
July 15, 2014 8:38 WSPC/INSTRUCTION FILE rewb-v2

International Journal of Foundations of Computer Science
c© World Scientific Publishing Company

Regular expressions for querying data graphs

Tony Tan

Databases and theoretical computer science group, Universiteit Hasselt
Agoralaan Gebouw D 250A, BE 3590, Diepenbeek, Belgium

ptony.tan@gmail.com

Domagoj Vrgoč

School of Informatics, University of Edinburgh & Department of Computer Science, PUC Chile
Vicuna Mackenna 4860, Macul, Santiago, Chile

domagojvrgoc@gmail.com

The standard regular expressions over finite alphabets have been widely accepted as
the most basic formalism to query graph databases. However, the major drawback of

this approach is that it ignores the presence of data. In this paper we study the so

called regular expressions with binding (REWB), that is, regular expressions equipped
with variables to store data within a well defined scope. In particular, we study the

complexity of the query evaluation of REWB queries over graph databases.

Keywords: Graph databases; Data words; Query languages.

1. Introduction

Graph data model has received much attention lately due to a high demand from

services that find the traditional relational model too restrictive. It appears natu-

rally in a variety of applications, most notably social networks and the Semantic

Web. Its other applications include biology, network traffic, crime detection, and

modeling object-oriented data [8, 15, 16]. Such databases are represented as graphs

in which nodes are objects and the edge labels specify the relationships between

them. See, for example, [1, 2] for surveys.

The most basic formalism to query the graph data model is that of regular path

queries (RPQ), which select nodes connected by a path described by a regular lan-

guage over the labeling alphabet [6]. There are multiple extensions such as backward

navigation, regular relations over paths, and non-regular features [3, 4, 5]. However,

the major drawback of this approach is that it ignores the presence of data in the

graphs. In real applications we have to deal with both navigational information and

the data. So a query for graph databases should not only describe the paths among

vertices, but also how the data values change along them.

To this end, we use the model of graph databases in which each edge contains

not only a symbol from a finite alphabet, but also a data value. Hence, paths in a

graph database can be viewed as data words – words in which each position carries

1

July 15, 2014 8:38 WSPC/INSTRUCTION FILE rewb-v2

2 Tony Tan and Domagoj Vrgoč

a letter from a finite alphabet as well as a data value from an infinite domain. This

is a well known concept adopted from the XML research [17], where a path between

two vertices in an XML tree is also modeled as a data word.

One of the most commonly used formalisms for describing the notion of regular-

ity for data words is that of register automata [9]. These extend the standard NFAs

with registers that can store data values; transitions can compare the currently

read data value with values stored in registers. However, register automata are not

convenient for specifying properties – ideally, we want to use regular expressions to

define languages. These have been looked at in the context of data words (or words

over infinite alphabets), and are based on the idea of using variables for binding data

values. An initial attempt to define such expressions was made in [10], but it was a

very limited formalism. Another formalism, called regular expressions with memory,

was shown to be equivalent to register automata [11, 12]. At the first glance, they

appear to be a good formalism: these are expressions like a ↓x (a[x=])∗ saying: read

letter a, bind data value to x, and read the rest of the data word checking that all

letters are a and the data values are the same as x. This will define data words(
a
d

)
· · ·
(
a
d

)
for some data value d. This is reminiscent of freeze quantifiers used in

connection with the study of data word languages [7].

The serious problem with these expressions, however, is the binding of vari-

ables. The expression above is fine, but now consider the following expression:

a ↓x (a[x=]a ↓x)∗a[x=]. This expression re-binds variable x inside the scope of

another binding, and then crucially, when this happens, the original binding of x is

lost! Such expressions really mimic the behavior of register automata, which makes

them more procedural than declarative. (The above expression defines data words

of the form
(
a
d1

)(
a
d1

)
· · ·
(
a
dn

)(
a
dn

)
.)

Losing the original binding of a variable when reusing it inside its scope goes

completely against the usual practice of writing logical expressions, programs, etc.,

that have bound variables. Nevertheless, this feature was essential for capturing

register automata [11]. A natural question then arises about expressions in which

data are bound to variables within a well defined scope similar to the one in first-

order logic. These expressions, called regular expressions with binding (REWB) were

already examined from a language theoretic point of view in [14, 13].

Here we investigate REWB as a query language for graph databases. In particu-

lar, we show that the complexity of query evaluation for REWB is Pspace-complete

(Theorem 4), the same complexity as register automata. This is rather surprising

(at least to us) because REWB is shown to considerably weaker than register au-

tomata [14, 13]. In fact, we also show that the minimal witnessing paths for REWB

queries can be exponentially long (Proposition 3). Despite the “negative” results,

we believe our results can be interesting and useful to the community to weed out

some of the potentially unfruitful approaches.

