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Efficient Reasoning about Data Trees via Integer
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Data trees provide a standard abstraction of XML documents with data values: they are trees whose nodes,
in addition to the usual labels, can carry labels from an infinite alphabet (data). Therefore, one is interested
in decidable formalisms for reasoning about data trees. While some are known—such as the two-variable
logic—they tend to be of very high complexity, and most decidability proofs are highly nontrivial. We are
therefore interested in reasonable complexity formalisms as well as better techniques for proving decidability.

Here we show that many decidable formalisms for data trees are subsumed—fully or partially—by the
power of tree automata together with set constraints and linear constraints on cardinalities of various sets
of data values. All these constraints can be translated into instances of integer linear programming, giving
us an NP upper bound on the complexity of the reasoning tasks. We prove that this bound, as well as the
key encoding technique, remain very robust, and allow the addition of features such as counting of paths
and patterns, and even a concise encoding of constraints, without increasing the complexity. The NP bound
is tight, as we also show that the satisfiability of a single set constraint is already NP-hard.

We then relate our results to several reasoning tasks over XML documents, such as satisfiability of
schemas and data dependencies and satisfiability of the two-variable logic. As a final contribution, we
describe experimental results based on the implementation of some reasoning tasks using the SMT solver
Z3.
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1. INTRODUCTION

Traditional approaches to studying logics on trees use a finite alphabet for labeling tree
nodes. The interest in such logics was reawakened by the development of XML as the
standard for data exchange on the Web. Logical formalisms provide the basis for query
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languages as well as for reasoning tasks, including many static analysis questions
such as consistency of specifications, query optimization, and typing [Alon et al. 2003;
Arenas et al. 2008; Fan and Libkin 2002; Figueira 2009; Genevés and Layaida 2006;
Milo et al. 2003; Schwentick 2004].

The simplest abstraction of XML documents is ordered unranked finite trees whose
nodes are labeled by letters from a finite alphabet [Neven 2002; Vianu 2001]. This
abstraction works well for reasoning about structural properties, but real XML docu-
ments carry data, which cannot be captured by a finite alphabet. Thus, there has been
a consistent interest in data trees, that is, trees in which nodes carry both a label from
a finite alphabet and a data value from an infinite domain [Bojanczyk et al. 2009, 2011;
Bouyer et al. 2001; Demri and Lazic 2009; Neven et al. 2004; Kaminski and Tan 2008].
It seems natural to add at least the equality of data values to a logic over data trees.
But while for finitely labeled trees many logical formalisms are decidable by converting
formulae to automata (e.g., the monadic second-order logic MSO), adding data equality
makes even FO (first-order logic) undecidable.

This explains why the search for decidable reasoning formalisms over data trees
has been a common theme in XML research. Such a search has largely followed two
routes. The first takes a specific XML reasoning task, or a set of similar tasks, and
builds algorithms for them (see, e.g, Arenas et al. [2008], Arenas and Libkin [2008],
Björklund et al. [2008], Calvanese et al. [2009], Fan and Libkin [2002], Schwentick
[2004], and Figueira [2009]). The second attempts to find a sufficiently general logical
formalism that is decidable, and can express some XML reasoning tasks of interest
(see, e.g, Demri and Lazic [2009], Bojanczyk et al. [2009], and Jurdzinski and Lazic
[2007]).

While both approaches have yielded many nontrivial and influential results, they
are not completely satisfactory. The first approach gives us specialized algorithms
for concrete problems, but no general tools. The second approach tends to produce
extremely high complexity bounds, such as 4EXPTIME, or even nonprimitive-recursive.
In addition, the proofs are usually highly nontrivial and are very hard to adapt to other
reasoning tasks.

Instead we want a sufficiently general formalism—in fact, a family of formalisms,
that are not extremely complicated to deal with, and at the same time give us acceptable
complexity bounds. For reasoning tasks (as opposed to, say, query evaluation which we
are used to in databases), acceptable complexity is often viewed as single-exponential
[Robinson and Voronkov 2001], or better yet, NP. The latter is due to the fact that SAT
solvers are now a practical tool for many static analysis problems [Malik and Zhang
2009].

The particular class of formalisms we deal with here is motivated by both concrete
XML reasoning tasks and decidable logical formalisms. We now briefly describe those.
One of the earliest reasoning problems studied in the XML context was the problem
of reasoning about keys and inclusion constraints. An XML key says that for a given
label a, the data value of an a-node (i.e., node labeled a) uniquely determines the node.
An inclusion constraint says that every data value of an a-node will occur in a b-node
as well. Such constraints are typical in databases, from which many XML documents
are generated. The question is then whether they are consistent with the schema of an
XML document, usually given as a tree automaton, or a DTD.

To see that such a problem may arise even with very simple specifications, consider,
for instance, XML documents which allow element types a and b. Suppose we have a
key constraint for data values in a-nodes, and an inclusion constraint from data values
of a-nodes to data values of b-nodes. Clearly one can find documents satisfying these
constraints. But now assume we have a DTD with a single rule r → aab, where r is
the root. Then this DTD is not compatible with the preceding constraints: since the
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a-nodes must carry two different data values, they cannot be included in the singleton
set of data values of the only b-node.

In fact, Arenas et al. [2008] and Fan and Libkin [2002] have given a number of exam-
ples of natural looking DTDs and sets of constraints that are inconsistent. The problem
of checking consistency of DTDs with keys and inclusion constrains as described before
is known to be solvable in NP [Fan and Libkin 2002].

On the logic side, there appear to be two main ideas leading to decidability. One starts
with a temporal logic, and adds a limited memory for keeping and comparing data val-
ues. Examples include Demri and Lazic [2009] and Jurdzinski and Lazic [2007], but the
logics, although decidable, have extremely high complexity (nonprimitive-recursive).
A different approach based on restricting the number of variables was followed by
Bojanczyk et al. [2009], which showed that FO2, first-order logic with two variables, is
decidable over data trees. In fact, even ∃MSO2, its extension with existential monadic
second-order quantifiers, is decidable. The complexity drops to elementary but is still
completely impractical: the decision procedure runs in 4EXPTIME.

Our formalisms extend the specific constraints such as keys and inclusions, and yet
come very close to subsuming the power of logics such as ∃MSO2, while permitting many
properties which are not even definable in MSO—we will explain this more precisely in
Section 6. To motivate the kind of constraints we use, let us restate keys and inclusion
constraints in a slightly different way. For this, we need two new notations: V (a) stands
for the set of data values in a-labeled nodes, and #a is the number of a-nodes.

—A key simply states that #a = |V (a)|. We view this as a linear constraint, and allow
arbitrary linear constraints over the values #a and |V (a)|, for example, |V (a)| ≥
2|V (b)|—#c.

—An inclusion constraint states that V (a) ⊆ V (b), or, equivalently, V (a) ∩ V (b) = ∅.
We generalize this to arbitrary set-constraints [Pacholski and Podelski 1997], stating
that a Boolean combination of V (a)’s is either empty or nonempty.

We consider the problem of satisfiability of such constraints with respect to a schema
declaration, given by an unranked tree automaton [Martens et al. 2007]. Or, formally:
Given an unranked tree automaton A and a collection C of set and linear constraints,
does there exist a tree t accepted by A that satisfies all the constraints in C?

We prove that this problem, and several of its variations, are all NP-complete. The
NP upper bounds are all established by reduction to instances of integer linear pro-
gramming. In fact, the basic result, unlike many decidability proofs [Bojanczyk et al.
2009; Demri and Lazic 2009; Fan and Libkin 2002], is quite easy to establish. This
opens a possibility of using efficient solvers for linear constraints to implement XML
reasoning tasks. The lower bounds were already known [Fan and Libkin 2002], but we
sharpen them significantly.

Our basic decidability result already subsumes not only reasoning about integrity
constraints in XML, but also a very large fragment of ∃MSO2. These relationships
will be made precise in Section 6. Note that even the decidability of the satisfiability
problem does not follow from known results such as Bojanczyk et al. [2009] which are
restricted to fragments of MSO; in contrast, our formalism expresses many properties
not definable in MSO.

In addition, our proof techniques come with extra benefits: we can easily extend
reasoning tasks while retaining decidability. For instance, we can count not just the
number of nodes labeled a, but also the number of nodes that satisfy some node tests of
XPath: for instance, we can reason about the number of a-nodes that have a b-parent
and a c-sibling. By extending the translation into integer linear programming, we
obtain such extensions quite easily.
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A more surprising extension is to concisely represented constraints. One way to re-
duce the size of the representation of linear constraints is to discard all zero entries
from matrices defining them. This can shrink the size of the instance of the problem
exponentially. A common phenomenon in complexity theory is that such a shrinking
increases the complexity by an exponent; this appears to suggest that the bound would
be NEXPTIME. But we show that nonetheless the problem stays in NP.

In addition to proving the theoretical bounds, we would like to test the feasibility
of our approach. There are several industrial-strength solvers for integer linear con-
straints that are used in program analysis, testing, and verification tasks. For our
purposes we use the Z3 solver [de Moura and Bjørner 2008]. However, before we can
use it, we need to solve one more problem, namely to encode automata with such con-
straints. It is well-known that one can do it [Verma et al. 2005; Kopczynski and To
2010], and we use this fact in the decidability proof. However, for implementing our
techniques, we cannot use it as a black box. Hence, we provide a self-contained trans-
lation from unranked tree automata to instances of linear programming. With that
translation, we implement some of the reasoning tasks using Z3, and report initial
promising results for DTDs with several hundred rules and constraints.

Remark. An extended abstract of this article appeared in David et al. [2011]. Com-
pared to the conference version, there are three major additions.

—We have previously referred to Fan and Libkin [2002] for lower bounds. However,
that result required all possible constraints—automata, linear, and set—to achieve
NP-hardness, and it was open whether all three were required. We have now solved
this problem: we show in Section 4.2 that NP-hardness can be achieved with a single
set constraint.

—We provide complete proofs in Sections 7.2 and 7.3 that were omitted in the proceed-
ings version.

—Finally, after the conference publication, we have implemented some of the reasoning
tasks using the Z3 solver. We describe initial experimental results in Section 9.

