
An Automata Model for Trees with Ordered Data Values

Tony Tan
University of Edinburgh University of Warsaw

Edinburgh, UK Warsaw, Poland
Email: ttan@inf.ed.ac.uk

Abstract—Data trees are trees in which each node, besides
carrying a label from a finite alphabet, also carries a data value
from an infinite domain. They have been used as an abstraction
model for reasoning tasks on XML and verification. However,
most existing approaches consider the case where only equality
test can be performed on the data values.

In this paper we study data trees in which the data values
come from a linearly ordered domain, and in addition to equality
test, we can test whether the data value in a node is greater
than the one in another node. We introduce an automata model
for them which we call ordered-data tree automata (ODTA),
provide its logical characterisation, and prove that its emptiness
problem is decidable in 3-NEXPT IME . We also show that the two-
variable logic on unranked trees, studied by Bojanczyk, Muscholl,
Schwentick and Segoufin in 2009, corresponds precisely to a
special subclass of this automata model.

Then we define a slightly weaker version of ODTA, which we
call weak ODTA, and provide its logical characterisation. The
complexity of the emptiness problem drops to NP. However,
a number of existing formalisms and models studied in the
literature can be captured already by weak ODTA. We also show
that the definition of ODTA can be easily modified, to the case
where the data values come from a tree-like partially ordered
domain, such as strings.

Index Terms—Automata, data unranked trees, logic, two-
variable logic, ordered data values.

I. I NTRODUCTION

Classical automata theory studies words and trees over finite
alphabets. Recently there has been a growing interest in the
so-called “data” words and trees, that is, words and trees in
which each position, besides carrying a label from a finite
alphabet, also carries a data value from an infinite domain.

Interest in such structures with data springs due to their
connection to XML [1], [2], [5], [12], [17], [18], [32], as
well as system specifications [9], [13], [36], where many
properties simply cannot be captured by finite alphabets. This
has motivated various works on data words [3], [8], [14],
[22], [25], [33], as well as on data trees [4], [6], [20], [21],
[24]. The common feature of these works is the addition of
equality test on the data values to the logic on trees. While
for finitely-labeled trees many logical formalisms (e.g., the
monadic second-order logic MSO) are decidable by converting
formulae to automata, even FO (first-order logic) on data
words extended with data-equality is already undecidable.See,
e.g., [8], [17], [33].

Thus, there is a need for expressive enough, while computa-
tionally well-behaved, frameworks to reason about structures
with data values. This has been quite a common theme in XML
and system specification research. It has largely followed two

routes. The first takes a specific reasoning task, or a set of
similar tasks, and builds algorithms for them (see, e.g., [2],
[5], [34], [17], [18]). The second looks for sufficiently general
automata models that can express reasoning tasks of interest,
but are still decidable (see, e.g., [14], [6], [24], [36]).

Both approaches usually assume that data values come from
an abstract set equipped only with the equality predicate. This
is already sufficient to capture a wide range of interesting
applications both in databases and verification. However, it
has been advocated in [15] that comparisons based on a linear
order over the data values could be useful in many scenarios,
including data centric applications built on top of a database.

So far, not many works have been done in this direction.
A few works such as [31], [35], [36] are on words, while
in most applications we need to consider trees. Moreover,
these works are incomparable to some interesting existing
formalisms [17], [6], [2], [12], [24], [14], [29] known to
be able to capture various interesting scenarios common in
practice. On top of that many useful techniques, notably those
introduced in [17], [8], [6], [24], can deal only with data
equality, and are highly dependent on specific combinatorial
properties of the formalisms. They are rather hard to adapt
to other more specific tasks, let alone being generalised to
include more relations on data values, and they tend to produce
extremely high complexity bounds, such as non-primitive-
recursive, or at least as hard as the reachability problem in
Petri nets. Furthermore, most known decidability results are
lost as soon as we add the order relation on data values. See,
e.g., [8].

