton over 2� and �0 ⊆ �.
An ordered-data tree t is accepted by S, denoted by t ∈ Ldata(S), if there exists an
ordered-data tree t′ over � such that

—on input Proj(t), the transducer T outputs t′;
—the automaton M accepts the string V�(t′);
—for every a ∈ �0, all the a-nodes in t′ have different data values.

Note that the only difference between weak ODTA and ODTA is the equality test on the
data values in neighboring nodes. Such difference is the cause of the triple exponential
leap in complexity, as stated in the following theorem.

THEOREM 6.1. The non-emptiness problem for weak ODTA is in NP.

PROOF. Let S = 〈T ,M, �0〉 be a weak ODTA. Let �, Q, � be the input alphabet, set
of states and output alphabet of T , respectively.

We need the following notation. For a tree t ∈ Ldata(S), its extended tree t̃ (with
respect to the weak ODTA S) is a tree over the alphabet � × Q× �, where

—the projection of t̃ to � is t;
—the projection of t̃ to Q is an accepting run of T on t such that its output is the

projection of t̃ to �.

The decision procedure for Theorem 6.1 works as follows.

(1) Construct an automaton A over the alphabet � × Q × � for the extended trees
accepted by T .

(2) Let P = {S1, . . . , Sm} ⊆ 2� be the set of symbols used in M.
By applying Proposition 2.3, construct the Presburger formula ξM(xS1 , . . . , xSm) for
M.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:31

(3) Let � × Q × � = {(a1, q1, α1), . . . , (ak, qn, α�)}. Let ϕ(x(a1,q1,α1), . . . , x(ak,qn,α�)) be the
following formula.

∃xα1 · · · ∃xα�
∃xS1 · · · ∃xSm ξM(xS1 , . . . , xSm)

∧
∧
αi∈�

⎛
⎝xαi =

∑
aj∈�,qh∈Q

x(aj ,qh,αi)

⎞
⎠

∧
∧
αi∈�

⎛
⎝xαi ≥

∑
αi∈Sj

xSj

⎞
⎠ ∧

∧
αi∈�0

⎛
⎝xαi =

∑
αi∈Sj

xSj

⎞
⎠ .

(4) Test the non-emptiness of APC (A, ϕ(x(a1,q1,α1), . . . , x(ak,qn,α�))).

That this procedure works in NP follows directly from the fact that the non-emptiness
problem of APC is in NP.

We now show the correctness of our algorithm by showing thatLdata(S) �= ∅ if and only
if L(A, ϕ) �= ∅. (For the sake of presentation, we write ϕ without its free variables.) We
start with the “only if” part. Suppose that t ∈ Ldata(S). We claim that the extended tree
t̃ of t is accepted by (A, ϕ). Obviously, t̃ ∈ L(A). To show that ϕ(Parikh(t̃)) holds, let t′ be
the data tree obtained by projecting t̃ to � and the data value in each node comes from
the same node in t. That is, t′ is an output of T on t. We will show that ϕ(Parikh(t̃)) holds.

—As witness to xS1 , . . . , xSm, we take Parikh(V(t′)). Since V(t′) ∈ L(M), by Proposition 2.3,
ξM(Parikh(V(t′))) holds.

—As witness to xα1 , . . . , xα�
, we take Parikh(t′). Now for each αi ∈ �, the constraint

xαi ≥ ∑αi∈Sj
xSj holds since the number of data values in the αi-nodes cannot exceed

the number of αi-nodes itself. The constraint xαi = ∑
αi∈Sj

xSj , for each αi ∈ �0, since
the data values found in αi-nodes are all different.

Thus, ϕ(Parikh(t̃)) holds, and this concludes our proof of the “only if” part.
Now we prove the “if” part. Suppose that t̃ ∈ L(A, ϕ). So t̃ ∈ L(A). Let t and t′ be the

�- and �-projection of t̃, respectively. By the definition of A, t′ is an output of T on t.
Now since ϕ(Parikh(t̃)) holds, in particular, there exists a witness M̄ = (M1, . . . , Mm) to
xS1 , . . . , xSm such that ξM(M̄) holds, by Proposition 2.3, there exists a word w ∈ L(M)
over the alphabet 2� such that Parikh(w) = M̄.