This paper is an extended version of [13], where space limitations prohibited

us from presenting the proofs. Here we present the detailed proofs of the results

presented in [13].

July 15, 2014 8:38 WSPC/INSTRUCTION FILE rewb-v2

Regular expressions for querying data graphs 3

2. Data words and data graphs

Let Σ be a finite alphabet and D a countable infinite set of data values. A data

word is simply a finite string over the alphabet Σ × D. That is, in each position

a data word carries a letter from Σ and a data value from D. We will denote data

words by
(
a1
d1

)
. . .
(
an
dn

)
, where ai ∈ Σ and di ∈ D.

A data graph (over Σ) is pair G = (V,E), where

• V is a finite set of nodes;

• E ⊆ V ×Σ×D×V is a set of edges where each edge contains a label from

Σ and a data value from D.

We write V (G) and E(G) to denote the set of nodes and edges of G, respectively.

An edge e from a node u to a node u′ is written in the form (u,
(
a
d

)
, u′), where a ∈ Σ

and d ∈ D. We call a the label of the edge e and d the data value of the edge e. We

write D(G) to denote the set of data values in G.

The following is an example of a data graph, with nodes u1, . . . , u6 and edges

(u1,
(
a
3

)
, u2), (u3,

(
b
1

)
, u2), (u2,

(
a
3

)
, u5), (u6,

(
a
5

)
, u4), (u2,

(
a
1

)
, u4), (u4,

(
a
4

)
, u3) and

(u5,
(
c
7

)
, u6).

u1

u2

u3

u4

u5 u6

(
a
3

)
(
b
1

)(
a
3

)
(
c
7

)

(
a
4

) (
a
5

)
(
a
1

)

A path from a node v to a node v′ in G is a sequence

π = v1

(
a1
d1

)
v2

(
a2
d2

)
v3

(
a3
d3

)
· · · vn

(
an
dn

)
vn+1

such that each (vi,
(
ai
di

)
, vi+1) is an edge for each i ≤ n, and v1 = v and vn+1 = v′.

A path π defines a data word w(π) =
(
a1
d1

)(
a2
d2

)(
a3
d3

)
· · ·
(
an
dn

)
.

Remark Note that we have chosen a model in which labels and data values appear

in edges. Of course other variations are possible, for instance labels appearing in

edges and data values in nodes. All of these easily simulate each other, very much in

the same way as one can use either labeled transitions systems or Kripke structures

as models of temporal or modal logic formulae. In fact both models – with labels in

edges and labels in nodes – have been considered in the context of semistructured

data and, at least from the point of view of their expressiveness, they are viewed as

equivalent. Our choice is dictated by the ease of notation primarily, as it identifies

paths with data words.

July 15, 2014 8:38 WSPC/INSTRUCTION FILE rewb-v2

4 Tony Tan and Domagoj Vrgoč

3. Regular expressions with binding

We now define regular expressions with binding for data words. As explained al-

ready, expressions with variables for data words were previously defined in [12] but

those were really designed to mimic the transitions of register automata, and had

very procedural, rather than declarative flavor. Here we define them using proper

scoping rules.

Definition 1. Let Σ be a finite alphabet and {x1, . . . , xk} a finite set of variables.

Regular expressions with binding (REWB) over Σ[x1, . . . , xk] are defined induc-

tively as follows:

r := ε | a | a[x=i] | a[x 6=i] | r + r | r · r | r∗ | a ↓xi
(r) (1)

where a ∈ Σ.

A variable xi is bound if it occurs in the scope of some ↓xi
operator and free

otherwise. More precisely, free variables of an expression are defined inductively: ε

and a have no free variables, in a[x=i] and a[x 6=i] occurrence of xi is free, in r1 + r2
and r1 · r2 the free variables are those of r1 and r2, the free variables of r∗ are

those of r, and the free variables of a ↓xi
(r) are those of r except xi. We will write

r(x1, . . . , xl) if x1, . . . , xl are the free variables in r.

A valuation on the variables x1, . . . , xk is a partial function ν : {x1, . . . , xk} 7→ D.

We denote by F(x1, . . . , xk) the set of all valuations on x1, . . . , xk. For a valuation

ν, we write ν[xi ← d] to denote the valuation ν′ obtained by fixing ν′(xi) = d and

ν′(x) = ν(x) for all other x 6= xi. Likewise, we write ν[x̄ ← d̄] for a simultaneous

substitution of values from d̄ = (d1, . . . , dl) for variables x̄ = (x1, . . . , xl). Also

notation ν(x̄) = d̄ means that ν(xi) = di for all i ≤ l.