In this paper we study the notion of data trees in which
the data values come from a linearly ordered domain, which
we call ordered-data trees. In addition to equality tests on
the data values, in ordered-data trees we are allowed to test
whether the data value in a node is greater than the data value
in another node. To the extent it is possible, we aim to unify
various ad hoc methods introduced to reason about data trees,
and generalise them to ordered-data trees to make them more
accessible and applicable in practice. This paper is the first
step, where we introduce an automata model for ordered-data
trees, provide its logical characterisation, and prove that it has
decidable emptiness problem. Moreover, we also show that it
can capture various well known formalisms.

Brief description of the results in this paper:The trees
that we consider areunrankedtrees where there is no a priori
bound in the number of children of a node. Moreover, we
also have an order on the children of each node. We consider

a natural logic for ordered-data trees, which consists of the
following relations.

• The parent relationE↓, whereE↓(x, y) means that node
x is the parent of nodey.

• The next-sibling relationE→, whereE→(x, y) means
that nodesx and y have the same parent andy is the
next sibling ofx.

• The labeling predicatesa(·)’s, where a(x) means that
nodex is labeled with symbola.

• The data equality predicate∼, wherex ∼ y means that
nodesx andy have the same data value.

• The order relation on data≺, wherex ≺ y means that
the data value in nodex is less than the one in nodey.

• The successive order relation on data≺suc, where
x≺suc y means that the data value in nodey is the
minimal data value in the tree greater than the one in
nodex.

We introduce an automata model for ordered-data trees,
which we callordered-data tree automata(ODTA), and pro-
vide its logical characterisation. Namely, we prove that the
class of languages accepted by ODTA corresponds precisely
to those expressible by formulas of the form:

∃X1 · · · ∃Xn ϕ ∧ ψ, (1)

whereX1, . . . , Xn are monadic second-order predicates; the
formula ϕ is an FO formula restricted to two variables and
using only the predicatesE↓, E→, ∼, as well as the unary
predicatesX1, . . . , Xn anda’s; and the formulaψ is an FO
formula using only the predicates∼, ≺, ≺suc, as well as the
unary predicatesX1, . . . , Xn anda’s.

We show that the logic∃MSO2(E↓, E→,∼), first studied
in [6], corresponds precisely to a special subclass of ODTA,
where∃MSO2(E↓, E→,∼) denotes the set of formulas of the
form (1) in whichψ is a true formula. We then prove that the
emptiness problem of ODTA is decidable in 3-NEXPTIME.
Our main idea here is to show how to convert the ordered-
data trees back to a string overfinite alphabets. (See our notion
of string representation of data valuesin Section III.) Such
conversion enables us to use the classical finite state automata
to reason about data values.

Then we define a slightly weaker version of ODTA, which
we call weak ODTA. Essentially the only feature of ODTA
missing in weak ODTA is the ability to test whether two
adjacent nodes have the same data value. Without such simple
feature, the complexity of the emptiness problem surprisingly
drops three-fold exponentially to NP. We provide its logical
characterisation by showing that it corresponds preciselyto the
languages expressible by the formulas of the form (1) where
ϕ does not use the predicate∼. We show that a number of
existing formalisms and models can be captured already by
weak ODTA, i.e. those in [17], [12], [31].

We should remark that [12] studies a formalism which
consists of tree automata and a collection ofset and linear
constraints.∗ It is shown that the satisfaction problem of such

∗We will later define formally what set and linear constraintsare.

formalism is NP-complete. In fact, it is also shown in [12]
that a single set constraint (without tree automaton and linear
constraint) already yields NP-hardness. Weak ODTA are es-
sentially equivalent to the formalism in [12] extended withthe
full expressive power of the first-order logic FO(∼,≺,≺suc).
It is worth to note that despite such extension, the emptiness
problem remains in NP.

Finally we also show that the definition of ODTA can be
easily modified to the case where the data values come from
a partially ordered domain, such as strings. This work can
be seen as a generalisation of the works in [11] and [27].
However, it must be noted that [11], [27] deal only withdata
words, where only equality test is allowed on the data values
and there is no order on them.