Organization. Section 2 presents the main definitions. In Section 3 we define the
constraints and the problem we are interested in. In Section 4 we establish the basic
result. An extension is presented in Section 5. In Section 6 we relate set and linear
constraints to XML reasoning tasks and the logic ∃MSO2 of Bojanczyk et al. [2009].
We study the complexity of the problem in the case of concise representation of the
constraints in Section 7. The translation from unranked tree automata to linear in-
teger programming is provided in Section 8. We provide a preliminary report on our
experimental results in Section 9. Concluding remarks are given in Section 10.

2. PRELIMINARIES

Trees and automata. We start with the standard definitions of unranked finite trees
and logics and automata for them. An unranked finite tree domain is a prefix-closed
finite subset D of N

∗ (words over N) such that u · i ∈ D implies u · j ∈ D for all j < i and
u ∈ N

∗. Given a finite labeling alphabet �, a �-labeled unranked tree is a structure
〈D, E↓, E→, {a(·)}a∈�〉, where

—D is an unranked tree domain,
—E↓ is the child relation: (u, u · i) ∈ E↓ for u · i ∈ D,
—E→ is the next-sibling relation: (u · i, u · (i + 1)) ∈ E→ for u · (i + 1) ∈ D, and
—the a(·)’s are labeling predicates, that is, for each node u, exactly one of a(u), with

a ∈ �, is true.

ACM Transactions on Database Systems, Vol. 37, No. 3, Article 19, Publication date: August 2012.



Efficient Reasoning about Data Trees via Integer Linear Programming 19:5

The label of the node u in t will be denoted by �abt(u), and the domain D is denoted by
Dom(t).

Let r be a designated symbol in �. We assume that the root of the tree (i.e., the empty
word) is labeled r, and no other node is labeled r. (This is not a restriction as we can
always put a new root with a given label.)

An unranked tree automaton [Comon et al. 2007; Thatcher 1967] over �-labeled trees
is a tuple A = (Q, �, δ, F), where Q is a finite set of states, F ⊆ Q is the set of final
states, and δ : Q × � → 2(Q∗) is a transition function; we require each δ(q, a) to be a
regular language over Q for all q ∈ Q and a ∈ �.

A run of A over a tree t is a function ρA : Dom(t) → Q such that for each node u
with n children u · 0, . . . , u · (n− 1), the word ρA(u · 0) · · · ρA(u · (n− 1)) is in the language
δ(ρA(u), �abt(u)). For a leaf u labeled a, this means that u could be assigned a state q if
and only if the empty word ε is in δ(q, a). A run is accepting if ρA(ε) ∈ F, that is, if the
root is assigned an accepting state. A tree t is accepted by A if there exists an accepting
run of A on t. The set of all trees accepted by A is denoted by L(A).

Data trees. In a data tree, besides carrying a label from the finite alphabet �, each
non-root node also carries a data value from some countably infinite data domain. To be
concrete, we assume it to be N. For a node u of a data tree t, labeled with a symbol a ∈ �,
the assigned data value is denoted by valt(u). We also denote the set of all data values
assigned to a-nodes by Vt(a). That is, Vt(a) = {valt(u) | �abt(u) = a and u ∈ Dom(t)}.

Integer Linear Programming (ILP) and Presburger formulae. Recall that an instance
of integer linear programming consists of an m×k integer matrix A and a vector b ∈ Z

m.
The question is whether there is a k-vector v̄ over integers such that Av̄ ≥ b.

The problem is well-known to be NP-complete. It is NP-hard even when entries are
restricted to be 0’s and 1’s. Membership in NP follows from the fact that if Av̄ ≥ b
has an integer solution, then there is one in which all entries are bounded by (ak)p(m),
where a is the maximum absolute value that occurs in A and b, and p is a polynomial
[Papadimitriou 1981].

We also consider existential Presburger formulae, that is, existential first-order for-
mulae over the structure 〈Z,+, 0, 1,<〉. Such formulae can always be converted to
formulae of the form

ϕ(x̄) = ∃ȳ PBC(Ai v̄i ≥ bi), (1)

where PBC means a positive Boolean combination, and each Ai v̄i ≥ bi is an instance of
integer linear programming with variables v̄i coming from x̄, ȳ. Indeed, each existential
Presburger formula is of the form ϕ(x̄) = ∃ȳ ψ(x̄, ȳ), where ψ is quantifier-free, that is,
a Boolean combination of linear inequalities (both > and ≥). Negations can be removed
simply by changing the signs of coefficients, and strict inequalities f (z̄) > b can be
replaced by conjunctions of f (z̄) − z′ ≥ b and z′ ≥ 1, where z′ is a new existentially
quantified variable.

Thus, whenever we refer to existential Presburger formulae, we assume that they
are of the form (1). We also only work with nonnegative integers for x̄ and ȳ, so we
always assume that all the conditions xj ≥ 0, yl ≥ 0 are included in formulae. However,
it is to be noted that the entries in Ai and bi can be negative.

Notice that we occasionally use conditions such as x > 0 or x + y ≤ b, or x = y, but
these are easily put in the form (1) by changing them to x ≥ 1, or −x − y ≥ −b, or the
conjunction of x ≥ y and y ≥ x, respectively.

The satisfiability of existential Presburger formulae is in NP. In Papadimitriou [1981]
it is showed for formulae of the form Av̄ ≥ b. The proof immediately extends to our
setting.
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3. CONSTRAINTS AND THE SATISFIABILITY PROBLEM

In this section we give the precise definitions of set and linear constraints, and state
the main satisfiability problem.

Set constraints. Recall that � is the labeling alphabet with a special symbol r for the
root. Data-terms (or just terms) are given by the grammar

τ := V (a) | τ ∪ τ | τ ∩ τ | τ for a ∈ �.

The semantics �τ�t is defined with respect to a data tree t. We have

—�V (a)�t = Vt(a);
—�τ1 ∩ τ2�t = �τ1�t ∩ �τ2�t;
—�τ1 ∪ τ2�t = �τ1�t ∪ �τ2�t;
—�τ�t = Vt − �τ�t;

where Vt = ⋃
a∈� Vt(a) is the set of data values found in the data tree t.

A set constraint is either τ = ∅ or τ �= ∅, where τ is a term. A tree t satisfies τ = ∅,
written as t |= τ = ∅, if and only if �τ�t = ∅ (and likewise for τ �= ∅).

Note that set constraints τ1 ⊆ τ2 and τ1 ⊂ τ2 can be similarly defined, but they are
easily expressible with the emptiness constraints. For example, τ1 ⊆ τ2 means that
τ1 ∩ τ2 = ∅, while τ1 ⊂ τ2 means that τ1 ∩ τ2 = ∅ and τ2 ∩ τ1 �= ∅.

In particular, the inclusion constraint from the introduction is an example of a set
constraint: to say that all data values of a-nodes occur as data values of b-nodes, we
write V (a) ∩ V (b) = ∅.

Linear data constraints. Fix variables xa for each a ∈ � and zS for each S ⊆ �. Linear
data constraints are linear constraints over these variables.

The interpretation of xa in a tree t is #a(t) – the number of a-nodes in t. The inter-
pretation of zS is the cardinality of the set

[S]t =
⋂
a∈S

Vt(a) ∩
⋃
b/∈S

Vt(b) =
⋂
a∈S

Vt(a) ∩
⋂
b/∈S

Vt(b).

That is, [S]t contains data values which are found among a-nodes for all a ∈ S but
which are not attached to any b-nodes for the label b �∈ S. Note that the sets [S]t’s are
disjoint, and that

Vt(a) =
⋃

S such that a∈S

[S]t.

This gives us much more information than just the number of data values in a-nodes,
which can be expressed as

|Vt(a)| =
∑

S such that a∈S

zS.

For instance, with such constraints we can reason about the data values that occur in
a- and c-nodes but do not occur in b-nodes: the number of those is simply

∑{zS | a, c ∈
S, b �∈ S}.

Notice that key constraints from the introduction are examples of linear data con-
straints; that the data values of a-nodes form a key is that the number of a-nodes,
which is xa, is equal to the number of data values found in the a-nodes, which is |Vt(a)|.
It is expressible by the linear constraint

xa =
∑

S such that a∈S

zS.
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We view linear data constraints as an instance of integer linear programming. If
� = {a1, . . . , a�} and S1, . . . , Sk is an enumeration of nonempty subsets of � (thus
k = 2|�| −1), then a set of m linear data constraints is Av̄ ≥ b, where A is an m× (�+k)-
matrix over Z and b ∈ Z

m. It is satisfied in a data tree t if it is true when v̄ is interpreted
as the vector (

#a1(t), . . . , #a�(t),
∣∣[S1]t

∣∣, . . . ,
∣∣[Sk]t

∣∣).
By data constraints, we mean either set constraints or linear data constraints.

Satisfiability problem. Let C denote a collection of set and linear data constraints.
If a tree t satisfies all the constraints in C, we write t |= C. We study the following
satisfiability problem.

PROBLEM: SAT(A, C)
INPUT: an unranked tree automaton A,

a collection C of set and linear data constraints
QUESTION: is there a tree t accepted by A such that t |= C?

The problem of consistency of XML constraints and schemas [Arenas et al. 2008;
Fan and Libkin 2002] is a special instance of this problem. We shall later see that
other problems related to XML constraints, as well as a large fragment of the two-
variable logic, can be formulated as special cases of SAT(A, C). Moreover, SAT(A, C)
includes many instances that cannot even be formulated in MSO, which is the logic
that typically subsumes XML reasoning tasks (for example, the linear constraint which
states that #a(t) > 2 · #b(t) is not expressible in MSO, but is a simple linear data
constraint xa − 2xb > 0).

4. DECIDING SATISFIABILITY

We now prove the decidability and the complexity of the SAT(A, C) problem. We assume
the following way of measuring the size of the input.

—For the automaton A, we take the size of the transition table, where each transition
δ(q, a) is represented by an NFA (or by a regular expression, since an NFA can be
computed from it in polynomial time).

—The size of each set constraint τ = ∅, or τ �= ∅, is measured as the size of the parse
tree for the term τ .

—The size of the linear data constraints Av̄ ≥ b is the sum of sizes of A and b, where
the numbers are represented in binary.

The main decidability result is the following.

THEOREM 4.1. The problem SAT(A, C) is in NP (in fact, NP-complete).

That the problem is NP-hard is already known [Fan and Libkin 2002], although
we tighten the bound a lot in Section 4.2 (we show that satisfiability of a single set
constraint is already NP-hard). The main contribution is an easy proof for the upper
bound given in Section 4.1.