Semantics Let r(x̄) be an REWB over Σ[x1, . . . , xk]. A valuation ν ∈
F(x1, . . . , xk) is compatible with r, if ν(x̄) is defined.

A regular expression r(x̄) over Σ[x1, . . . , xk] and a valuation ν ∈ F(x1, . . . , xk)

compatible with r define a language L(r, ν) of data words as follows.

• If r = a and a ∈ Σ, then L(r, ν) = {
(
a
d

)
| d ∈ N}.

• If r = a[x=], then L(r, ν) = {
(
a

ν(x)

)
}.

• If r = a[x 6=], then L(r, ν) = {
(
a
d

)
| d 6= ν(x)}.

• If r = r1 + r2, then L(r, ν) = L(r1, ν) ∪ L(r2, ν).

• If r = r1 · r2, then L(r, ν) = L(r1, ν) · L(r2, ν).

• If r = r∗1 , then L(r, ν) = L(r1, ν)∗.

• If r = a ↓xi
(r1), then L(r, ν) =

⋃
d∈D

{(a
d

)}
· L(r1, ν[xi ← d]).

A REWB r defines a language of data words as follows.

L(r) =
⋃

ν compatible with r

L(r, ν).

July 15, 2014 8:38 WSPC/INSTRUCTION FILE rewb-v2

Regular expressions for querying data graphs 5

In particular, if r is without free variables, then L(r) = L(r, ∅). We will call such

REWBs closed.

Relation with register automata As mentioned earlier, one of the first data

words formalisms proposed for querying graphs were register automata [11]. To-

gether with register automata, the notion of regular expressions with memory was

introduced and showed equivalent to them [12]. REWBs restrict expressions with

memory, by forcing proper scoping rules, thus making them more declarative since

the use of variables now adheres to standard binding policies in logics or programs.

It was however proved that this comes at a price. In particular, REWBs were shown

strictly weaker in terms of expressive power than register automata or expressions

with memory [13, 14].

Example 2. We list several examples of languages expressible with our expressions.

In all cases below we have a singleton alphabet Σ = {a}.

• The language that consists of data words where the data value in the first

position is different from the others is given by: a ↓x ((a[x 6=])∗).

• The language that consists of data words where the data values in the first

and the last position are the same is given by: a ↓x (a∗ · a[x=]).

• The language that consists of data words where there are two positions with

the same data value: a∗ · a ↓x (a∗ · a[x=]) · a∗.

4. REWBs as a query language for data graphs

Standard mechanisms for querying graph databases are based on regular path

queries, or RPQs: those select nodes connected by a path belonging to a given

regular language [2, 6, 4, 5]. For data graphs, we follow the same idea, but now the

paths are described by REWBs. In this section we study the complexity of the

REWB query evaluation on data graphs.

We need a few notations. For a data graph G = (V,E), and a pair of nodes s, t,

we define L(G, s, t) = {w(π) | π is a path from s to t in G}.
Let r(x̄) be a REWB over Σ[x1, . . . , xk]. and ν be compatible with r. We denote

by L(G, s, t, r, ν) the language L(G, s, t) ∩ L(r, ν). If r is a closed REWB, then we

drop ν and write L(G, s, t, r).

The answer of an REWB query r over a graph G = (V,E) is the set Q(r,G)

of triples (s, t, d̄) ∈ V × V × Dk such that L(G, s, t, r, ν[x̄ ← d̄])) 6= ∅. In other

words, (s, t, d̄) ∈ Q(r,G) if and only if there is a path π in G from s to t such that

w(π) ∈ L(r, ν[x̄← d̄]). For simplicity we will work with closed REWBs only. It can

be extended to REWB with free variables in a straightforward manner.

The following proposition shows that on some graphs the shortest “witnessing”

path of an REWB query can be exponentially long, even if the query uses only one

variable. Its proof can be found in Subsection 4.1.

Proposition 3. Let Σ = {$, ¢, a, b} be a finite alphabet. There exists a family of

July 15, 2014 8:38 WSPC/INSTRUCTION FILE rewb-v2

6 Tony Tan and Domagoj Vrgoč

data graphs {Gn(s, t)}n>1 with two distinguished nodes s and t, and a family of

closed REWBs {rn}n>1 such that

• each Gn(s, t) is of size O(n);

• each rn is a closed REWB over Σ[x] of length O(n); and

• every data word in L(Gn, s, t, rn) is of length Ω(2bn/2c).