Related works:Most of the existing works in this area
are on data words. In the paper [8] the modeldata automata
was introduced, and it was shown that it captures the logic
∃MSO2(∼, <,+1), the fragment of existential monadic sec-
ond order logic in which the first order part using two variables
only and the predicates: the data equality∼, as well as the
order< and the successor+1 on the domain.

An important feature of data automata is that their emptiness
problem is decidable, even for infinite words, but is at leastas
hard as reachability for Petri nets. It was also shown that the
satisfiability problem for the three-variable first order logic is
undecidable. Later in [11] an alternative proof was given for
the decidability of the weaker logic∃MSO2(+1,∼). The proof
gives a decision procedure with an elementary upper bound
for the satisfaction problem of∃MSO2(+1,∼) on strings.
Recently in [27] an automata model that captures precisely
the logic∃MSO2(+1,∼), both on finite and infinite words, is
proposed.

Another logical approach is via the so calledlinear temporal
logic with freeze quantifier, introduced in [14]. Intuitively,
these are LTL formulas equipped with a finite number of regis-
ters to store the data values. We denote by LTL↓

n[X,U], the LTL
with freeze quantifier, wheren denotes the number of registers
and the only temporal operators allowed are the neXt operator
X and the Until operatorU. It was shown that alternating
register automata withn registers (RAn) accept all LTL↓n[X,U]
languages and the emptiness problem for alternating RA1 is
decidable. However, the complexity is non primitive recursive.
Hence, the satisfiability problem for LTL↓1(X,U) is decidable
as well. Adding one more register or past time operators, such
asX−1 or U−1, to LTL↓

1(X,U) makes the satisfiability problem
undecidable. In [29] a weaker version of alternating RA1,
called safety alternating RA1, is considered, and the emptiness
problem is shown to be EXPSPACE-complete.

A model for data words with linearly ordered data values
was proposed in [36]. The model consists of an automaton
equipped with a finite number of registers, and its transitions
are based on constraints on the data values stored in the
registers. It is shown that the emptiness problem for this model
is decidable in PSPACE. However, no logical characterisation
is provided for such model.

In [7] another type of register automata for words was in-

troduced and studied, which is a generalisation of the original
register automata introduced by Kaminski and Francez [25],
where the data values also can come from a linearly ordered
domain. Thus, the order comparison, not just equality, can be
performed on data values. This model is based on the notion
of monoid for data words, and is incomparable with our model
here.

It is shown in the paper [31] that the satisfaction problem for
FO2(+1,≺suc) over text is decidable. Atext is simply a data
word in which all the data values are different and they range
over the positive integers from1 to n, for somen ≥ 1. We
will see later that the satisfaction problem for FO2(+1,≺suc)
can be reduced to the emptiness problem of our model.

In [35] it is shown that the satisfaction problem of the logic
FO2(<,≺) on words is decidable. This logic is incomparable
with our model. However, it should be noted that FO2(<)
cannotcapture the whole class of regular languages.

The work on data trees that we are aware of is in [6], [24].
In [6] it was shown that the satisfaction problem for the logic
∃MSO2(E↓, E→,∼) over unranked trees is decidable in 3-
NEXPTIME. However, no automata model is provided. We
will see later how this logic corresponds precisely to a special
subclass of ODTA.

In [24] alternating tree register automata were introducedfor
trees. They are essentially the generalisation of the alternating
RA1 to the tree case. It was shown that this model captures the
forward XPath queries. However, no logical characterisation is
provided and the emptiness problem, though decidable, is non
primitive recursive.

Organisation: This paper is organised as follows. In
Section II we give some preliminary background. In Section III
we formally define the logic for ordered-data trees and present
a few examples as well as notations that we need in this paper.
In Section IV we present two lemmas that we are going to
need later on. We prove them in a quite general setting, as
we think they are interesting in their own. We introduce the
ordered-data tree automata (ODTA) in Section V and weak
ODTA in Section VI. In Section VII we discuss a couple of
the undecidable extensions of weak ODTA. In Section VIII
we describe how to modify the definition of ODTA when the
data values are strings, that is, when they come from a partially
ordered domain. Finally we conclude with some concluding
remarks in Section IX.