We are going to assign data values to the nodes of t′ (thus, also to those of t) such
that t ∈ Ldata(S). The assignment is done as follows. For each S ⊆ �, let Vw(S) be the
set of positions of w labeled with S. Now for each α ∈ �, we assign the α-nodes in t′
with the data values from

⋃
α∈S Vw(S) such that Vt′ (α) = ⋃

α∈S Vw(S). This is possible
due to the constraint xα ≥∑α∈S xS.

With such assignment, we get V(t′) = w. Thus, V(t′) ∈ L(M). Moreover, for every
α ∈ �0, all the data values in α-nodes are different, which follows from the constraint
xα = ∑

α∈S xS. Therefore, the resulting ordered-data tree t ∈ Ldata(S). This concludes
our proof.

Next, we give the logical characterisation of weak ODTA.

THEOREM 6.2. A language L is accepted by a weak ODTA if and only if L is express-
ible with a formula of the form: ∃X1 · · · ∃Xm ϕ∧ψ , where ϕ is a formula from FO2(E↓, E→),
and ψ is a formula from FO(∼,≺,≺suc), extended with the unary predicates X1, . . . , Xm.

The proof of Theorem 6.2 is the same as the proof of Theorem 5.8. The difference is
that to simulate the FO2(E↓, E→) formula ϕ, the profile information is not necessary.
The complexity of the translation is still the same as in Theorem 5.8.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:32 T. Tan

6.1. Extending Weak ODTA with Presburger Constraints

Like in the case of APC, we can extend weak ODTA with Presburger constraints
without increasing the complexity of its non-emptiness problem. Let S = 〈T ,M, �0〉 be
a weak ODTA, where � and � are the input and output alphabets of T , respectively.
Let � = {α1, . . . , α�}.

A weak ODTA S = 〈T ,M, �0〉 extended with Presburger constraint is a tuple 〈S, ξ 〉,
where ξ (x1, . . . , x�, y1, . . . , y2�−1) is an existential Presburger formula with the free vari-
ables x1, . . . , x�, y1, . . . , y2�−1. An ordered-data tree t is accepted by 〈S, ξ 〉, if there exists
an output t′ of T on t, the automaton M accepts V�(t′), for each a ∈ �0, all a-nodes in t′
have different data values and ξ (Parikh(t′), Parikh(V�(t′))) holds. We write Ldata(S, ξ) to
denote the set of languages accepted by 〈S, ξ 〉.

We claim that the non-emptiness problem of weak ODTA extended with Presburger
constraint is still decidable in NP. The reason is as follows. The non-emptiness of a
weak ODTA S is checked by converting S into an APC (A, ϕ), where ϕ expresses linear
constraints on the number of nodes labeled with symbols from � and � as well as those
labeled with Q in the accepting run. The formula ξ can be appropriately inserted into
ϕ, and hence, the non-emptiness of (S, ξ) is reducible to non-emptiness of APC, which
is in NP.

6.2. Comparison with Other Known Decidable Formalisms

We are going to compare the expressiveness of weak ODTA with other known models
with decidable non-emptiness.

6.2.1. DTD with Integrity Constraints. An XML document is typically viewed as a data
tree. The most common XML formalism is document type definition (DTD). In short, a
DTD is a contextfree grammar, and a tree t conforms to a DTD D if it is a derivation
tree of a word accepted by the context free grammar.

The most commonly used XML constraints are integrity constraints which are of two
types.

—The key constraint key(a) is the following constraint:

∀x∀y(a(x) ∧ a(y) ∧ x ∼ y → x = y).

—The inclusion constraint V (a) ⊆ V (b) is the following constraint:

∀x∃y(a(x) → b(y) ∧ x ∼ y).

The satisfiability problem of a given DTD D and a collection C of integrity constraints
asks whether there exists an ordered-data tree t that conforms to the DTD that satisfies
all the constraints in C. Fan and Libkin [2002] show that this problem is NP-complete.

THEOREM 6.3. Given a DTD D and a collection C of integrity constraints, one can
construct a weak ODTA S such that Ldata(S) is precisely the set of ordered-data trees
that conforms to D and satisfies all constraints in C.