The REWB query evaluation problem is defined as follows.

Query Evaluation for REWB

Input: A data graph G, two nodes s, t ∈ V (G) and a REWB r.

Task: Decide whether (s, t) ∈ Q(r,G).

Note that in this problem, both the data graph and the query, given by r, are

inputs; this is referred to as the combined complexity of query evaluation. If the

expression r is fixed, we are talking about data complexity.

Recall that for the usual graphs (without data), the combined complexity of eval-

uating RPQs is polynomial, but if conjunctions of RPQs are taken, it goes up to NP

(and could be NP-complete, in fact [6, 5]). When we look at data graphs and specify

paths with register automata, the complexity jumps to Pspace-complete [11].

Theorem 4. • The complexity of query evaluation for REWB is Pspace-

complete.

• For each fixed r, the complexity of query evaluation for REWB is in

NLogspace.

The proof of Theorem 4 can be found in Subsection 4.2. Note that the com-

bined complexity is acceptable (it matches, for example, the combined complexity

of standard relational query languages such as relational calculus and algebra), and

that data complexity is the best possible for a language subsuming RPQs.

4.1. Proof of Proposition 3

To make the proof more precise we will introduce some additional notation. For the

sake of readability, we will first prove it for REWB using multiple variables.

We write Path(G, r, ν) for the set of all paths π in G such that w(π) ∈ L(r, ν)

and ν is compatible with r; and Path(G, r, s, t, ν) for the set of all paths π in G

from s to t such that w(π) ∈ L(r, ν) and ν is compatible with r. Similarly, for a

closed expression r, we can write Path(G, r) to denote the set of all paths π in G

such that w(π) ∈ L(r); and Path(G, r, s, t) the set of all paths π in G from s to t

such that w(π) ∈ L(r).

For n ≥ 2, the graph G is defined as follows, where 0, d1, . . . , dn, d
′
1, . . . , d

′
n are

pairwise different.

July 15, 2014 8:38 WSPC/INSTRUCTION FILE rewb-v2

Regular expressions for querying data graphs 7

v0 v1 v2 v3 vn vn+1 vn+2

(
$
0

)
(
$
0

)
(
a
d1

)
(
b
d′1

)
(
a
d2

)
(
b
d′2

)
(
a
dn

)
(
b
d′n

)
(¢
0

)
(¢
0

)· · · · · · · · ·

Obviously, G has n+ 3 vertices and 2n+ 4 edges.

We define the following auxiliary REWBs rk,a and rk,b for each k = 0, 1, . . . , n

as follows.

r0,a := a , r0,b := b

rk,a := a ↓xk

(
(rk−1,b)

∗ · $ · $ · a∗ · a[x=k]
)

rk,b := b ↓xk

(
(rk−1,a)∗ · ¢ · ¢ · b∗ · b[x=k]

)
The REWB r is defined as $ · r∗n,a · ¢. The two nodes s and t are v0 and vn+1,

respectively. Note that the length of rk,a and rk,b is O(n).

We claim that every path π ∈ Path(G, r, s, t) is of length Ω(2bn/2c). For this,

we need a few auxiliary claims.

Claim 1. For every k ∈ {0, 1, . . . , n} and for every node vi, vj ∈ {v1, . . . , vn} and

for every valuation ν, the following holds.

(1) There exists a path π from vi to vj such that w(π) ∈ L(rk,a, ν) if and only

if j = i+ 1.

(2) There exists a path π from vi to vj such that w(π) ∈ L(rk,b, ν) if and only

if i = j + 1.

Proof. The proof is by induction on k. The basis k = 0 is trivial, due to the

definition that r0,a = a and r0,b = b, Thus,

• there exists a path π from vi to vj such that w(π) ∈ L(a, ν) if and only if

the path is of consists of one edge labeled with a, which means j = i + 1;

and

• there exists a path π from vi to vj such that w(π) ∈ L(b, ν) if and only if

the path is of consists of one edge labeled with b, which means i = j + 1.

For the induction hypothesis we assume that our claim holds for the case of k.

For the induction step, we prove item (1) for the case of k + 1. Item (2) can

be proved in a similar manner. The “only if” direction is as follows. Suppose there

exists a path π from vi to vj such that w(π) ∈ L(rk+1,a, ν). By definition of rk+1,a,

we have

rk+1,a = a ↓xk+1

(
(rk,b)

∗ · $ · $ · a∗ · a[x=k+1]
)

This means that the variable xk+1 is assigned with the data value di. Since the last

step of the expression ϕk+1,a is a[x=k+1], and all the data values 0, d1, . . . , dn,

Claim 3. July 15, 2014 8:38 WSPC/INSTRUCTION FILE rewb-v2

8 Tony Tan and Domagoj Vrgoč

d′1, . . . , d
′
n are all different, the last edge in the path π must be vi

(
a
di

)
vi+1, which

means j = i+ 1.