II. PRELIMINARIES

In this section we review some definitions that we are going
to use later on. We usually useΓ and Σ to denote finite
alphabets. We write2Γ to denote an alphabet in which each
symbol corresponds to a subset ofΓ. In some cases, we may
need the alphabet22

Γ

– an alphabet in which each symbol
corresponds to a set of subsets ofΓ. We denote the set of
natural numbers{0, 1, 2, . . .} by N.

Usually we writeL to denote a language, for both string
and tree languages. When it is clear from the context, we use
the termlanguageto mean either a string language, or a tree
language.

A. Finite state automata over strings and commutative regular
languages

We usually writeM to denote a finite state automaton on
strings. The language accepted by the automatonM is denoted
by L(M).

LetΣ = {a1, . . . , aℓ}. For a wordw ∈ Σ∗, the Parikh image
of w is Parikh(w) = (n1, . . . , nℓ), whereni is the number of
appearances ofai in w. For a vector̄n, the inverse of the Parikh
image ofn̄ is Parikh−1(n̄) = {w | w ∈ Σ∗ andParikh(w) =
n̄}.

For 1 ≤ i ≤ ℓ, a vectorv̄ = (n1, . . . , nℓ) ∈ N
ℓ is called an

i-base, if ni 6= 0 andnj = 0, for all j 6= i. A languageL is
periodic, if there exist(ℓ + 1) vectorsū, v̄1, . . . , v̄ℓ such that
ū ∈ N

ℓ and each̄vi is an i-base and

L =
⋃

h1,...,hℓ≥0

Parikh−1(ū+ h1v̄1 + · · ·+ hℓv̄ℓ).

We denote such languageL by L(ū, v̄1, . . . , v̄ℓ).
A languageL is commutativeif it is closed under reordering.

That is, if w = b1 · · · bm ∈ L, and σ is a permutation on
{1, . . . ,m}, thenbσ(1) · · · bσ(m) ∈ L.

Theorem 1: [16, Corollary 2.2]A language is commutative
and regular if and only if it is a finite union of periodic
languages.

B. Unranked trees, tree automata and transducers

An unranked finite tree domain is a prefix-closed finite
subsetD of N∗ (words overN) such thatu · i ∈ D implies
u · j ∈ D for all j < i and u ∈ N

∗. Given a finite labeling
alphabetΣ, a Σ-labeled unranked treet is a structure

〈D,E↓, E→, {a(·)}a∈Σ〉,

where

• D is an unranked tree domain,
• E↓ is the child relation:(u, u ·i) ∈ E↓ for all u, u ·i ∈ D,
• E→ is the next-sibling relation:(u · i, u · (i + 1)) ∈ E→

for all u · i, u · (i+ 1) ∈ D, and
• the a(·)’s are labeling predicates, i.e. for each nodeu,

exactly one ofa(u), with a ∈ Σ, is true.

We write Dom(t) to denote the domainD. The label of a
nodeu in t is denoted byℓabt(u). If ℓabt(u) = a, then we
say thatu is ana-node.

An unranked tree automaton[10], [38] overΣ-labeled trees
is a tupleA = 〈Q,Σ, δ, F 〉, whereQ is a finite set of states,
F ⊆ Q is the set of final states, andδ : Q × Σ → 2(Q

∗) is a
transition function; we requireδ(q, a)’s to be regular languages
overQ for all q ∈ Q anda ∈ Σ.