PROOF. Let � be the alphabet of the given DTD D. Consider the following weak
ODTA S = 〈T ,M, �0〉.
—T is an identity transducer that checks whether the input tree conforms to DTD D.
—M is an automaton that accepts P∗, where P = 2� − {S | a ∈ S and b /∈

S for some V (a) ⊆ V (b) ∈ C}.
—�0 = {a | key(a) ∈ C}.
That S is the desired ODTA follows immediately from the fact that for every ordered-
data tree t, Vt(a) ⊆ Vt(b) if and only if [S]t = ∅ for all S where a ∈ S, but b /∈ S.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:33

The size of the automaton M, hence the size of S, produced by our construction in
Theorem 6.3 is of exponential size. This blow-up is tight, as the following example
shows. Consider the case where C does not contain inclusion constraints. That is, C
contains only key constraints. Then any equivalent ODTA S = 〈T ,M, �0〉 will have
L(M) = (2� − {∅})∗. Thus, we have exponential blow-up in the size of M. Nevertheless,
if we are concerned only with satisfiability, then we can lower the complexity to NP as
stated in the following theorem.

THEOREM 6.4. Given a DTD D and a collection C of integrity constraints, one can
construct a weak ODTA S in nondeterministic polynomial time such that Ldata(S) �= ∅
if and only if there exists an ordered-data tree t that conforms to D and satisfies all the
constraints in C.

PROOF. Let � be the alphabet of the DTD D. We nondeterministically construct a
weak ODTA S = 〈T ,M, �0〉 as follows.

—T is an identity transducer that checks whether the input tree conforms to DTD D.
—Guess a sequence (H1, . . . , Hk) of some subsets of � such that

—� is partitioned into H1 ∪ · · · ∪ Hk.
—For every two different symbols a, b ∈ �, a, b are in the same set Hi if and only if

both V (a) ⊆ V (b) and V (b) ⊆ V (a) are in C;
—If V (a) ⊆ V (b) ∈ C and V (b) ⊆ V (a) �∈ C, then a ∈ Hi and b ∈ Hj and i ≤ j.
Intuitively, the sequence (H1, . . . , Hk) tells us the ordering of the elements in � that
respect the inclusion constraints in C, where if both V (a) ⊆ V (b) and V (b) ⊆ V (a) are
in C, then a and b are tie and they must be in the same set Hi.

—Let S1, . . . , Sk ⊆ � be such that Si = � − (H1 ∪· · ·∪ Hi−1), where S1 = � and Sk = Hk.
—M is a nondeterministic automaton over the alphabet {S1, . . . , Sk}, where the set of

states is {q1, . . . , qk}, all q1, . . . , qk are the initial states and the final states, and the
transitions are: (qi, Sj, qj) for every 1 ≤ i ≤ j ≤ k.

—�0 = {a | key(a) ∈ C}.
We claim that Ldata(S) �= ∅ if and only if there exists an ordered-data tree t that
conforms to D and satisfies all the constraints in C.

We start with the “if” direction. Suppose t conforms to the DTD D and satisfies all
the constraints in C. For each a ∈ �, let Na be the number of data values found in the
a-nodes in t. Let (H1, . . . , Hk) be a sequence of some subsets of � such that

—� is partitioned into H1 ∪ · · · ∪ Hk;
—For every two different symbols a, b ∈ �, a, b are in the same set Hi if and only if

Na = Nb;
—a ∈ Hi and b ∈ Hj and i ≤ j if and only if Na ≤ Nb.

Consider the following ordered-data tree t′ over �, where t′ is obtained from t by
reassigning the data values on the nodes in t as follows. For each a ∈ �, we assign the
set of integers {d | 1 ≤ d ≤ Na} as the data values of a-nodes in t′. Such assignment is
possible since Na is no more than the number of a-nodes in t′. With such assignment t′
still obeys the constraints in C, as shown next.

—If key(a) ∈ C, then Na is precisely the number of a-nodes in t, thus, also in t′. Thus,
with the data values {1, . . . , Na}, the data values on the a-nodes in t′ are all different.