The “if” direction is as follows. We want to show that there exists a path π

from vi to vi+1 such that w(π) ∈ L(rk+1,a, ν). We claim that there are the following

paths for any valuation ν.

• There is a path π1 from vi to vi+1 such that w(π1) ∈ L(a, ν[xk+1 ← di]).

• There is a path π2 from vi+1 to v1 such that w(π2) ∈ L(r∗k,b, ν[xk+1 ← di]).

• There is a path π3 from v1 to v0 such that w(π3) ∈ L($, ν[xk+1 ← di]).

• There is a path π4 from v0 to v1 such that w(π4) ∈ L($, ν[xk+1 ← di]).

• There is a path π5 from v1 to vi such that w(π5) ∈ L(a∗, ν[xk+1 ← di]).

• There is a path π6 from vi to vi+1 such that w(π6) ∈
L(a[x=k+1], ν[xk+1 ← di]).

The existence of all the paths, except π2, are trivially established. The existence of

the path π2 follows from the induction hypothesis that there exists a path π(l+1,l)

from vl to vl+1 such that w(π(l+1,l)) ∈ L(rk,b, ν[xk+1 ← di]), for every l = i +

1, . . . , 2. Thus, we establish the existence of a path π from vi to vi+1 such that

w(π) ∈ L(rk+1,a, ν). This completes the proof of the “if” direction, hence the proof

of our claim.

Now Claim 1 immediately implies the following claim.

Claim 2. For every k ∈ {0, 1, . . . , n} and for every node vi, vj ∈ {v1, . . . , vn} and

for every valuation ν, the following holds.

(1) There exists a path π from vi to vj such that w(π) ∈ L(r∗k,a, ν) if and only

if j ≥ i.
(2) There exists a path π from vi to vj such that w(π) ∈ L(r∗k,b, ν) if and only

if i ≥ j.

We are going to need the following inequality. For any integer k ≥ 1, for any

integer m ≥ 1, ∑
1≤i≤m

ik ≥ mk+1

k + 1
. (2)

It can be proved by induction on m. The base case when m = 1 is trivial. Assume

now that the claim holds for m ≥ 1. For m+ 1 we have∑
1≤i≤m+1

ik =
∑

1≤i≤m

ik + (m+ 1)k ≥ mk+1

k + 1
+ (m+ 1)k =

mk+1 + (k + 1)(m+ 1)k

k + 1
≥ (m+ 1)k+1

k + 1

The first inequality follows from the induction hypothesis. The second inequality is

obtained from the binomial expansion of (m+1)k and from the fact that (k+1)
(
k
l

)
≥(

k+1
l

)
.

July 15, 2014 8:38 WSPC/INSTRUCTION FILE rewb-v2

Regular expressions for querying data graphs 9

For every k ∈ {0, 1, . . . , n}, for every node vi, vj ∈ {v1, . . . , vn} where i ≤ j and

for every valuation ν, the following holds.

(1) Every path π in G from vi to vj such that w(π) ∈ L(r∗a,k, ν) has length

≥ (j−i)k+1

(k+1)! .

(2) Every path π in G from vj to vi such that w(π) ∈ L(r∗b,k, ν) has length

≥ (j−i)k+1

(k+1)! .

Proof. The proof is by induction on k. The basis k = 0 is trivial. For the induction

hypothesis, we assume that our claim holds for the case of k.

For the induction step, we prove item (1) for the case of k + 1. Item (2) can

be proved in exactly the same manner. Let π be a path from vi to vj such that

w(π) ∈ L(r∗a,k+1, ν). By Claim 1, the path π consists of the path πl,l+1 from the vl
to vl+1 such that w(πl,l+1) ∈ L(ra,k+1, ν) for every l = i, . . . , j − 1.

Now for every l = i, . . . , j − 1, the path πl,l+1 consists of the following paths.

• A path π1 from vl to vl+1 such that w(π1) ∈ L(a, ν[xk+1 ← dl]).

The length of this path is 1.

• A path π2 from vl+1 to v1 such that w(π2) ∈ L(r∗k,b, ν[xk+1 ← dl]).

By induction hypothesis, the length of this path is ≥ lk+1

(k+1)! .

• A path π3 from v1 to v0 such that w(π3) ∈ L($, ν[xk+1 ← dl]).

The length of this path is 1.