A run of A over a treet is a functionρA : Dom(t) → Q
such that for each nodeu with n childrenu · 0, . . . , u · (n−
1), the wordρA(u · 0) · · · ρA(u · (n − 1)) is in the language
δ(ρA(u), ℓabt(u)). For a leafu labeleda, this means thatu
could be assigned a stateq if and only if the empty wordǫ is
in δ(q, a). A run is accepting ifρA(ǫ) ∈ F , i.e., if the root is
assigned a final state. A treet is accepted byA if there exists

an accepting run ofA on t. The set of all trees accepted by
A is denoted byL(A).

An unranked tree (letter-to-letter) transducer with the input
alphabetΣ and output alphabetΓ is a tupleT = 〈A, µ〉,
whereA is a tree automaton with the set of statesQ, and
µ ⊆ Q × Σ × Γ is an output relation. We call suchT a
transducer fromΣ to Γ.

Let t be aΣ-labeled tree, andt′ a Γ-labeled tree such that
Dom(t) = Dom(t′). We say that a treet′ is an output ofT
on t, if there is an accepting runρA of A on t and for each
u ∈ Dom(t), it holds that (ρA(u), ℓabt(u), ℓabt′(u)) ∈ µ.
We call T an identity transducer, ifℓabt(u) = ℓabt′(u) for
all u ∈ Dom(t). We will often view an automatonA as an
identity transducer.

C. Automata with Presburger constraints (APC)

An automaton with Presburger constraints (APC) is a tuple
〈A, ξ〉, whereA is an unranked tree automaton with states
q0, . . . , qm andξ is an existential Presburger formula with free
variablesx0, . . . , xm. A tree t is accepted by〈A, ξ〉, denoted
by t ∈ L(A, ξ), if there is an accepting runρA of A on w
such thatξ(n0, . . . , nm) is true, whereni is the number of
appearances ofqi in ρA.

Theorem 2:[37], [40] The emptiness problem for APC is
decidable inNP.

It is worth noting also that the class of languages accepted
by APC is closed under union and intersection.

Oftentimes, instead of counting the number of states in the
accepting run, we need to count the number of occurrences of
alphabet symbols in the tree. Since we can easily embed the
alphabet symbols inside the states, we always assume that the
Presburger formulaξ has the free variablesxa’s to denote the
number of appearances of the symbola in the tree.

As in the word case, we letParikh(t) denote the Parikh
image of the treet. We will need the following proposition.

Proposition 3: [37], [40] Given an unranked tree automa-
ton A, one can construct, in polynomial time, an existential
Presburger formulaξA(x1, . . . , xℓ) such that

• for every treet ∈ L(A), ξA(Parikh(t)) holds;
• for everyn̄ = (n1, . . . , nℓ) such thatξA(n̄) holds, there

exists a treet ∈ L(A) with Parikh(t) = n̄.

III. O RDERED-DATATTREES ANDTHEIR LOGIC

An ordered-data tree over the alphabetΣ is a tree in which
each node, besides carrying a label from the finite alphabetΣ,
also carries a data value fromN = {0, 1, . . .}.†

Let t be an ordered-data tree overΣ andu ∈ Dom(t). We
write vaℓt(u) to denote the data value in the nodeu. The set
of all data values in thea-nodes int is denoted by byVt(a).
That is,Vt(a) = {vaℓt(u) | ℓabt(u) = a andu ∈ Dom(t)}.
We writeVt to denote the set of data values found in the tree
t. We also write#t(a) to denote the number ofa-nodes int.

†Here we use the natural numbers as data values just to be concrete. The
results in our paper applies trivially for any linearly ordered domain.

The profile of a nodeu is a triplet (l, p, r) ∈ {⊤,⊥, ∗} ×
{⊤,⊥, ∗} × {⊤,⊥, ∗}, wherel = ⊤ and l = ⊥ indicate that
the nodeu has the same data value and different data value
as its left sibling, respectively;l = ∗ indicates thatu does
not have a left sibling. Similarly,p = ⊤, p = ⊥, andp = ∗
have the same meaning in relation to the parent of the node
u, while r = ⊤, r = ⊥, andr = ∗ means the same in relation
to the right sibling of the nodeu. For an ordered-data treet
over Σ, the profile tree oft, denoted byProfile(t), is a tree
overΣ×{⊤,⊥, ∗}3 obtained by augmenting to each node of
t its profile.