—If V (a) ⊆ V (a′) ∈ C, then obviously, Na ≤ Na′ . Thus, t′ still satisfies the constraint
V (a) ⊆ V (a′), since the data values in a-nodes in t′ are {1, 2, . . . , Na}, while those in
a′-nodes are {1, 2, . . . , Na′ }.

Now the string V(t′) is of the form R1 · · · Rm, where m = maxa∈�(Na), where R1 ⊇ R2 ⊇
· · · ⊇ Rm, and if Ri �= Ri+1, then Ri+1−Ri = Hj for some Hj in the sequence (H1, . . . , Hk).

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:34 T. Tan

By the definition of M, V(t′) is accepted by M. That t is accepted by T is trivial and
so is the fact that all the data values found in a-nodes in t′ for each a ∈ �0. Thus,
t′ ∈ Ldata(S).

For the “only if” direction, it is sufficient to observe that for every sequence
(H1, . . . , Hk) that “respects” the inclusion constraints in C, as previously explained,
if V(t) ∈ L(M), then t satisfies all the inclusion constraints in C. This completes our
proof.

6.2.2. Set and Linear Constraints for Data Trees. In David et al. [2012] the set and linear
constraints are introduced for data trees. As argued there, those constraints, together
with automata, are able to capture many interesting properties commonly used in
XML practice. We review those constraints and show how they can be captured by
weak ODTA extended with Presburger constraints.

Data terms (or just terms) are given by the grammar

τ := V (a) | τ ∪ τ | τ ∩ τ | τ for a ∈ �.

The semantics of τ is defined with respect to a data tree t.

�V (a)�t = Vt(a) �τ�t = Vt − �τ�t
�τ1 ∩ τ2�t = �τ1�t ∩ �τ2�t. �τ1 ∪ τ2�t = �τ1�t ∪ �τ2�t.

Recall that Vt =⋃a∈� Vt(a) — the set of data values found in the data tree t.
A set constraint is either τ = ∅ or τ �= ∅, where τ is a term. A data tree t satisfies

τ = ∅, written as t |= τ = ∅, if and only if �τ�t = ∅ (and likewise for τ �= ∅).
A linear constraint ξ over the alphabet � is a linear constraint on the variables xa,

for each a ∈ � and zS, for each S ⊆ �. A data tree t satisfies ξ , if ξ holds by interpreting
xa as the number of a-nodes in t, and zS the cardinality |[S]t|.

THEOREM 6.5. Given a tree automaton A and a set C of set and linear constraints,
there exists a weak ODTA 〈S, ϕ〉 extended with Presburger constraints such that
Ldata(S, ϕ) is precisely the set of ordered-data trees accepted by A that satisfies all the
constraints in C. Moreover, the construction of 〈S, ϕ〉 takes exponential time in the size
of A and C.

PROOF. The proof is simply a restatement of the proof in David et al. [2012] into a
language of weak ODTA. We need the following notation. For a data term τ , we define
a family S(τ) of subsets of � as follows.

—If τ = V (a), then S(τ) = {S | a ∈ S and S ⊆ �}.
—If τ = τ 1, then S(τ) = 2� − S(τ1).
—If τ = τ1 � τ2, then S(τ) = S(τ1) � S(τ2), where � is ∩ or ∪.

It follows that for every data tree t, we have �τ�t = ⋃
S∈S(τ)[S]t. Recall that the sets

[S]t’s are disjoint.
The desired S = 〈T ,M, �0〉 is defined as follows. The transducer T is the identity

transducer A, and �0 = ∅. The automaton M accepts a word v ∈ (2�)∗ if and only if

C1. for every set constraint τ = ∅, v does not contain any symbol from S(τ);
C2. for every set constraint τ �= ∅, v contains at least one symbol from S(τ).

The formula ξ is the conjunction of all the linear constraints in C.
That Ldata(S, ξ) is indeed precisely the set of ordered-data trees accepted by A that

satisfies all the constraints in C follows immediately from the definition of S. The
exponential upper-bound occurs while constructing the automaton M, which requires
the enumeration of each element of 2� and checking both conditions C1 and C2 are
satisfied. This completes the proof of Theorem 6.5.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:35

6.2.3. FO2 (+1, ≺suc) over Text. Here we focus our attention on ordered-data words, which
can be viewed as trees, where each node has at most one child. We write w = (a1

d1

) · · · (an
dn

)
to denote ordered-data word in which position i has label ai and data value di. It is
called a text if all the data values are different and the set of data values {d1, . . . , dn} is
precisely {1, . . . , n}.