4.1. The Proof of the NP-Membership in Theorem 4.1

In this subsection we are going to present an NP-algorithm for SAT(A, C).
Let � = {a1, . . . , a�} and S1, . . . , Sk be the enumeration of nonempty subsets of �. We

fix the vectors x̄ = (x1, . . . , x�) and z̄ = (zS1 , . . . , zSk).
We first show how to express set constraints in terms of linear data constraints. For

this, we need the following notation. For a term τ over the alphabet �, we define a
family S(τ ) of subsets of � as follows.
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—If τ = V (a), then S(τ ) = {S | a ∈ S and S ⊆ �}.
—If τ = τ 1, then S(τ ) = 2� − S(τ1).
—If τ = τ1 
 τ2, then S(τ ) = S(τ1) 
 S(τ2), where 
 is ∩ or ∪.

It follows immediately that for every data tree t, we have �τ�t = ⋃
S∈S(τ )[S]t. Moreover,

recall that the sets [S]t’s are disjoint.
Thus, the set constraint τ = ∅ can be expressed as a linear data constraint∑
S∈S(τ ) zS = 0. Similarly, τ �= ∅ can be expressed as

∑
S∈S(τ ) zS ≥ 1. Since the size

of linear constraints is exponential in �, this transformation is polynomial in the size
of the whole input.1 Hence, from now on, we can assume that the set C is of the form
A(x̄, z̄) ≥ b, and thus is given by a quantifier-free Presburger formula ψC(x̄, z̄).

Next, we convert automata into linear constraints. In Verma et al. [2005] it is
shown that given a context-free grammar G, whose terminals are a1, . . . , a�, one
can construct in polynomial time an existential Presburger formula ϕG(x1, . . . , x�)
such that ϕG(n1, . . . , n�) holds if and only if there exists a word w ∈ L(G) such that
#a1(w) = n1, . . . , #a�(w) = n�, where #ai(w) denotes the number of occurrences of ai in
the word w. Then, in Kopczynski and To [2010] it is observed that the method can be
extended to ranked tree automata. Since unranked tree automata can be easily con-
verted to ranked tree automata with an additional new symbol, we can construct the
existential Presburger formula ϕA(x1, . . . , x�) for unranked tree automaton A, with one
extra existential quantifier for the new symbol2. Hence, we have the following lemma.

LEMMA 4.2. (See also Section 8.) Given an unranked tree automaton A, over alphabet
� = {a1, . . . , a�}, one can construct in polynomial time an existential Presburger formula
ϕA(x1, . . . , x�) such that if t ∈ L(A), then ϕA(#a1(t), . . . , #a�(t)) holds; and conversely, if
ϕA(n1, . . . , n�) holds, then there exists a tree t ∈ L(A) such that #a1(t) = n1, . . . , #a�(t) = n�.

Going back to the proof of Theorem 4.1, we introduce additional variables va for
each a ∈ �. The intended meaning of va is the cardinality of Vt(a). Let v̄ be the vector
(va1 , . . . , va�

). We next define two formulae that ensure proper interaction between ψC
and ϕA. First,

χ (v̄, x̄, z̄) =
∧
a∈�

(
va =

∑
a∈S

zS

)
∧ (va ≤ xa)

states the expected conditions on these variables, given their intended interpretations.
Second,

χ ′(v̄, x̄) =
∧
a∈�

(xa = 0 ∨ va > 0)

ensures that if a-nodes exist (i.e., xa > 0), then at least one data value is attached to
the a-nodes.

We now consider a Presburger formula �(A,C)(x̄, z̄)

∃v̄ (ψC(x̄, z̄) ∧ ϕA(x̄) ∧ χ (v̄, x̄, z̄) ∧ χ ′(x̄, z̄)).

To convert �(A,C)(x̄, z̄) into the form (1), we simply move all the existential quantifiers
in ϕA(x̄) to the front. Each atomic predicate inside �(A,C)(x̄, z̄) can then be viewed as an
instance of integer linear programming Aȳi ≥ bi.

1In Section 7 when we look at the concise representations of the input, we will need a more refined technique
for eliminating set constraints.
2We shall present a more thorough construction in Section 8.
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LEMMA 4.3. Given tuples of nonnegative integers n̄ = (na)a∈� and m̄ = (mS)S⊆� , the
formula �(A,C)(n̄, m̄) holds if and only if there exists a data tree t accepted by A such
that:

(1) na = #a(t) for each a ∈ �;
(2) mS = |[S]t| for each S ⊆ �;
(3) t |= C.

PROOF. The “if” part is immediate from the construction of �(A,C). We prove the “only
if” direction. Suppose �(A,C)(n̄, m̄) holds. That is, there exists a witness v̄ such that

ϕC(n̄, m̄) ∧ ϕA(n̄) ∧ χ (v̄, n̄, m̄) ∧ χ ′(n̄, m̄) holds.

Since ϕA holds, by Lemma 4.2, there exists a tree t ∈ L(A) such that (#a1(t), . . . , #a�(t)) =
n̄.

Now we show how to assign data values to the nodes in the tree t so that in the
resulting data tree t′ we have mS = |[S]t′ |, for every S ⊆ �. Let K = ∑

S⊆� mS. We use
the set {1, . . . , K} for data values in the tree t′. Let

f : {1, . . . , K} �→ 2� − ∅
be a function satisfying | f −1(S)| = mS, for each S ⊆ �. The witness for v̄ is
(
∑

a1∈S mS, . . . ,
∑

a�∈S mS).
The data tree t′ is obtained by letting Vt′(a) be

⋃
a∈S f −1(S). This is possible since

χ (v̄, n̄, m̄) holds as
∑

a∈S | f −1(S)| = va ≤ #a(t) = na. By definition of the function f , we
obtain that [S]t′ = f −1(S), thus, |[S]t′ | = ms, for each S ⊆ �. This proves the lemma.

We now have an NP-algorithm for SAT(A, C): in polynomial time we construct the
formula �(A,C)(x̄, z̄) and then check for its satisfiability. It runs in NP, and Lemma 4.3
implies that it solves SAT(A, C).

We shall see in the next section that our algorithm for SAT(A, C) gives some results
obtained by using much harder techniques (such as reasoning about constraints in
XML), and comes very close to giving us results obtained by considerably much harder
techniques (like the results of Bojanczyk et al. [2009]). Moreover, the structure of our
proof leads to some extensions that otherwise would have been very hard to obtain.

Notice that extending the class of linear constraints by adding multiplication leads to
the immediate loss of decidability, since Hilbert’s 10th problem can be trivially encoded.
On the other hand, the problem is decidable in NEXPTIME [Givan et al. 2002] if we ex-
tend linear constraints with prequadratic Diophantine equations, that is, Diophantine
equations supplemented with constraints of the form xi ≤ xj xk.

4.2. The Proof of the NP-Hardness in Theorem 4.1

Recall that NP-hardness of the satisfiability problem already follows from Fan and
Libkin [2002], which, however, used all three kinds of constraints: automata (DTDs),
linear constraints (keys), and set constraints (foreign keys). It was open whether NP-
hardness can be established for less expressive constraints. Now we show that very
little is needed for NP-hardness.

PROPOSITION 4.4. The problem of checking, for a set constraint τ �= ∅, whether there
exists a tree t such that t |= τ �= ∅, is NP-hard.

The proof goes via a reduction from the satisfiability of boolean formulae. We start by
showing how to convert a boolean formula to a term. For a boolean formula ϕ with the
variables x1, . . . , x�, we define the term τ (ϕ) over the alphabet {a1, . . . , a�} as follows.

—If ϕ is xi, then τ (ϕ) is V (ai).
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—If ϕ is ¬ψ , then τ (ϕ) is τ (ψ).
—If ϕ is ψ1 ∧ ψ2, then τ (ϕ) is τ (ψ1) ∩ τ (ψ2).
—If ϕ is ψ1 ∨ ψ2, then τ (ϕ) is τ (ψ1) ∪ τ (ψ2).

In the lemma that follows, we use the notion of S(τ ) defined in the beginning
Section 4.1.

LEMMA 4.5. Let ϕ be a boolean formula over the variables x1, . . . , x�, and ξ :
{x1, . . . , x�} �→ {true, false} be a boolean assignment such that not all variables are
assigned to false. The boolean formula ϕ evaluates to true under the assignment ξ if and
only if the set {ai | ξ (xi) = true} is in S(τ (ϕ)).

PROOF. The proof is by induction on the depth of the formula ϕ, denoted by depth(ϕ).3
The basis is when depth(ϕ) = 0, that is, ϕ is xi, for some xi ∈ {x1, . . . , x�}. Obviously

xi evaluates to true under the assignment ξ if and only if ξ (xi) = true. By definition of
S, the set S(τ (xi)) contains the set {aj | ξ (xj) = true}.

Assume now that Lemma 4.5 holds for every boolean formula of depth < m and let ϕ
be a boolean formula of depth m. There are three cases to consider.

(1) The formula ϕ is ¬ψ .
Let ξ be an assignment such that not all variables are assigned with false. If ϕ
evaluates to true under the assignment ξ , then ψ evaluates to false under the
assignment ξ . By the induction hypothesis, the set {aj | ξ (xj) = true} is not in
S(τ (ψ)). By the definition, the set {aj | ξ (xj) = true} is in S(τ (ϕ)).
Vice versa, if the set {aj | ξ (xj) = true} is in S(τ (ϕ)), then it is not in S(τ (ψ)). By
the induction hypothesis, the formula ψ evaluates to false under the assignment ξ .
Therefore, the formula ϕ evaluates to true under the assignment ξ .

(2) The formula ϕ is ψ1 ∧ ψ2.
Let ξ be an assignment such that not all variables are assigned with false. If ϕ
evaluates to true under the assignment ξ , then both formulae ψ1 and ψ2 evaluate to
true under the assignment ξ . By the induction hypothesis, the set {aj | ξ (xj) = true}
is in both S(τ (ψ1)) and S(τ (ψ2)). By the definition of S, the set {aj | ξ (xj) = true} is in
S(τ (ϕ)).
Vice versa, if the set {aj | ξ (xj) = true} is in S(τ (ϕ)), then it is in both S(τ (ψ1))
and S(τ (ψ2)). By the induction hypothesis, both formulae ψ1 and ψ2 evaluate to
true under the assignment ξ . Therefore, the formula ϕ evaluates to true with the
assignment ξ .