We writeProj(t) to denote theΣ projection of the ordered-
data treet, that is,Proj(t) is t without the data values. When
we say that an ordered-data treet is accepted by an automaton
A, we mean thatProj(t) is accepted byA. An ordered-data
tree t′ is an output of a transducerT on an ordered-data tree
t, if Proj(t′) is an output ofT on Proj(t), and for allu ∈
Dom(t′), we havevaℓt′(u) = vaℓt(u).

Figure 1 shows an example of an ordered-data treet over
the alphabet{a, b, c} with its profile tree. The notation

(

a
d

)

means that the node is labeled witha and has data valued.

A. String representations of data values

Let t be an ordered-data tree overΓ. For a setS ⊆ Γ, let

[S]t =
⋂

a∈S

Vt(a) ∩
⋂

b/∈S

Vt(b).

Note that for eacha ∈ Γ,

Vt(a) =
⋃

S s.t. a∈S

[S]t.

Since the sets[S]t’s are disjoint, it is immediate that|Vt(a)| =
∑

S s.t. a∈S |[S]t|.
Let d1 < · · · < dm be all the data values found int. The

string representationof the data values int, denoted byVΓ(t),
is the stringS1 · · ·Sm over the alphabet2Γ − {∅} of length
m such thatdi ∈ [Si]t, for eachi = 1, . . . ,m. The notation
[S]t is already introduced in [11], [12], but notVΓ(t).

Consider the example of the treet in Figure 1. The data
values int are1, 2, 4, 6, 7, where

[{b, c}]t = {1},

[{a, b, c}]t = {2},

[{a, b}]t = {4, 7},

[{a, c}]t = {6},

[S]t = ∅, for all the otherS’s.

The stringVΓ(t) is S1 S2 S3 S4 S5, whereS1 = {b, c},
S2 = {a, b, c}, S3 = S5 = {a, b} andS4 = {a, c}.

B. A logic for ordered-data trees

An ordered-data treet over the alphabetΣ can be viewed
as a structure

t = 〈D, {a(·)}a∈Σ, E↓, E→,∼,≺,≺suc〉,

where

(

a
2

)

� / w j
(

b
1

) (

c
2

) (

a
4

) (

a
6

)

/ w j
(

b
2

) (

b
4

) (

a
7

)

? ? ?
(

c
1

) (

c
6

) (

b
7

)

(

a,(∗,∗,∗)
2

)

� / w j

(

b,(∗,⊥,⊥)
1

) (

c,(⊥,⊤,⊥)
2

) (

a,(⊥,⊥,⊥)
4

) (

a,(⊥,⊥,∗)
6

)

/ w j

(

b,(∗,⊤,⊥)
2

) (

b,(⊥,⊥,∗)
4

)

(

a,(⊥,⊥,∗)
7

)

? ? ?
(

c,(∗,⊥,∗)
1

) (

c,(∗,⊥,∗)
6

) (

b,(∗,⊤,∗)
7

)

Fig. 1. An example of an ordered-data tree (on the left) and its profile (on the right).

• the relations{a(·)}a∈Σ, E↓, E→ are as defined before in
Subsection II-B,

• u ∼ v holds, if vaℓt(u) = vaℓt(v),
• u ≺ v holds, if vaℓt(u) < vaℓt(v),
• u≺suc v holds, if vaℓt(v) is the minimal data value int

greater thanvaℓt(u).

Obviously, x≺suc y can be expressed equivalently asx ≺
y ∧ ∀z(¬(x ≺ z ∧ z ≺ y)). We include≺suc for the sake
of convenience. We also assume that we have the predicates
root(x), first-sibling(x), last-sibling(x), and leaf(x) which
stand for ∀y(¬E↓(y, x)), ∀y(¬E→(y, x)), ∀y(¬E→(x, y)),
and ∀y(¬E↓(x, y)), respectively. We also writex ≁ y to
denote¬(x ∼ y).