It is shown in Manuel [2010] that the satisfiability problem for FO2(+1,≺suc) over
text is decidable.7 The following theorem shows that this decidability can be obtained
via weak ODTA.

THEOREM 6.6. For every formula ϕ ∈ FO2(+1,≺suc), one can construct effectively a
weak ODTA S such that

—For every text w, if w ∈ Ldata(ϕ), then w ∈ Ldata(S).
—For every ordered-data word w ∈ Ldata(S), there exists a text w′ ∈ Ldata(ϕ) such that

Proj(w) = Proj(w′).

The construction of S takes double exponential time in the size of ϕ.

PROOF. In Manuel [2010], the decidability is proved by constructing its socalled text
automata, also defined in Manuel [2010]. We review the precise definition here. Let
w = (a1

d1

) · · · (an
dn

)
be a text over the alphabet �. Therefore, V(w) = S1 · · · Sn is such that

each Si is a singleton.
We define msp(w), the marked string projection of w, as the word (a0, b0) . . . (an, bn),

where bi ∈ {−1, 1, ∗} and

bi =
{ −1, if 1 ≤ i < n and di+1 + 1 = di,

1, if 1 ≤ i < n and di + 1 = di+1,
∗, otherwise.

A text automaton over the alphabet � is pair (T1, T2), where

—T1 is a nondeterministic letter-to-letter word transducer with the input alphabet
� × {−1, 1, ∗} and the output alphabet �.

—T2 is a nondeterministic finite state automaton over �.

A text w = (a1
d1

) · · · (an
dn

)
is accepted by the text automaton (T1, T2), if

—msp(w) is accepted by T1, yielding a string α1 · · · αn.
—The string αi0 · · · αin is accepted by T2, where the indexes i1, . . . , in are such that

1 = di1 < di2 < · · · < din = n.

It is shown in Manuel [2010] that for every ϕ ∈ FO2(+1,≺suc), one can construct
effectively a text automaton A such that for every text w, w ∈ Ldata(ϕ) if and only if
w ∈ Ldata(A).

Now we are going to show how to get the desired ODTA S = 〈T ,M, �〉. Let (T1, T2) be
the preceding text automaton. On input ordered-data word w = (a1

d1

) · · · (an
dn

)
, S performs

the following.

—The automaton T simulates T1, by guessing msp(w) and outputs its �-projection,
while store its {−1, 1, ∗}-projection in its states.

—The automaton M is simply T2.

7The definition of text in [Manuel 2010] is slightly different, but it is equivalent to our definition. However, it
turns out that the key lemma proved in [Manuel 2010] has a gap which is filled later on in [Figueira 2012b].
The final result is still correct though.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:36 T. Tan

It is straightforward to see that such S is the desired weak ODTA. The analysis of
the complexity is as follows. The construction of the text automaton (T1, T2) takes
double exponential time in the size of ϕ. (see [Manuel 2010, Lemmas 5 and 6]). The
construction of ODTA S takes polynomial time in the size of (T1, T2). Altogether, it takes
double exponential time to construct S from the original formula ϕ. This completes the
proof of Theorem 6.6.

7. AN UNDECIDABLE EXTENSION

In this section, we would like to remark on an undecidable extension of ODTA. Recall
the language in Example 3.3. It has already noted in the proof of Proposition 5.6 that its
complement is not accepted by any ODTA. Formally, the complement of the language
in Example 3.3 can be expressed with formula of the form.

∀x ∀y
∨

a∈�0

a(x) ∧
∨

a∈�0

a(y) ∧ E↓∗(x, y) → x ≺ y, (8)

where �0 ⊆ � and E↓∗ denotes the transitive closure of E↓. In the following, we are
going to show that given an ODTA and a collection C of formulas of the form of Eq. (8),
it is undecidable to check whether there is an ordered-data tree t ∈ Ldata(S) such that
t |= ψ , for all ψ ∈ C.