(3) The formula ϕ is ψ1 ∨ ψ2.
This case can be proved in a similar manner as in the case 2, thus, we omit the
proof.

This completes the proof of Lemma 4.5.

The following lemma will immediately imply Proposition 4.4.

LEMMA 4.6. For every boolean formula ϕ over the variables x1, . . . , x�, the following
holds. The formula ϕ ∧ (x1 ∨ · · · ∨ x�) is satisfiable if and only if there exists a data tree t
such that t |= τ (ϕ) �= ∅.

PROOF. We start with the “only if” part. Suppose that the boolean formula ϕ∧(x1 ∨· · ·
∨ x�) is satisfiable. Then there exists an assignment ξ : {x1, . . . , x�} �→ {true, false} such
that not all the variables are assigned to false, and ϕ evaluates to true under ξ . By

3The depth of a boolean formula ϕ is defined as follows: depth(xi) = 0; depth(¬ψ) = depth(ψ) + 1; and
depth(ψ1 ∧ ψ2) = depth(ψ1 ∨ ψ2) = max(depth(ψ1), depth(ψ2)) + 1.
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Lemma 4.5, the set {aj | ξ (xj) = true} belongs to S(τ (ϕ)), and since not all variables are
assigned to false, it is not empty.

Consider the following tree t, whose root (which is labeled by the designated label r)
has precisely |{aj | ξ (xj) = true}| children, and

—all these children are leaf nodes;
—there is exactly one node labeled with the label a, for each a ∈ {aj | ξ (xj) = true};
—all these leaf nodes have the same data value, say 1.

Now, for each set S ⊆ �, if S = {aj | ξ (xj) = true}, then [S]t = {1}. Otherwise, [S]t = ∅.
Since �τ (ϕ)�t = ⋃

S∈S(τ (ϕ))[S]t, and the set {aj | ξ (xj) = true} is in S(τ (ϕ)), we have
�τ (ϕ)�t �= ∅. Hence t |= τ (ϕ) �= ∅.

Now we prove the “if” part. Suppose there exists a data tree t such that t |= τ (ϕ) �= ∅.
This means that there is a set S ∈ S(τ (ϕ)) such that [S]t �= ∅. Consider the assignment
ξ : {x1, . . . , x�} �→ (true, false) where ξ (xi) = true if and only if ai ∈ S. The set S is not
empty, thus, not all the variables are assigned to false. Moreover, by Lemma 4.5, the
boolean formula ϕ evaluates to true under the assignment ξ . Therefore, the formula
ϕ ∧ (x1 ∨ · · · ∨ x�) is satisfiable.

PROOF. (OF PROPOSITION 4.4). It is straightforward to establish the NP-hardness of the
satisfiability of boolean formula of the form

ϕ ∧ (x1 ∨ · · · ∨ x�),

where x1, . . . , x� are all the variables in ϕ.
By Lemma 4.6, the satisfiability of ϕ∧(x1 ∨· · ·∨x�) can be reduced to the satisfiability

of the set constraint τ (ϕ) �= ∅. Since the construction of τ (ϕ) can be done in linear time
in the length of ϕ, Proposition 4.4 follows immediately.

Remark 4.7. It is also true that given a term τ , deciding whether there exists a data
tree t such that t |= τ = ∅ is also NP-hard.

It can be established from the fact that there exists a data tree t such that t |= τ (ϕ) = ∅
if and only if the boolean formula ¬ϕ ∧ (x1 ∨ · · · ∨ x�) is satisfiable. The proof is very
similar to the previous proof, and thus omitted.

5. INCORPORATING COMPLEX PROPERTIES OF NODES

We now demonstrate how the simple structure of the proof allows us to obtain exten-
sions for the main reasoning task almost effortlessly.

So far we were counting the numbers of nodes #a(t)—that is, nodes labeled a. Check-
ing whether a node is labeled a is a simple property expressed by a fixed MSO (in
fact, by an atomic FO) formula with one free variable. We now show that we can count
the number of nodes satisfying arbitrary fixed MSO formulae and use them in linear
constraints.

More precisely, let π (x) be an MSO formula with one free first-order variable in the
usual vocabulary of unranked trees, that is, E↓, E→, and a(·)a∈� for child and next-
sibling edges and labeling predicates. Such a formula selects nodes in trees. We let
#π (t) be the cardinality of the set of nodes in t that satisfy π .

Adding these variables to our system of constraints increases their expressiveness.
For instance, we can state that every every a-labeled node is reachable by some XPath
node expression e(x). Indeed, unary MSO subsumes many XML formalisms, for exam-
ple node expressions of XPath (or even conditional XPath [Marx 2005]). Thus, e(x) can
be viewed as an MSO formula, and then we can define π (x) = e(x) ∧ a(x), stating that
x is also labeled a. Then #π (t) = #a(t) specifies the aforesaid constraint.

Using our proof, we can extend the decidability result to constraints that in-
clude counting the number of nodes output selected by unary MSO formulae. If
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� = {π1(x), . . . , πs(x)} is a collection of such MSO formulae, then we refer to �-linear
constraints: these are linear constraints over the usual variables xa’s and zS’s, as well
as wπi ’s, interpreted as #πi(t). We deal with the problem �-SAT(A, C): its input is an
automaton A and a collection C of set and �-linear constraints, and the question is
whether these are satisfiable.

Our proof immediately implies that the problem is decidable.

COROLLARY 5.1. The problem �-SAT(A, C) is decidable.

PROOF. We can embed the formulae π1, . . . , πs into the automaton A and check the
existence of a tree over the alphabet � ×2�, where: (i) its � projection is accepted by A
and (ii) for each node labeled with (a, P) ∈ � × 2�, a formula π is satisfied if and only
if π ∈ P is satisfied. The linear constraints in C over the variables xa’s and zS’s can be
easily converted into the variables xa,P ’s and zT , where P ⊆ 2� and T ⊆ (� × 2�).

The complexity of �-SAT(A, C) depends on how the formulae π1, . . . , πs are given. If
they are given as MSO formulae, then it is immediately known that the complexity is
nonelementary. But these formulae are also captured by the query automata of Neven
and Schwentick [2002]: these are automata that also select nodes in their accepting
runs. When representing the formulae π1, . . . , πs with query automata, the complexity
drops to NEXPTIME, and in some cases to NP.

COROLLARY 5.2. If the formulae in � are given as query automata, then �-SAT(A, C)
is decidable in NEXPTIME. Moreover, �-SAT(A, C) is in NP if � is fixed.

PROOF. The NEXPTIME upper bound is straightforward, as the nonelementary blow-
up for SAT(A, C) occurs in translating the MSO formulae to query automata. Moreover,
the blow-up occurs when moving from the alphabet � to � × 2�. Thus, if � is fixed,
then the complexity remains NP.

While converting from MSO to query automata is nonelementary, for some other
formalisms that complexity is much lower: for example, Libkin and Sirangelo [2010]
show how to convert conditional-XPath to query automata in single-exponential time.

6. COMPARISON WITH OTHER FORMALISMS

We now explain how the satisfiability problem SAT(A, C) relates to reasoning tasks for
XML with data.

6.1. XML Constraints

As we already noticed, keys and inclusion constraints, studied extensively in the XML
context (and included in the standards) are modeled with set and linear constraints.
A simple key, saying that data values determine a-nodes, is a linear constraint xa =∑

a∈S zS, and an inclusion constraint saying that data values of a-nodes occur also as
data values of b-nodes is V (a) ∩ V (b) = ∅. Similarly, one can handle denial constraints,
often used in dealing with inconsistent data. An example of a denial constraint is
saying that the same data value cannot appear in both an a-node and a b-node; this is
expressible as V (a) ∩ V (b) �= ∅.

Our result implies that the satisfiability problem for key, inclusion, and denial con-
straints with respect to an automaton is solvable in NP. Note, however, that to express
a key as a linear constraint one needs exponentially many (in �) variables zS, while
we can compactly encode keys simply by letters involved in them, requiring log |�|
bits instead. It turns out that this does not change the bound for keys and inclusion
constraints; our proof can easily be adjusted to show the next corollary.
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COROLLARY 6.1. The satisfiability problem for key (encoded by log |�| bits) and in-
clusion constraints with respect to an automaton is solvable in NP.

PROOF. Let A be an automaton over the alphabet � and let C be a collection of keys
and inclusion constraints, where elements of C are written as V (a) �→ a (for keys) and
V (a) ⊆ V (b) (for inclusion constraints). Let � = {a1, . . . , a�}.

Our algorithm to decide whether there exists a data tree t ∈ L(A) such that t |= C
works as follows.

(1) Construct the existential Presburger formula ϕA(x1, . . . , x�) for the automaton A
according to Lemma 4.2.

(2) Let ϕC(x1, . . . , x�) be the formula: ∃v1 · · · ∃v�

∧
i

vi ≤ xi ∧
∧

i

(vi = 0 ↔ xi = 0)

∧
( ∧

V (ai )�→ai∈C
vi = xi

)
∧

( ∧
V (ai )⊆V (aj )∈C

vi ≤ v j

)
.

(3) Let ϕA,C(x1, . . . , x�) := ϕA(x1, . . . , x�) ∧ ϕC(x1, . . . , x�).
Test the satisfiability of ϕA,C(x1, . . . , x�).

Note that here we do not use the variables zS’s.
We claim that for each data tree t, t ∈ L(A) and t |= C if and only if

ϕA,C(#a1(t), . . . , #a�(t)) holds.
We start with the “only if” part. Let t ∈ L(A) and t |= C. That ϕA(#a1(t), . . . , #a�(t))

follows from Lemma 4.2. To show that ϕC(#a1(t), . . . , #a�(t)) holds, we let the witnesses
for each vi as the cardinality |Vt(ai)|, the number of data values found in the ai-nodes
in t. Then, it is straightforward to show that ϕC(#a1(t), . . . , #a�(t)) holds.

Now we show the “if” part. Suppose ϕA,C(n1, . . . , n�) holds. By Lemma 4.2, there ex-
ists a tree t ∈ L(A) such that for each ai ∈ �, ni = #ai(t). Let (m1, . . . , m�) be the
witness for (v1, . . . , v�) that ϕC(x1, . . . , x�) holds. We assign the values 1, . . . , mi as data
values for the ai-nodes in t such that Vt(ai) = {1, . . . , mi}, for each ai ∈ �. Such assign-
ment is always possible since mi ≤ #ai(t). That the keys and inclusion constraints in
C are satisfied follows immediately from the constraints vi = xi and vi ≤ v j , respec-
tively.