• A path π4 from v0 to v1 such that w(π4) ∈ L($, ν[xk+1 ← dl]).

The length of this path is 1.

• A path π5 from v1 to vl such that w(π5) ∈ L(a∗, ν[xk+1 ← dl]).

The length of this path is l − 1.

• A path π6 from vl to vl+1 such that w(π6) ∈ L(a[x=k+1], ν[xk+1 ← dl]).

The length of this path is 1.

Thus, the length of the path πl,l+1 is ≥ lk+1

(k+1)! + l + 3. Hence,

the length of the path π ≥
∑

i≤l≤j−1

lk+1

(k + 1)!
+ l + 3

≥
∑

i≤l≤j−1

lk+1

(k + 1)!
≥

∑
1≤l≤j−i

lk+1

(k + 1)!
≥ (j − i)k+2

(k + 2)!

The last inequality is obtained by applying Formula (2).

Recall that the REWB r is defined as $ · r∗n,a · ¢ and that the two nodes s and

t are v0 and vn+1, respectively. The following claim establishes that every path π

from s to t such that w(π) ∈ L(e) have exponential length.

Claim 4. Every path π ∈ Path(G, r, s, t) is of length Ω(2bn/2c).

July 15, 2014 8:38 WSPC/INSTRUCTION FILE rewb-v2

10 Tony Tan and Domagoj Vrgoč

Proof. It is immediate from Claim 3 that every path π ∈ Path(G, r, s, t) is of

length Ω(n
n

n!). Since nn

n! ≥ 2bn/2c for n ≥ 2, our claim follows immediately.

This completes our proof of Proposition 3 for the case of multiple variables.

It is now straightforward to check that the proof above can easily be modified

when the expressions rk,a and rk,b are defined as before, but with xi replaced by

a single variable x. We omit the details since we essentially run through the same

arguments.

4.2. Proof of Theorem 4

Note that the upper bound follows from the connection with register automata

[13, 11]. Here we give an alternative proof, relying on the fact that data values

reside in the edges. Let r be a REWB over Σ[x1, . . . , xk] and G be a data graph.

We write D(G) to denote the set of data values appearing in G.

For a valuation ν : {x1, . . . , xk} 7→ D(G), we define a standard regular expression

NG,ν(r) over the alphabet Σ×D(G), called the normalization of r with respect to

G and D, as follows.

• If r = a, then NG,ν(r) =
⋃

d∈D(G)

(
a

d

)
.

• If r = a[x=], then NG,ν(r) =
(
a

ν(x)

)
.

• If r = a[x 6=], then NG,ν(r) =
⋃

d∈D(G) and d6=f(x)

(
a

d

)
.

• If r = a ↓x (r), then NG,ν(r) =
⋃

d∈D(G)

(a, d) ·NG,ν[x←d](r).

• If r = r1 · r2, then NG,ν(r) = NG,ν(r1) ·NG,ν(r2).

• If r = r1 + r2, then NG,ν(r) = NG,ν(r1) +NG,ν(r2).

• If r = r∗1 , then NG,ν(r) = (NG,ν(r1))∗.

First we show that NG,ν(r) captures the desired semantics of the REWB r.

Claim 5. For every valuation ν and for every path π, w(π) ∈ L(r, ν) if and only if

w(π) ∈ L(NG,ν(r)).

Proof. The proof is a straightforward induction on the structure of r.

Observation 1. It is readily checked that |NG,∅(r)| is bounded by O(|D||r|), which

is exponential in the length of the input for combined complexity (any polynomial

for data complexity).

The Pspace upper bound now follows from simple reachability argument for

regular expressions (that is answering RPQs in graph databases). Assume we are

given G, s, t, a tuple d̄ = (d1, . . . , dl) and a REWB r with free variables x1, . . . , xl.

Let ν be a valuation such that ν(x1) = d1, . . . , ν(xl) = dl.

July 15, 2014 8:38 WSPC/INSTRUCTION FILE rewb-v2

Regular expressions for querying data graphs 11

To find a path connecting s and t we check reachability in the product automa-

ton of NG,ν(r) and G, where we view G and an automaton over Σ × D with the

initial state s and the final state t. From Observation 1 and standard on-the fly

argument for reachability we get the desired upper bound. This also proves the

NLogspace bound in case of data complexity, since the length of normalization is

now polynomial in the size of the input.

Now we prove the Pspace-hardness of our theorem. The reduction is form QBF.