For O ⊆ {E↓, E→,∼,≺,≺suc}, we let FO(O) stand for
the first-order logic with the vocabularyO, MSO(O) for
its monadic second-order logic (which extends FO(O) with
quantification over sets of nodes), and∃MSO(O) for its
existential monadic second order logic, i.e., formulas of the
form ∃X1 . . . ∃Xm ψ, whereψ is an FO(O) formula over the
vocabularyO extended with the unary predicatesX1, . . . , Xm.

We let FO2(O) stand for FO(O) with two variables, i.e.,
the set of FO(O) formulae that only use two variablesx
and y. The set of all formulae of the form∃X1 . . . ∃Xm ψ,
whereψ is an FO2(O) formula is denoted by∃MSO2(O).
Note that∃MSO2(E↓, E→) is equivalent in expressive power
to MSO(E↓, E→) over the usual (without data) trees. That is,
it defines precisely the regular tree languages [39].

As usual, we defineLdata(ϕ) as the set of ordered-data
trees that satisfy the formulaϕ. In such case, we say that the
formulaϕ expresses the languageLdata(ϕ).‡

The following theorem is well known. It shows how even
extending FO(E↓, E→) with equality test on data values
immediately yields undecidability.

‡To avoid confusion, we put the subscriptdata on Ldata to denote a
language of ordered-data trees. We use the symbolL without the subscript
data to denote the usual language of trees/strings without data.

Theorem 4:(See, for example, [8], [17], [33])The satisi-
faction problem for FO(E↓, E→,∼) is undecidable.

One of the deepest results in this area is the following
decidability result for the logic∃MSO2(E↓, E→,∼).

Theorem 5:[6] The satisfaction problem for
∃MSO2(E↓, E→,∼) is decidable.

C. A few examples

In this subsection we present a few examples of properties
of ordered-data trees expressible in our logic. Some of the
examples are special cases of more general techniques that
will be used later on.

Example 6:Let Σ = {a, b}. Consider the languageLa
data

of ordered-data trees overΣ where an ordered-data treet ∈
La
data if and only if there exist twoa-nodesu andv such that

u is an ancestor ofv and eitherv ∼ u or v ≺ u. This language
can be expressed with the formula∃X∃Y ∃Z ϕ, whereϕ states
thatX contains only the nodeu, Y contains only the nodev,
Z contains precisely the nodes in the path fromu to v, and
v ∼ u or v ≺ u.

Example 7:For a fixed setS ⊆ Σ and an integerm ≥ 1,
we consider the languageLS,m

data such thatt ∈ LS,m
data if and

only if |[S]t| = m.
We pick an arbitrary symbola ∈ S. The languageLS,m

data

can be expressed in∃MSO2(E↓, E→,∼) with the formula of
the form ∃X1 · · · ∃Xm ϕ, whereϕ is a conjunction of the
following.

• That the predicatesX1, . . . , Xm are disjoint and each of
them contains exactly one node, which is ana-node.

• That the data values found in nodes inX1, . . . , Xm are
all different.

• That for eachi ∈ {1, . . . ,m}, if a data value is found in
a node inXi, then it must also be found in someb-node,
for everyb ∈ S.

• That for eachi ∈ {1, . . . ,m}, if a data value found in a
node inXi, then it mustnot be found in anyb-node, for
everyb /∈ S.

• That for everya-node (recall thata ∈ S) that does not
belong to theXi’s, either it has the same data value as
the data value in a node belongs to one of theXi’s, or it
has the data valuenot in [S]t.
That its data value does not belong to[S]t can be stated
as the negation of

– for eachb ∈ S, there is ab-node with the same data
value; and

– the data value cannot be found in anyb-node, for
everyb /∈ S.