This extends the results of Arenas et al. [2008] and Fan and Libkin [2002] which
showed an NP bound for keys and a special form of inclusions (whose right-hand sides
are keys as well); but in addition our proof is much more streamlined compared to the
proofs there.

We give a couple of remarks here comparing the results in our article to other types
of XML constraints.

Remark 6.2. It is easy to extend these results to more complex constraints studied in
the XML context. For example, consider key constraints given by regular expressions
over �. Such a constraint for a regular expression e, is satisfied in a tree t if nodes
reachable from the root by following a path from e are uniquely determined by their data
values. These constraints, common in XML schema specifications, are easily described
by our formalism: one simply marks the nodes with states of an automaton for e, and
uses the tree automaton A to ensure that the marking is correct.
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Remark 6.3. The proof can also be easily extended to the satisfiability of conditional-
XPath formulae with key and inclusion constraints on the selected nodes. It is known
that a conditional-XPath formula can be converted to a query automaton [Libkin and
Sirangelo 2010]. Recall that a query automaton is an automaton that, in addition to
accepting/rejecting a tree, also outputs a set of nodes [Neven and Schwentick 2002].
The translation of Libkin and Sirangelo [2010] works in EXPTIME. By viewing those
selected nodes as nodes that carry special symbols, the results in the previous sections
hold immediately also for the XPath formulae.

Remark 6.4. Finally, notice that there are different kinds of key and inclusion con-
straints, called relative constraints, studied in Buneman et al. [2002] and Arenas et al.
[2008]. In short, a relative key constraint states that any two a-nodes, sharing a com-
mon ancestor labeled with b, carry different data values, while a relative inclusion
constraint states that for every a-node, which has an ancestor labeled with c, there
exists a b-node, with the same ancestor, that carries the same data value. The satisfac-
tion problem of DTD and relative constraints is already proved undecidable in Arenas
et al. [2008].

6.2. Two-Variable Logic

As mentioned already, our main result does not follow from the decidability of the two-
variable existential monadic second-order logic over data trees [Bojanczyk et al. 2009].
We now explain the precise relationship between the two formalisms. When we talk
about logics over data trees, we view them as structures

t = 〈D, E↓, E→, {a(·)}a∈�,∼〉, (2)

which extend unranked trees with the binary predicate ∼ interpreted as u ∼ u′ ⇔
valt(u) = valt(u′), where u and u′ are nodes of the tree.

The sentences of the logic ∃MSO2 are of the form ∃X1 . . . ∃Xm ψ , where ψ is an FO
formula over the vocabulary extended with the unary predicates X1, . . . , Xm that uses
only two variables, x and y. It is known that every MSO sentence that does not mention
data values is equivalent to an ∃MSO2 sentence.

The unary key constraint V (a) �→ a can be expressed with the formula: ∀x∀y (a(x) ∧
a(y) ∧ x ∼ y → x = y). The inclusion constraint V (a) ⊆ V (b) can be expressed with
the formula: ∀x∃y (a(x) → b(y) ∧ x ∼ y). The denial constraint V (a) ∩ V (b) = ∅ can be
expressed with the formula: ∀x∀y (a(x) ∧ b(y) → ¬(x ∼ y)).

It was shown in Bojanczyk et al. [2009] that every ∃MSO2 formula over data trees is
equivalent to a formula

∃X1 . . . ∃Xk

(
χ ∧

∧
i

ϕi ∧
∧

j

ψ j

)
,

where:

(1) χ describes a behavior of an automaton that can make “local” data comparisons
(i.e., whether a data value in a node is equal/not equal the data value of its parent,
left- or right-sibling);

(2) each ϕi is of the form ∀x∀y(α(x) ∧ α(y) ∧ x ∼ y → x = y), where α is a conjunction of
labeling predicates, Xk’s, and their negations; and

(3) each ψ j is of the form ∀x∃y α(x) → (x ∼ y ∧ α′(y)), with α, α′ as in item 2.

If we extend the alphabet to � × 2k so that each label also specifies the family of the
Xi ’s the node belongs to, then formulae in items 2 and 3 can be encoded by constraints.
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—Formulae in item 2 become conjunctions of keys and denial constraints over the
extended alphabet. That is, it becomes a formula

∀x∀y
( ∨

a∈�′
a(x) ∧

∨
a∈�′

a(y) ∧ x ∼ y → x = y
)
,

for some �′ ⊆ � × 2k, which is equivalent to a is a key for each a ∈ �′, as well as
V (a) ∩ V (b) = ∅, for every a, b ∈ �′ and a �= b.

—Formulae in item 3 become

∀x∃y
( ∨

a∈�′
a(x) → x ∼ y ∧

∨
a∈�′′

a(y)
)
,

for some �′, �′′ ⊆ � × 2k, which is equivalent to generalized inclusion constraints of
the form ⋃

a∈�′
V (a) ⊆

⋃
b∈�′′

V (b),

or, equivalently
⋃

a∈�′ V (a) ∩ ⋂
b∈�′′ V (b) = ∅.

Hence, Bojanczyk et al. [2009] and our results imply the following.

COROLLARY 6.5.

—(corollary of Bojanczyk et al. [2009]) Satisfiability of ∃MSO2 formulae over data trees
is equivalent to satisfiability of keys, denial constraints, and generalized inclusions
constraints with respect to an automaton with local data comparisons.

—(corollary of Theorem 4.1) Satisfiability of keys, denial constraints, and generalized
inclusions constraints with respect to an automaton is solvable in NP.

While our main result and the decidability of ∃MSO2 are incomparable, in essence we
subsume ∃MSO2 minus the local data comparison constraints. More precisely, by local
data comparison constraints we mean those of the form

∀x∀y((a(x) ∧ b(y) ∧ ε(x, y)) → δ(x, y)),

where ε(x, y) is either “x is the parent of y” or “x is the right-sibling of y”; and δ(x, y) is
either “x ∼ y” or “¬(x ∼ y).”

Our formalism is suitable for stating properties that do not involve such local data
comparisons. For example, the property “all data values are the same” can be expressed
as V (a) ∩ V (b) = ∅ for each a, b ∈ �; and z� = 1, where � denotes the alphabet. The
property “all data values are different” can also be expressed in our formalism as
follows: V (a) ∩ V (b) = ∅ for each a, b ∈ �; and xa = ∑

a∈S zS for each a ∈ �.
Note that our proof is conceptually simpler than the proof of Bojanczyk et al. [2009]

that goes via more than a dozen reductions. Unlike Bojanczyk et al. [2009], we fail to
capture local data comparisons in automata; on the other hand, we add many properties
(e.g., linear constraints) which are not even expressible in MSO.

7. CONCISE REPRESENTATIONS OF THE SATISFIABILITY PROBLEM

Recall that we measure the size of the linear data constraints Av̄ ≥ b as the sum of
sizes of A and b, with numbers represented in binary.

This could be a rather inefficient way of representing linear constraints. Since the
number of variables zS in the constraints is 2|�| − 1, we may achieve a more compact
representation if only a few of those variables are used in the constraints. Namely,
we can safely disregard all the zero-columns in A, and keep only the columns that
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correspond to variables actually used in constraints. This representation can be expo-
nentially smaller than the full representation of the constraints (since � is a part of the
input, we cannot achieve a smaller reduction even if there are no linear constraints).

This is what we mean by concise representation. Consider the corresponding problem
CONCISE-SAT(A, C), which is the same as the SAT(A, C) problem before, except that we
use a concise representation of linear constraints.

It is a very common phenomenon in complexity theory that going to concise repre-
sentation increases the complexity by an exponent; in fact doing so is a common way
of getting NEXPTIME-complete problems from NP-complete problems. Of course, given
a concise representation of constraints, we can always convert it into the usual repre-
sentation in at most exponential time, and then apply Theorem 4.1. This immediately
tells us that CONCISE-SAT is in NEXPTIME, and it is tempting to think that CONCISE-SAT
is NEXPTIME-complete.

However, this is not the case. Quite surprisingly, the concise representation does not
increase the complexity of the problem. To show this, we need to design the decision
procedure in a much more careful way.

THEOREM 7.1. The problem CONCISE-SAT(A, C) is solvable in NP.

We now indicate where the proof of Theorem 4.1 falls short when we have concise
representations. First, the transformation from set to linear constraints is polynomial
in the number of variables zS, that is, O(2|�|). This did not cause problems before, but
now we may not have all the variables zS, so the input may be of the size O(|�|k)
for a fixed k. Then the algorithm for eliminating set constraints becomes exponential.
Second, the introduction of new variables va for

∑
a∈S⊆� zS used in the proof may

likewise induce an exponential blow-up when considering concise representation.
The main aim is to show that there exists a subset Z ⊆ 2� of polynomial size such

that there exists a tree t ∈ L(A) and t |= C if and only if there exists a tree t′ ∈ L(A) and
t′ |= C and [S]t′ = ∅, for all S /∈ Z. For this we introduce another extension of the ILP
problem. In the following three subsections we present the proof of Theorem 7.1.

7.1. Proof of Theorem 7.1

Let � be a finite alphabet and C is a collection of set and linear constraints. In the
following we say that a term τ ∈ C if and only if C contains a set constraint of the form
τ = ∅ or τ �= ∅. Similarly we say that a variable zS ∈ C if and only if there is a linear
data constraint in C that uses zS. We denote by �lin(C) the set of linear data constraints
found in C.

Definition 7.2. (C-Functions). Given an alphabet � and a collection C of data con-
straints, a C-function is a function F from � ∪ {τ | τ ∈ C} ∪ {zS | zS ∈ C} to 2� such
that:

(C1) for each a ∈ �, either F(a) = ∅ or a ∈ F(a);
(C2) for each zS ∈ C, either F(zS) = ∅ or F(zS) = S;
(C3) for each constraint τ �= ∅ ∈ C, we have F(τ ) ∈ S(τ );
(C4) for each constraint τ = ∅ ∈ C, we have F(τ ) = ∅ and Im(F) ∩ S(τ ) = ∅;

where Im(F) denotes the image of F , and S(τ ) was defined in Section 4.2.