The proof is simply an observation that the proof of Bojanczyk et al. [2011a, Propo-
sition 29] can be applied directly here which it is proved that the satisfiability of
FO2(E↓, E↓∗

,∼,≺) is undecidable.8 The reduction is from the Post Correspondence
Problem (PCP), where given an instance of PCP, one can effectively construct a for-
mula of the form ϕ ∧ ψ , where ϕ ∈ FO2(E↓, E↓∗

,∼) and ψ is a formula of the form of
Eq. (8). Since ϕ can be captured by ODTA, the undecidability of ODTA extended with
formulas of the form of Eq. (8) follows immediately.

At this point, we would also like to point out that extending ODTA with operation
such as addition on data values will immediately yield undecidability. This can be
deduced immediately from Halpern [1991], where we know that together with unary
predicates, addition yields undecidability.

8. WHEN THE DATA VALUES ARE STRINGS

In this section, we discuss data trees where the data values are strings from {0, 1}∗,
instead of natural numbers. We call such trees string data trees. There are two common
kinds of order for strings: the prefix order and the lexicographic order. Strings with
lexicographic order are simply linearly ordered domain, thus, ODTA can be applied
directly in such case.

For the prefix order, we have to modify the definition of ODTA. Consider a string
data tree t over the alphabet �. Let Vt be the set of data values found in t. We define
V�(t) as a tree over the alphabet 2� , where

—Dom(V�(t)) is Vt ∪ {ε};
—for u, v ∈ Dom(V�(t)), u is a parent of v if u is a prefix of v and there is no w ∈

Dom(V�(t)) such that u is a prefix of w and w is a prefix of v;
—for u ∈ Dom(V�(t)) the label of u is S, if u ∈ [S]t; and ROOT, if u = ε.

8Technically, the undecidability in Bojanczyk et al. [2011a, Proposition 29] is proved on data strings over the
logic FO2(+1,<, ∼,≺), which of course, is equivalent to FO2(E↓, E↓∗, ∼,≺).

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:37

Fig. 2. An example of a string data tree (on the left) and the tree representation of its data values (on the
right).

We call V�(t) the tree representation of the data values in t. Consider an example of a
string data tree in Figure 2. We have

[{a}]t = {0101} [{b}]t = {0100}
[{c}]t = {01011} [{a, b}]t = {01}
[{b, c}]t = {01000} [{a, b, c}]t = {010011}.

So Dom(V�(t)) = {01, 0100, 0101, 010011, 010000, 01011}, and

—01 is the parent of 0100 and 0101.
—0100 is the parent of 010011 and 010000.
—0101 is the parent of 01011.

Now an ODTA for string data trees is S = 〈T ,A, �0〉, where T is a letter-to-letter
transducer from �×{�,⊥, ∗}3 to �; A is an unranked tree automaton over the alphabet
2�; �0 ⊆ �. The requirement for acceptance is the same as in Section 5, except that A
takes a tree over the alphabet 2� as the input.

We observe that in the proof of the decidability of the non-emptiness of ODTA S =
〈T ,M, �0〉, the automatonM is converted in polynomial time into a Presburger formula
by applying Proposition 2.3, which actually holds for tree automata. Hence, the decision
procedures in Sections 5 and 6 can also be applied to string data trees.

9. CONCLUDING REMARKS

In this article, we study data trees in which the data values come from a linearly
ordered domain, where in addition to equality test, we can test whether the data
value in one node is greater than the other. We introduce ordered-data tree automata
(ODTA), provide its logical characterisation, and prove that its non-emptiness problem
is decidable. We also show the logic ∃MSO2(E↓, E→,∼) can be captured by ODTA.

Then we define weak ODTA, which essentially are ODTA without the ability to
perform equality test on data values on two adjacent nodes. We provide its logical
characterisation. We show that a number of existing formalisms and models studied
in the literature so far can be captured already by weak ODTA. We also show that the
definition of ODTA can be easily modified, to the case where the data values come from
a partially ordered domain, such as strings.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

8:38 T. Tan

We believe that the notion of ODTA provides new techniques to reason about ordered-
data values on unranked trees, and thus, can find potential applications in practice.
We also prove that ODTA capture various formalisms on data trees studied so far in
the literature. As far as we know this is the first formalism for data trees with neat
logical and automata characterisations.