Let

Ψ = ∀xn∃yn . . . ∀x1∃y1 ϕ
ϕ = (`1,1 ∨ `1,2 ∨ `1,3) ∧ (`2,1 ∨ `2,2 ∨ `2,3) ∧ · · · ∧ (`m,1 ∨ `m,2 ∨ `m,3)

where each `i,j is a literal. We call a literal `i,j a negative literal, if it is a negation

of a variable. Otherwise, we call it a positive literal.

For each i ∈ {0, 1, . . . , n}, we will denote Ψi = ∀xi∃yi . . . ∀x1∃y1ϕ. Hence, Ψ0 =

ϕ and Ψn = Ψ. We are going to construct (in polynomial time) a graph G, two

nodes s, t ∈ V (G) and an REWB r such that

Ψ is true if and only if (s, t) ∈ Q(r,G).

The construction of graph G and the two nodes s, t ∈ V (G): The graph G is a

data graph over Σ = {a, b,#, $}. Its construction is done inductively on i ∈
{0, 1, . . . , n}, where Gi, si, ti are constructed from Ψi. The desired graph G and

the two nodes s, t ∈ V (G) is the following graph.

s sn tn t

$Gn

· · · · · · · · ·

The construction of Gi, si, ti is constructed inductively on i. The graph G0 and

the two vertices s0, t0 are as follows.

s0 v1 v2 v3 v3k−3 v3k−2 v3k−1 t0

(
a
e1,1

) (
a
e1,2

) (
a
e1,3

) (
a

em,1

) (
a

em,2

) (
a

em,3

)
· · · · · · · · ·

where

ei,j =

{
1 if the literal `i,j is positive

0 if the literal `i,j is negative

Now we show the construction of Gi, si, ti . Suppose we already constructed

Gi−1, si−1, ti−1. Then Gi, si, ti is as follows.

July 15, 2014 8:38 WSPC/INSTRUCTION FILE rewb-v2

12 Tony Tan and Domagoj Vrgoč

si si−1 ti−1 ti

(
b
0

) (
b
1

)
(
b
0

)
(
b
1

)
(
b
0

)(
b
1

)

Gi−1

· · · · · · · · ·

The construction of the REWB r: In the following we are going to show the

construction of the REWB r. We first show how to construct the auxiliary REWB

ri, for each i = 0, 1, . . . ,m, which is based on the formula Ψi. The desired REWB

r is defined as r = # · rn · $.

The REWB ri is defined inductively on k = i. First we set

r0 = clause1 · clause2 · · · clausem,

where each clausei is defined as follows.

clausei = a[x=i,1] · a · a+ a · a[x=i,2] · a+ a · a · a[x=i,3]

and xi,1, xi,2, xi,3 are the variables in the literals `i,1, `i,2, `i,3, respectively.

Now, assuming we have the REWB ri−1, we define ri as follows.

ri =
(
b ↓xi

(
b ↓yi (ri−1) · b[x=i]

))∗
.

Finally we set r = # · rn · $.

It is straightforward to verify that the construction of both the data graph G

and the REWB r runs in time polynomial in the length of the formula Ψ.

Remark 5. For every i = 0, 1, . . . , n,

• the formula Ψi has the free variables xi+1, yi+1, . . . , xn, yn;

• the REWB ri has the free variables xi+1, yi+1, . . . , xn, yn.

Moreover, for a tuple d̄ ∈ {0, 1}2(n−i), we write Ψi(d̄) to denote the formula Ψi in

which the variables xi+1, yi+1, . . . , xn, yn are assigned with d̄.

To prove that Ψ is true if and only if (s, t) ∈ Q(r,G), we prove the following

claim.

Claim 6. For each i = 0, 1, . . . , n and for every tuple d̄ ∈ {0, 1}2(n−i), Ψi(d̄) is

true if and only if ((si, ti), d̄) ∈ Q(ri, Gi),

Proof. The proof is by induction on i. The basis is i = 0. We have to prove that

Ψi(d̄) is true if and only if ((s0, t0), d̄) ∈ Q(r0, G0).

July 15, 2014 8:38 WSPC/INSTRUCTION FILE rewb-v2

Regular expressions for querying data graphs 13

Let for each i = 1, . . . ,m and j = 1, 2, 3, we write di,j to denote the 0-1

value assigned to the variable in the literal `i,j . Let ν denote the valuation where

ν(x1), ν(y1), . . . , ν(xn), ν(yn) are assigned with d̄, respectively. Then, we have

Ψ0(d̄) is true

m
every clause (`i,1 ∨ `i,2 ∨ `i,3) is true under the assignment ν

m
for each i = 1, . . . ,m, there exists j ∈ {1, 2, 3} such that

di,j =

{
1 if `i,j is positive

0 if `i,j is negative

m
for each i = 1, . . . ,m,w(πi) ∈ L(clausei, ν) where

πi = v3i+0

(
a
di,1

)
v3i+1

(
a
di,2

)
v3i+2

(
a
di,3

)
v3i+3

m
((s0, t0), d̄) ∈ Q(r0, G0)

For the induction hypothesis, we assume that Ψi(d̄) is true if and only if

((si, ti), d̄) ∈ Q(ri, Gi). For the induction step, we prove the claim for i+ 1, which

follows from the following equality.