The intuition of F is such that Im(F) is the desired set Z. Given a collection C of data
constraints and a C-function F , we denote by �(C,F) the system obtained from C by
adding the following constraints to �lin(C).
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zS ≥ 1 for each S ∈ Im(F) − ∅
xa = 0 for each a ∈ � such that F(a) = ∅
zS = 0 for each zS ∈ C such that F(zS) = ∅∑

a∈S∈Im(F)−∅
zS ≤ xa for each a ∈ �;

Notice that the size of �(C,F) is polynomial in the size of both C and the alphabet �.
In the rest of the proof, all instances of ILP we refer to are instances over the variables

xa, zS, va.

Definition 7.3 (ILP under C-Condition). An instance of ILP problem under C-
condition is given by an instance � of ILP together with a collection C of data con-
straints. We say that it has a nonnegative solution if there exists a C-function F such
that the instance of ILP given by � and �(F , C) has a nonnegative solution.

We will now state the two main lemmas from which Theorem 7.1 follows immediately.

LEMMA 7.4. Checking whether an instance of ILP under C-condition has a nonnega-
tive solution is in NP.

LEMMA 7.5. Given an automaton A and a set C of data constraints in concise repre-
sentation, one can construct, in polynomial time, an instance of ILP with C-condition so
that there exists a tree t ∈ L(A) such that t |= C if and only if the instance of ILP with
C-conditions has a nonnegative solution.

7.2. Proof of Lemma 7.4

First we need to prove the following result.

LEMMA 7.6. Given an alphabet �, a collection C of linear data constraints, and a
function F from � ∪ {τ | τ ∈ C} ∪ {zS | zS ∈ C} to 2� one can decide in polynomial time if
F is a C-function.

PROOF. To check that F is a C-function, one has to check conditions (C1)–(C4) in
Definition 7.2. Conditions (C1) and (C2) are easy to check in polynomial time. The fact
that conditions (C3) and (C4) can be checked in polynomial time follows directly from
the following claim.

CLAIM 1. Given a term τ and a set S ⊆ �, one can decide in linear time if S ∈ S(τ ).

PROOF. The proof is similar to the one in Section 4.2. In Section 4.2 we show how
to convert a boolean formula to a term. Here we show how to convert a term into a
boolean formula.

For each a ∈ �, we associate a boolean variable Pa. And for each term τ , we associate
a boolean formula ϕτ over the variables Pa as follows:

—if τ = V (a), then ϕτ = Pa;
—if τ = τ1 ∪ τ2, then ϕτ = ϕτ1 ∨ ϕτ2 .
—if τ = τ1 ∩ τ2, then ϕτ = ϕτ1 ∧ ϕτ2 ;
—if τ = τ 1, then ϕτ = ¬ϕτ1 .

A set S ⊆ � defines a Boolean assignment ξS, where the variable ξS(Pa) = true if and
only if a ∈ S, for each a ∈ �.

It is a rather straightforward induction to show that the boolean formula ϕτ evaluates
to true under the assignment ξS if and only if S ∈ S(τ ). The construction of ϕτ can be done
in time linear in the length τ , and so is the evaluation of ϕτ under ξS. This completes
the proof of our claim.
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We can now prove Lemma 7.4.

PROOF. (OF LEMMA 7.4). Note the size of the system �(C,F) is polynomial in |�| and
�(C), and hence if a solution to some �(C,F) exists, there is one of size polynomial in
|�| and �(C) due to Papadimitriou [1981]. Hence for an NP-algorithm we simply guess
F and a solution to �(C,F). Both guesses are of polynomial size, and then we check
that F is a C-function, build �(C,F), and verify that the solution is correct. These three
tasks can be done in polynomial time.

7.3. Proof of Lemma 7.5

Recall that (A, C) is satisfiable if and only if there exists a tree t ∈ L(A) such that t |= C.
The same meaning applies to (A, �(C,F)), where F is a C-function.

The following Lemma 7.7 immediately implies Lemma 7.5.

LEMMA 7.7. Let A be an automaton and C a collection of data constraints. Then,
(A, C) is satisfiable if and only if there exists a C-function F such that (A, �(C,F)) is
satisfiable.

PROOF. The “if” direction is trivial. If there exists a tree t that satisfies (A, �(C,F)),
then the same tree also satisfies (A, C).

We now show the “only if” part. That is, if (A, C) is satisfiable, then there exists a C-
function F and a data tree tF such that [S]tF = ∅ for all S �∈ Im(F) and tF |= (A, �(C,F)).

Consider a tree t that satisfies (A, C). Define a C-function F as follows.

—For each a ∈ �, if the label a does not appear in t, then define F(a) = ∅. Otherwise,
define F(a) = Sa, where Sa is such that a ∈ Sa and [Sa]t �= ∅. Such a set exists as at
least one node in t is labeled by a.

—For each zS ∈ C, if [S]t = ∅ define F(zS) = ∅. Otherwise, define F(zS) = S.
—For each constraint τ �= ∅ ∈ C, define F(τ ) = Sτ where Sτ ∈ S(τ ) and [Sτ ]t �= ∅. Such

a set exists as t |= τ �= ∅.
—For each constraint τ = ∅ ∈ C, define F(τ ) = ∅.

It is rather straightforward to show that F is a C-function.
We now build from t and F a data tree tF that satisfies (A, �(C,F)) and such that

[S]tF = ∅ for all S �∈ Im(F).
The tree tF is obtained from t by rearranging the data value in such a way that

[S]tF = [S]t for S ∈ Im(F) and [S]tF = ∅ for all other set S. The domain of t and tF
coincide and the labeling function �ab is the same as well. We assign data values in tF
as follows.

—For each node u such that valt(u) ∈ [S]t for some set S ∈ Im(F), we set valtF (u) =
valt(u);

—for each node u such that valt(u) ∈ [S]t and S /∈ Im(F), we let valtF (u) be an arbitrary
data value from [F(�ab(u))]t.

By this construction, [F(�ab(u))]t is not empty and [S]tF = ∅ for all S �∈ Im(F). As the
tree (the data-free part) tF has the same label as t, it is accepted by the automaton A.
Moreover, we have #a(t) = #a(tF ) for each a ∈ � and [S]t = [S]tF for each zS ∈ C. Since
the tree t satisfies C, the tree tF satisfies the linear data constraints from �lin(C).

It remains to show that it satisfies the following additional constraints.

(i). zS ≥ 1 for each S ∈ Im(F) − {∅}.

(ii). xa = 0 for each a ∈ �, where F(a) = ∅.
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(iii). zS = 0 for each S ∈ C, where F(zS) = ∅.

(iv).
∑

a∈S∈Im(F)−{∅}
zS ≤ xa for each a ∈ �.

Constraints (i) through (iii) are ensured by the construction of F . As in the proof of
Theorem 4.1, in the formula χ (v̄, x̄, z̄) and the fact that t ∈ L(A) and t |= C, we have

∑
a∈S⊆�

|[S]t| ≤ #t(a) for each a ∈ �.

By construction of the tree tF , we have #tF (a) = #t(a) for each a ∈ � and |[S]tF | ≤ |[S]t|
for each nonempty set S ⊆ �. Thus, the constraint (iv) is satisfied by tF .

8. CONVERTING AUTOMATA TO PRESBURGER FORMULAE

To make our proof completely algorithmic, we spell out the translation from an au-
tomaton to a Presburger formula defining Parikh images of trees, used as a black box
(Lemma 4.2) in the proof of Theorem 4.1. This is the algorithm that we use in our imple-
mentation described in Section 9. We also present an algorithm that constructs a tree
accepted by the original automaton from a solution to the corresponding Presburger
formula.

We recall that the Parikh image of a tree t over the alphabet � = {al, . . . , a�} is the
�-tuple Parikh(t) = (#a1(t), . . . , #a�(t)) ∈ N

�, and the Parikh image of a tree language L
is Parikh(L) = {Parikh(t) | t ∈ L} ⊆ N

�.

PROPOSITION 8.1. There is a quadratic-time algorithm that, given an unranked tree
automaton A over � = {al, . . . , a�}, returns a formula

ϕA(x1, . . . , x�) = ∃ȳ ψ(x̄, ȳ)

of at most quadratic size such that:

—if t ∈ L(A), then ϕA(#a1(t), . . . , #a�(t)) holds; and conversely,
—if ϕA(n1, . . . , n�) holds, then there exists a tree t ∈ L(A) such that #a1(t) =

n1, . . . , #a�(t) = n�

and α is a conjunction of formulae of the form:

—A(x̄, ȳ) ≥ b, where all the entries of A and b are either 0 or 1 or −1;
—formulae (v = 0 ∨ v′ ≥ 1) where v, v′ are variables among x̄, ȳ; and
—disjunctions

∨
i(vi ≥ 1 ∧ v′

i = 1), where vi ’s and v′
i ’s are variables among x̄, ȳ.

Moreover, from every solution (n1, . . . , n�) and witness tuple m̄ such that α(n1, . . . , n�, m̄)
holds, we can construct effectively a tree t ∈ L(A) such that Parikh(t) = (n1, . . . , n�).

8.1. Proof of Proposition 8.1

The general outline is as follows: we first replace an automaton by an ECFG – Extended
Context-Free Grammar (Proposition 8.2), and then by a CFG of a special form, which
we call simple CFG (Proposition 8.3). We then show the construction of the Presburger
formula for such simple CFGs (Proposition 8.4). The first two reductions are standard.
The crucial one is the last one.

Recall that an ECFG is a CFG in which the right-hand sides of productions are
regular expressions. Formally, an ECFG over the alphabet (� ∪ �) of nonterminals �,
with a distinguished symbol r for the root, and terminals � is G = (�,�,�), where �
assigns to each symbol a ∈ � a regular expression over (� ∪ �) − {r}. The set of trees
of G is denoted by T (G). That is, an unranked tree t is in T (G) if its root is labeled r,

ACM Transactions on Database Systems, Vol. 37, No. 3, Article 19, Publication date: August 2012.



19:20 C. David et al.

for each node v labeled a ∈ � with children u · 0, . . . , u · (n− 1), the word of their labels,
that is, �abt(u · 0) · · · �abt(u · (n − 1)), is in the language of �(a), and each node labeled
with b ∈ � is a leaf.

The first reduction is stated as a proposition next.

PROPOSITION 8.2. Given an automaton A with the set Q of states over alphabet �,
one can construct, in quadratic time, an ECFG G = (�,� − {r},�) with � = Q× � ∪ {r}
such that the following holds.