ACKNOWLEDGMENTS

The author thanks Egor V. Kostylev for his careful proofreading, as well as Nadime Francis for pointing out
the reference Halpern [1991]. Finally, the author thanks the anonymous referees for both the conference and
the journal versions for their careful reading and comments which greatly improve the article.

REFERENCES

N. Alon, T. Milo, F. Neven, D. Suciu, and V. Vianu. 2003. XML with data values: Typechecking revisited.
J. Comput. Syst. Sci. 66, 4, 688–727.

M. Arenas, W. Fan, and L. Libkin. 2008. On the complexity of verifying consistency of XML specifications.
SIAM J. Comput. 38, 3, 841–880.

M. Benedikt, C. Ley, and G. Puppis. 2010. Automata vs. logics on data words. In Proceedings of the 24th Inter-
national Workshop on Computer Science Logic (CSL’10). Lecture Notes in Computer Science, vol. 6247,
Springer-Verlag, Berlin, 110–124.

H. Björklund and M. Bojanczyk. 2007. Bounded depth data trees. In Proceedings of the 34th International
Colloquium on Automata, Languages and Programming (ICALP’07). Lecture Notes in Computer Science,
vol. 4596, Springer-Verlag, Berlin, 862–874.

H. Björklund, W. Martens, and T. Schwentick. 2008. Optimizing conjunctive queries over trees using schema
information. In Proceedings of the 33rd International Symposium on Mathematical Foundations of
Computer Science (MFCS’08). Lecture Notes in Computer Science, vol. 5162, Springer-Verlag, Berlin,
132–143.

M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, and L. Segoufin. 2011a. Two-variable logic on data
words. ACM Trans. Comput. Logic 12, 4, 27.

M. Bojanczyk, B. Klin, and S. Lasota. 2011b. Automata with group actions. In Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science (LICS’11). 355–364.

M. Bojanczyk, A. Muscholl, T. Schwentick, and L. Segoufin. 2009. Two-variable logic on data trees and XML
reasoning. J. ACM 56, 3.

P. Bouyer, A. Petit, and D. Thérien. 2001. An algebraic characterization of data and timed languages. In
Proceedings of the 12th International Conference on Concurrency Theory (CONCUR’01). Lecture Notes
in Computer Science, vol. 2154, Springer-Verlag, Berlin, 248–261.

H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. 2007.
Tree automata techniques and applications. http://www.grappa.univ-lille3.fr/tata. (Last accessed 10/07).

C. David, L. Libkin, and T. Tan. 2010. On the satisfiability of two-variable logic over data words. In Pro-
ceedings of the 17th International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR-17). Lecture Notes in Computer Science, vol. 6397, Springer-Verlag, Berlin, 248–262.

C. David, L. Libkin, and T. Tan. 2012. Efficient reasoning about data trees via integer linear programming.
ACM Trans. Datab. Syst. 37, 3, 19.

S. Demri, D. D’Souza, and R. Gascon. 2007. A decidable temporal logic of repeating values. In Proceedings of
the International Symposium on Logical Foundations of Computer Science (LFCS’07). Lecture Notes in
Computer Science, vol. 4514, Springer-Verlag, Berlin, 180–194.

S. Demri and R. Lazić. 2009. LTL with the freeze quantifier and register automata. ACM Trans. Comput.
Logic 10, 3.

A. Deutsch, R. Hull, F. Patrizi, and V. Vianu. 2009. Automatic verification of data-centric business processes.
In Proceedings of the 12th International Conference on Database Theory (ICDT’09). 252–267.

W. Fan and L. Libkin. 2002. On XML integrity constraints in the presence of DTDs. J. ACM 49, 3, 368–406.
D. Figueira. 2009. Satisfiability of downward XPath with data equality tests. In Proceedings of the 28th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (PODS’09). 197–206.
D. Figueira. 2011. A decidable two-way logic on data words. In Proceedings of the 26th Annual Symposium

on Logic in Computer Science (LICS’11). 365–374.
D. Figueira. 2012a. Alternating register automata on finite data words and trees. Logic. Methods Comput.

Sci. 8, 1.