Ψi+1(d̄) is true

m
there exist e0, e1 ∈ {0, 1} such that Ψi(d̄0e0) and Ψi(d̄1e1) are true

m
there exist e0, e1 ∈ {0, 1} such that ((si, ti), d̄0e0), ((si, ti), d̄1e1) ∈ Q(ri, Gi).

m
there exists a path π from si+1 to ti+1 such that w(π) ∈ L(ri+1, d̄)

The last inequality follows from the definition of ri+1, where

ri+1 =
(
b ↓xi+1

(
b ↓yi+1 (ri) · b[x=i+1]

))∗
and to go from the vertex si+1 to ti+1, the path π has to go thorough Gi at

least twice: once when the variable xi+1 is assigned with 0 and at least once when

the variable xi+1 is assigned with 1. Thus, we have Ψi+1(d̄) is true if and only if

((si+1, ti+1), d̄) ∈ Q(ri+1, Gi+1).

This completes the proof of our claim.

This concludes the proof of the hardness part, hence, our theorem.

July 15, 2014 8:38 WSPC/INSTRUCTION FILE rewb-v2

14 Tony Tan and Domagoj Vrgoč

5. Conclusions

While register automata and their expression equivalent were shown to have accept-

able query evaluation bounds [11], the somewhat cumbersome syntax of automata

and the relatively unnatural one of these expressions led us to search for a more

suitable graph querying mechanism. Here we present and study REWB, where the

scope of binding variables with data is properly defined and show that the complex-

ity of query evaluation remains the same, despite the fact that REWB is weaker

than register automata. Despite the “negative” results, we believe our results can

be interesting and useful to the community to weed out some of the potentially

unfruitful approaches.

Acknowledgement

We would like to thank Leonid Libkin for inspiring discussion.

References

[1] S. Abiteboul, P. Buneman, D. Suciu. Data on the Web: From Relations to Semistruc-
tured Data and XML. Morgan Kauffman, 1999.

[2] R. Angles, C. Gutiérrez. Survey of graph database models. ACM Comput. Surv. 40(1):
(2008).

[3] P. Barceló, L. Libkin, A. W. Lin, P. Wood. Expressive languages for path queries
over graph-structured data. ACM TODS, 37(4) (2012).

[4] D. Calvanese, G. de Giacomo, M. Lenzerini, M. Y. Vardi. Rewriting of regular ex-
pressions and regular path queries. JCSS, 64(3):443–465 (2002).

[5] M. P. Consens, A. O. Mendelzon. GraphLog: a visual formalism for real life recursion.
In PODS’90, pages 404–416.

[6] I. Cruz, A. Mendelzon, P. Wood. A graphical query language supporting recursion.
In SIGMOD’87, pages 323–330.

[7] S. Demri, R. Lazić. LTL with the freeze quantifier and register automata. ACM TOCL
10(3): (2009).

[8] W. Fan. Graph pattern matching revised for social network analysis. In ICDT 2012,
pages 8–21.

[9] M. Kaminski, N. Francez. Finite-memory automata. TCS 134(2): 329–363 (1994).
[10] M. Kaminski and T. Tan. Regular expressions for languages over infinite alphabets.

Fundamenta Informaticae, 69(3):301–318 (2006).
[11] L. Libkin, D. Vrgoč. Regular path queries on graphs with data. In ICDT’12, pages

74–85.
[12] L. Libkin, D. Vrgoč. Regular expressions for data words. LPAR’12, pages 274–288.
[13] L. Libkin, T. Tan, D. Vrgoč. Regular Expressions with Binding over Data Words for

Querying Graph Databases. In DLT’13.
[14] L. Libkin, T. Tan, D. Vrgoč. Regular expressions for data words. In Manuscript, 2013.
[15] F. Olken. Graph data management for molecular biology. OMICS 7: 75–78 (2003).
[16] J. Pérez, M. Arenas, C. Gutierrez. Semantics and complexity of SPARQL. ACM

TODS 34(3): 1–45 (2009).
[17] L. Segoufin. Automata and logics for words and trees over an infinite alphabet. In

CSL’06, pages 41-57.