(1) For all tree t ∈ L(A), there exists a tree t′ ∈ T (G) such that for all a ∈ �, #a(t) = #a(t′).
(2) Vice versa, for all tree t′ ∈ T (G), there exists a tree t ∈ L(A) such that for all a ∈ �,

#a(t) = #a(t′).

Moreover, every tree t′ ∈ T (G) can be converted effectively into a tree t ∈ L(A).

PROOF. Let A = (�, Q, δ, F) be an automaton. For a regular expression α over the
alphabet Q, we define the expression α as follows.

—If q ∈ Q, then q = ⋃
a∈�(q, a).

—β ∪ γ = β ∪ γ ; β γ = β γ , and (β)∗ = (β)∗.

The desired ECFG G = (Q× � ∪ {r}, � − {r},�) is defined as follows.

—�(r) = ⋃
qf ∈F δ(qf , r).

—For every (q, a) ∈ Q× �, �((q, a)) = δ(q, a) a.

Transforming a tree t′ ∈ T (G) to a tree t ∈ L(A) is straightforward.

(1) Delete every node in t′ labeled with � ∪ {r}; and it results in an accepting run of A,
which is a tree over the alphabet Q× �.

(2) Project this accepting run to the alphabet �. The resulting tree is the desired t.

This completes the proof of Proposition 8.2.

Next, we define a simple CFG as G = (�,�,�) with a designated terminal symbol
λ ∈ �. For each a ∈ �, �(a) is of the form: b, or b ·c, or b|c, or λ, where b, c ∈ (�∪�)−{r}.
We denote the set of parse trees of G by T (G). Note that trees in T (G) can have only
unary or binary branching. We make the standard assumption that all symbols in �
are reachable from the root symbol r. If a CFG has some unreachable symbols, they
can be eliminated without affecting the set T (G).

The second reduction is stated as the following proposition.

PROPOSITION 8.3. Given an ECFG G = (�,�,�), one can construct, in linear time, a
simple CFG G = (�′,� ∪ {λ},�′) such that the following holds.

(1) For all tree t ∈ T (G), there exists a tree t′ ∈ T (G) such that for all a ∈ �, #a(t) = #a(t′).
(2) Vice versa, for all tree t′ ∈ T (G), there exists a tree t ∈ T (G) such that for all a ∈ �,

#a(t) = #a(t′).

Moreover, every tree t′ ∈ T (G) can be converted effectively into the tree t ∈ T (G).

PROOF. Let G = (�,�,�) be an ECFG. We inductively construct the simple CFG
G = (�′,� ∪ {λ},�′), for some alphabet �′ ⊇ �, as follows. Start with �′ = � and �′ = �
where all symbols of �′ are “unmarked.” While �′ contains an unmarked symbol a, do
the following:

(1) If �′(a) is a symbol from �′ ∪ � or λ, then mark a.
(2) If �′(a) = α op β, where op is · or |, then

—add new unmarked symbols Aa
α and Aa

β to �;
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—redefine �′(a) as Aa
α op Aa

β ;
—define �′(Aa

α) = α and �′(Aα
β) = β

—mark a.
(3) If �(a) = α∗, then

—add unmarked symbols Aa
α∗ and Aa

α to �′ and a marked symbol λa
α;

—redefine �′(a) as Aa
α∗ |λa

α;
—define �′(Aα∗ ) = Aa

α∗ |Aa
α and �′(Aα) = α as well as �′(λa

α) = λ;
—mark a.

To see that this procedure terminates in polynomial time, we define the size ‖α‖ of a
regular expression as 1 for a single symbol, and by the rules ‖α op β‖ = ‖α‖+‖β‖+1, and
‖α∗‖ = ‖α‖+3 (to ensure that ‖α∗‖ > ‖Aa

α∗ |Aa
α‖). Given an ECFG G, let fG : N → N be a

partial function mapping each n to the number of regular expressions �(a) of size n for
unmarked symbol a. For two partial functions f, g : N → N with finite support, we let
f ≺ g be defined lexicographically, that is, for the largest n on which they differ, either
f (n) is undefined, or f (n) < g(n). Clearly this is a well-ordering, and each step of the
algorithm, which passes from a grammar G′ to G′′, guarantees fG′′ < fG′ , showing that
the maximum number of steps is polynomial in the total size of the regular expressions
in �. This establishes the termination, and especially the polynomial upper bound of
the procedure. Moreover, the result of the procedure is a simple CFG.

Transforming every tree t′ ∈ T (G) to a tree t ∈ T (G) is straightforward and very
similar to the standard transformation between ranked trees and unranked trees.
Whenever there exists a node u ∈ Dom(t′) labeled with a symbol from �′ − �, do the
following.

(1) Let v be the parent of u.
(2) If u has one child: u′, then delete u in t′ and make u′ as a child of v. All other nodes

and edges are left untouched.
(3) Similarly, if u has two children: u1, u2, then delete u in t′ and make u1, u2 as children

of v. All other nodes and edges are left untouched.

When all nodes are labeled with symbols from �, the tree is in T (G). This completes
the proof of Proposition 8.3.

The last reduction is stated as the next proposition.

PROPOSITION 8.4. Given a simple CFG G = (�,� ∪ {λ},�), where � = {a1, . . . , a�},
one can construct, in linear time, an existential Presburger formula ϕG(x1, . . . , x�) =
∃ȳψ(x̄, ȳ) such that for every tree t, t ∈ T (G) if and only if ϕG(#a1(t), . . . , #a�(t)) holds.
Moreover, from every solution (k1, . . . , kn) and m̄ such that ψ(n1, . . . , n�, m̄) holds, we can
construct effectively a tree t ∈ T (G) such that Parikh(t) = (n1, . . . , n�).

We devote the rest of this subsection to the proof of Proposition 8.4. We need a new
notation here. For a tree t over the alphabet � ∪ � ∪ {λ}, we define a directed graph
Gt = (Vt, Et), where the set of vertices is Vt = �∪�∪{λ}; and for every a, b ∈ �∪�∪{λ},
there is an edge (a, b) ∈ Et if there exists a node in t labeled with b and whose parent is
labeled with a. If a symbol a does not appear in the tree t, then it is an isolated vertex
in Gt.

The main idea is to prove that a tree t ∈ T (G) if and only if the quantities defined

(1) na = #a(t), for each a ∈ � ∪ � ∪ {λ};
(2) na↓b is the number of b-nodes whose parents in t are labeled with a;
(3) δa is the length of some path from the root r to the symbol a in the graph Gt
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satisfy the following relations:

(1) na = ∑
b∈�∪� nb↓a, for each a ∈ � ∪ � ∪ {λ}.

(2) —na = na↓b + na↓c, if �(a) = b|c.
—na = na↓b = na↓c, if �(a) = b · c,
—na = na↓b, if �(a) = b,

(3) δr = 0;
(4) for each a ∈ � ∪ � ∪ {λ} and a �= r,

δa = −1 ↔ na = 0 ∧
∨

nb↓a �=0 and δb �=−1

δa = δb + 1.

Note that by default, we set δa = −1, if there is no path from the root to the symbol a
in the graph Gt, which means that the symbol a does not appear in t.

Then, the construction of the desired formula ϕG is straightforward. It uses the
variables xa’s, ya’s and xa↓b’s, for all a ∈ � ∪ � and b appears in �(a). The intended
meaning of each variable is as follows: xa is for na; xa↓b is for na↓b; ya is for δa.

The formula ϕG is the conjunction of the following.

—xr = 1;
—xa = ∑

b∈�∪� xb↓a for each a ∈ � ∪ �;
—xa = xa↓b = xa↓c for each �(a) = b · c;
—xa = xa↓b + xa↓c for each �(a) = b|c;
—xa = xa↓b for each �(a) = b;
—yr = 0;
—for each a ∈ � ∪ � ∪ {λ},

(ya = −1 ↔ xa = 0) ∧
∨

a appears in �(b)

ya = yb + 1 ∧ xb↓a �= 0 ∧ yb �= −1.

The total number of variables xa’s and xa↓b’s and ya’s is linear in the size of �. We do
not need the variables xa↓b’s, if b does not appear in �(a).

By existentially quantifying all the variables xa↓b’s and ya’s, we can then view ϕG as
an existential Presburger formula with xa’s as the free variables.

Proposition 8.4 follows immediately from the next lemma.

LEMMA 8.5. Let G = (�,�,�) be a simple CFG. The formula ϕG(n̄) holds – where
(n̄) = (na)a∈�∪� and the witnesses for xa↓b’s and ya’s are: xa↓b = na↓b ∈ N, and ya = da ∈ N,
for a, b ∈ � ∪ � – if and only if there exists a tree t ∈ T (G) such that:

(1) na = #a(t) for each a ∈ � ∪ �,
(2) na↓b is the number of b-nodes whose parents are a-nodes, and
(3) da is the length of some path from the root r to the symbol a in the graph Gt.

PROOF. From the definition of �(G), the “if” part is immediate. We prove the other
implication. Let n̄ = (na)a∈� such that ϕG(n̄) holds. Let na↓b be the witness for xa↓b for
a, b ∈ � ∪ �, and da for ya, for a ∈ � ∪ �. Let G̃ = (Ṽ , Ẽ) be a directed graph where the
set Ṽ of nodes is � ∪ � and the set Ẽ of edges is defined as: (a, b) ∈ Ẽ if and only if
na↓b �= 0.

We shall construct a tree t ∈ T (G) that satisfies (1) and (2) and that Gt = G̃. First,
we construct a directed graph G = (V, E) with the following properties.

(i) For each a ∈ � ∪ �, there are exactly na nodes labeled a.
(ii) For each a, b ∈ �∪�, there are exactly na↓b edges going from an a-node to a b-node.

(iii) There is exactly one node labeled r and it has no incoming edges (the root node).
(iv) All nodes, except the root node, have exactly one incoming edge.
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ALGORITHM 1: Construct Graph G = (V, E)
Data: A solution (n̄a, n̄a↓b)a,b∈�∪� to the formula �(G).
Result: A tree t ∈ T (G) such that for every a ∈ � ∪ �
—na = #a(t);
—na↓b = the number of b-nodes in t whose parents are a-nodes.

begin
The set V consists of

∑
a∈�∪� na nodes.

for a ∈ � ∪ � do
Label na number of nodes with a.

end
E := ∅.
for a ∈ � do

Let u1, . . . , una be the a-nodes.
if �(a) = b · c then

Let n = na = na↓b = na↓c.
Pick a sequence u′

1, . . . , u′
n of n distinct b-nodes with no incoming edges in E.