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

Extending Two-Variable Logic on Data Trees 8:39

D. Figueira. 2012b. Satisfiability for two-variable logic with two successor relations on finite linear orders.
http://arxiv.org/abs/1204.2495.

D. Figueira, P. Hofman, and S. Lasota. 2010. Relating timed and register automata. In Proceedings of the
17th International Workshop on Expressiveness in Concurrency (EXPRESS’10).

D. Figueira and L. Segoufin. 2011. Bottom-up automata on data trees and vertical XPath. In Proceedings of
the Symposium on Theoretical Aspects of Computer Science (STACS’11).

O. Grumberg, O. Kupferman, and S. Sheinvald. 2010. Variable automata over infinite alphabets. In Proceed-
ings of the 4th International Conference on Language and Automata Theory and Applications (LATA’10).
Lecture Notes in Computer Science, vol. 6031, Springer-Verlag, Berlin, 561–572.

J. Halpern. 1991. Presburger arithmetic with unary predicates is π1 complete. J. Symbol. Logic 56, 2, 637–
642.

M. Jurdzinski and R. Lazic. 2011. Alternating automata on data trees and XPath satisfiability. ACM Trans.
Comput. Logic 12, 3, 19.

M. Kaminski and N. Francez. 1994. Finite-memory automata. Theor. Comput. Sci. 134, 2, 329–363.
A. Kara, T. Schwentick, and T. Tan. 2012. Feasible automata for two-variable logic with successor on data

words. In Proceedings of the 6th International Conference on Language and Automata Theory and
Applications (LATA’12). Lecture Notes in Computer Science, vol. 7183, Springer-Verlag, Berlin, 351–
362.

R. Lazić. 2011. Safety alternating automata on data words. ACM Trans. Comput. Logic 12, 2, 10.
L. Libkin. 2004. Elements of Finite Model Theory. Texts in Theoretical Computer Science, Springer.
A. D. Manuel. 2010. Two variables and two successors. In Proceedings of the 35th International Symposium

on Mathematical Foundations of Computer Science (MFCS’10). Lecture Notes in Computer Science,
vol. 6281, Springer-Verlag, Berlin, 513–524.

F. Neven. 2002. Automata, logic, and XML. In Proceedings of the 16th International Workshop on Computer
Science Logic (CSL’02). Lecture Notes in Computer Science, vol. 2471, Springer-Verlag, Berlin, 2–26.

F. Neven, T. Schwentick, and V. Vianu. 2004. Finite state machines for strings over infinite alphabets. ACM
Trans. Comput. Logic 5, 3, 403–435.

T. Schwentick. 2004. XPath query containment. SIGMOD Rec. 33, 1, 101–109.
T. Schwentick and T. Zeume. 2010. Two-variable logic with two order relations. In Proceedings of the 24th In-

ternational Workshop on Computer Science Logic (CSL’10). Lecture Notes in Computer Science, vol. 6247,
Springer-Verlag, Berlin, 499–513.

L. Segoufin and S. Torunczyk. 2011. Automata based verification over linearly ordered data domains. In
Proceedings of the Symposium on Theoretical Aspects of Computer Science (STACS’11).

H. Seidl, T. Schwentick, A. Muscholl, and P. Habermehl. 2004. Counting in trees for free. In Proceedings
of the 31st International Colloquium on Automata, Languages and Programming (ICALP’04). Lecture
Notes in Computer Science, vol. 3142, Springer-Verlag, Berlin, 1136–1149.

J. Thatcher. 1967. Characterizing derivation trees of context-free grammars through a generalization of
finite automata theory. J. Comput. Syst. Sci. 1, 4, 317–322.

W. Thomas. 1997. Languages, automata, and logic. In Handbook of Formal Languages, vol. 3, Beyond Words,
Springer, 389–455.

K. N. Verma, H. Seidl, and T. Schwentick. 2005. On the complexity of equational Horn clauses. In Proceedings
of the 20th International Conference on Automated Deduction (CADE-20). Lecture Notes in Computer
Science, vol. 3632, Springer-Verlag, Berlin, 337–352.

Received February 2013; revised July, September 2013; accepted September 2013

ACM Transactions on Computational Logic, Vol. 15, No. 1, Article 8, Publication date: February 2014.