Pick a sequence u′′
1, . . . , u′′

n of n distinct c-nodes with no incoming edges in E.
E := E ∪ {(ui, u′

i), (ui, u′′
i )}i=1,...,n.

end
if �(a) = b ∪ c then

Pick a sequence u′
1, . . . , u′

na↓b
of na↓b distinct b-nodes with no incoming edges in E.

Pick a sequence u′′
1, . . . , u′′

na↓c
of na↓c distinct c-nodes with no incoming edges in E.

E := E ∪ {(ui, u′
i)}i=1,...,na↓b ∪ {(una↓b+ j, u′′

j)} j=1,...,na↓c .
end
if �(a) = b then

Pick a sequence u′
1, . . . , u′

na↓b
of na↓b distinct b-nodes with no incoming edges in E.

E := E ∪ {(ui, u′
i)}i=1,...,na↓b .

end
end

end

(v) For all nodes, outgoing edges conform to �. That is, for each a ∈ �, the outgoing
edges from a-nodes are as follows: if �(a) = b · c, there are exactly two outgoing
edges: one to a b-node and one to a c-node; if �(a) = b|c, there is exactly one
outgoing edge going to a node labeled by b or c; and if �(a) = b, there is exactly
one outgoing edge that goes to a b-node.

Procedure 1 shows the construction of the graph G. Since nr = 1, there is only one
root node in G. Properties (i) through (v) follow directly from the construction and the
constraints given in �(G).

If G were a tree, we would be done: membership in T (G) would follow from (v),
property (1) from (i), and property (2) from (ii) and (v). Therefore, to finish the proof of
Lemma 8.5, we show Claim 2 and Claim 4 next.

CLAIM 2. A connected directed graph G = (V, E) that satisfies (i) through (v) is a
tree.

PROOF. From Properties (iii) and (iv), we can see that the graph G satisfies the
equation |E| = |V | − 1. If we forget about orientation, this equation implies that a
connected graph is a tree [West 2001]. The root (the r-labeled node) gives the tree a
unique orientation; we must show that it is the same one as the one in G. For this,
consider any path from the root to a leaf in the tree, and suppose one edge has an
orientation different from G. Let (u, u′) be the first such edge; that is, in G we have an
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edge (u′, u). This cannot be the first edge of the path, as the root has no incoming edge
in G. Hence u has a parent u′ in the oriented tree, and the edge (u′′, u) has the same
orientation in both the oriented tree and in G. But this tells us that u has two incoming
edges, which contradicts (iv).

We shall use Claim 3 to prove Claim 4.

CLAIM 3. In the directed graph G̃, a node a is connected from the root symbol r if and
only if da �= −1, or equivalently, na �= 0. Moreover, da is the length of some path from the
root symbol r to a, if da �= −1.

PROOF. The proof is by straightforward induction on the value da. The base case,
da = 0, is trivial as it means a = r. The induction hypothesis is that for each node a
with da = k �= −1 is connected from the root symbol r by a path of length k.

Suppose b is a node such that db = k + 1. By the construction of ϕG , there exists a
node a such that na↓b �= 0 and da = k. By the induction hypothesis, a is connected from
the root symbol r with a path of length k, and by the construction of G̃, there exists an
edge from a to b. Thus, our claim holds.

CLAIM 4. From a directed graph G = (V, E) that satisfies (i) through (v), one can
compute in polynomial time a connected directed graph G′ = (V, E′) that also satisfies
(i) through (v).

PROOF. The idea is to change a few edges in G in order to connect all components
to the connected component that contains the r-node. We first observe the following.
Suppose G consists of several connected components: G0, G1, . . . , Gl, where G0 is the
component that contains the root node. Then, there exist a node u in G0 and a node u′
in one of G1, . . . , Gl such that u and u′ are labeled by the same symbol from �.

By Claim 3, if da �= −1 (thus, na �= 0), the symbol a is connected to the root symbol r
in G̃, and that da is the length of some path from r to a in G̃. So, for every symbol a that
appears in G, there exists a sequence of symbols b0, b1, . . . , bj , respectively, where:

—b0 = r,
—bl = a, and
—for each i = 0, . . . , j − 1, nbi↓bi+1 �= 0.

If the symbol a does not appear in G0, then there are a node u in G0 and a node u′ in one
of G1, . . . , Gl such that both u and u′ are labeled with the same symbol bi ∈ {b1, . . . , bl}.

Let G1 be the component that contains the node u′. By (v), the node u′ has as many
children as u (and it has at least one child as it is not labeled by λ).

If u and u′ have one child each, then let u1 and u2 be their respective children. We can
then connect G0 and G1 by replacing the edges (u, u1) and (u′, u2) with (u, u2) and (u′, u1).
If u and u′ have two children each, then let u1, u′

1 and u2, u′
2 be their respective children.

We can then connect G0 and G1 by replacing the edges (u, u1), (u, u′
1) and (u′, u2), (u′, u′

2)
with (u, u2), (u, u′

2) and (u′, u1), (u′, u′
1).

It is straightforward to see that after such edge replacement the graph still satisfies
properties (i) through (v), and each edge replacement reduces the number of connected
components, so eventually this algorithm produces a tree t that satisfies (i) through
(v). Moreover, the numbers na↓b do not change during the process, thus, Gt = G̃.

This completes the proof of Lemma 8.5.

9. IMPLEMENTATION OF THE SATISFIABILITY ALGORITHM

There is strong empirical evidence that many NP-complete reasoning tasks are feasible
in practice [Malik and Zhang 2009]. To check whether the same applies to the reasoning
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tasks studied here, we have implemented one version of the main algorithm, using an
industrial-strength Presburger solver Z3 [de Moura and Bjørner 2008] (more on it
soon). In this section we give a brief report on our experimental results.

The SMT (Satisfiability Modulo Theories) solver Z3 is an automated satisfiability
checker for many-sorted first-order logic with built-in theories, including support for
quantifiers [de Moura and Bjørner 2008]. For existential formulae (which is our case),
Z3 acts as a decision procedure giving a satisfying assignment when a formula is
satisfiable.

We have implemented the satisfiability algorithm for the case when the schema is
given by a simple DTD. Specifically, we have implemented the following:

—The translation of simple DTDs (see Section 8) into Presburger formulae ϕG , as
described in the proof of Proposition 8.4.

—The translation of key and inclusion constraints into Presburger formulae, as de-
scribed in the proof of Corollary 6.1.

—The translation of set constraints into Presburger formulae as described in Section 7.

We then used the Z3 solver to check satisfiability of the formulae produced by these
translations. To test the translations, we use the following:

—two parameterized families of DTDs: a family Fu of DTDs that are unsatisfiable (due
to the presence of recursion), and a family Fs of satisfiable DTDs;

—a parameterized family of K keys and inclusion constraints over documents that
conform to DTDs from Fs;

—a parameterized family C of set and linear constraints (obtained from key, inclusion,
and denial constraints) over documents that conform to DTDs from Fs.

We measure the following:

—the time needed to translate the instance of our satisfiability problem into a formula
that can be fed to Z3;

—the number of variables used in the formula fed to Z3;
—the time needed for the solver Z3 to check satisfiability of the formula.

We have run all experiments on a machine with Intel Core 2 Duo processor operating
at 2.4 GHz, with 2GB of memory. In all the cases we have run the experiments several
times and report the average time (the deviation was never high, though). For all
the cases that follow, we provide a few sample figures that are sufficient to indicate
that for sizes typical for schemas and constraints, satisfiability can be checked very
efficiently. The nonround numbers of rules and constraints are due to the nature of
the parameterized families we chose: for example, in the first family of parameterized
DTDs that follow, we deal with DTDs Dn, n > 0, such that the number of rules in Dn
is 5n − 1. We then run the algorithm for n = 10, . . . , 100; the table given next reports
results for n = 10, 30, 70, and 100.

We first report some sample results for unsatisfiable DTDs from Fu. The number of
rules in DTDs is the same as the number of element types.

# of rules # of variables Translation time (s) Z3 time (s)
49 181 0.01 0.02

149 901 0.09 0.11
349 1261 0.14 0.15
499 1783 0.15 0.16
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We now report sample results for satisfiable DTDs from Fs. Notice that Z3 time
increases, most likely due to the computation of a satisfying assignment.

# of rules # of variables Translation time (s) Z3 time (s)
34 132 0.02 0.04

154 612 0.06 0.43
301 1200 0.1 1.78

Then, we consider DTDs from Fs together with keys and inclusion constraints from
K.

# of rules # of constraints # of variables Translation time (s) Z3 time (s)
34 23 144 0.01 0.04

154 103 664 0.04 0.25
214 143 924 0.06 0.63
301 201 1403 0.1 3.1

Finally, we report results for DTDs from Fs and set and linear constraints from C.

# of rules # of constraints # of variables Translation time (s) Z3 time (s)
34 42 154 0.01 0.05

154 153 714 0.04 0.73
214 214 994 0.06 1.7
304 303 1504 0.1 4.52

The conclusion we can draw from these results is that the approach is indeed feasible.
Note that we are dealing with schemas and constraints, so we have tested DTDs with
up to 500 rules, and a significant number of constraints, exceeding 300, and the total
translation and Z3 time has never exceeded 5s.

10. CONCLUSIONS

We have studied the consistency problem of set and linear constraints with respect to
regular tree languages given by tree automata. This problem is motivated by many
reasoning and static analysis tasks arising in the context of XML.

We have proved the decidability of our formalism, and established an NP upper
bound. We provided a much simpler proof than those in the literature, which allows
us to extend the result to more complex reasoning tasks and different constraint rep-
resentations. The key technique is the encoding of the reasoning tasks as instances of
integer linear programming (or existential Presburger formulae).

We have provided explicit algorithms for all the subtasks, and experimented with
encoding them via an existing SMT solver, showing promising results for DTDs with
several hundred rules together with several hundreds of constraints. In all the cases it
was a matter of seconds to complete the reasoning tasks.

Given these promising initial results, we intend to expand our implementation and
build a fully-fledged system for static analysis of XML schemas and constraints.
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