Example 8:For a fixed setS ⊆ Σ and an integerm ≥ 1, we
consider the languageLS, (mod m)

data such thatt ∈ L
S, (mod m)
data

if and only if |[S]t| ≡ 0 (mod m).
This language L

S, (mod m)
data can be expressed in

∃MSO2(E↓, E→,∼) with a formula of the form

∃X0 · · · ∃Xm−1∃Y0 · · · ∃Ym−1∃Z ψ,

where the intended meanings of
X0, . . . , Xm−1, Y0, . . . , Ym−1, Z are as follows. For a
nodeu in an ordered-data treet ∈ Ldata,

• the number of nodes belonging toZ is precisely|[S]t|;
and ifZ(u) holds int, then the data value in the nodeu
belongs to[S]t;

• Xi(u) holds int if and only if in the subtreet′ rooted in
u we have|[S]t′ | ≡ i (mod m);

• if v1, . . . , vk are all the left-siblings of u, and
Xi1(v1), . . . , Xik(vk) holds, thenYi(u) holds if and only
if i1 + · · ·+ ik ≡ i (mod m).

To express all these intended meanings, it is sufficient that
ψ ∈ FO2(E↓, E→,∼).

Example 9:Let Σ = {a, b}. Consider the languageLa∗
data

of ordered-data trees overΣ where an ordered-data treet ∈
La∗
data if and only if all thea-nodes with data values different

from the ones in their parents satisfy the following conditions:

• the data values found in these nodes are all different;
• one of the these data values must be the largest in the

tree t.

The languageLa∗
data can be expressed in∃MSO2(E↓,∼,≺)

with the following formula:

∃X
(

∀x
(

X(x) ⇐⇒ a(x) ∧ ∃y(E↓(y, x) ∧ y ≁ x)
)

∧ ∀x∀y(X(x) ∧X(y) ∧ x ∼ y → x = y)

∧ ∃x
(

X(x) ∧ ∀y(y ≺ x ∨ x ∼ y)
)

)

.

IV. T WO USEFUL LEMMAS

In this section we prove two lemmas which will be used
later on. The first is combinatorial by nature, and we will use
it in our proof of the decidability of ODTA. The second is an

Ehrenfeucht-Fraı̈ssé type lemma for ordered-data trees,and
we will use it in our proof of the logical characterization of
ODTA.

A. A combinatorial lemma

Let G be an (undirected and finite) graph. For simplicity,
we consider only the graph without self-loop. We denote by
V (G) the set of vertices inG andE(G) the set of edges. For
a nodeu ∈ V (G), we write deg(u) to denote the degree of
the nodeu anddeg(G) to denotemax{deg(u) | u ∈ V (G)}.

A data graphover the alphabetΓ is a graphG in which
each node carries a label fromΓ and a data value fromN. A
nodeu ∈ V (G) is called ana-node, if its label isa, in which
case we writeℓabG(u) = a. We denote byvaℓG(u) the data
value found in nodeu, andVG(a) the set of data values found
in a-nodes inG.

Lemma 10: LetG be a data graph overΓ. Suppose for
eacha ∈ Γ, we have|VG(a)| ≥ deg(G)|Γ| + deg(G) + 1.
Then we can reassign the data values in the nodes inG to
obtain another data graphG′ such thatV (G) = V (G′) and
E(G) = E(G′) and

(1) for eachu ∈ V (G′), ℓabG(u) = ℓabG′(u);
(2) for eacha ∈ Γ, VG(a) = VG′(a);
(3) for eachu, v ∈ V (G), if (u, v) ∈ E(G′), thenvaℓG′(u) 6=

vaℓG′(v).

Note that in Lemma 10, the data graphG′ differs fromG
only in the data values on the nodes, where we require that
adjacent nodes inG′ have different data values.

B. An Ehrenfeucht-Fräısśe type lemma

We need the following notation. Ak-characteristic function
on the alphabetΓ, is a functionf : Γ → {0, 1, 2, . . . , k}. Let
FΓ,k be the set of all suchk-characteristic functions onΓ. A
function f ∈ FΓ,k is a k-characteristic function for a setS,
if f(a) ∈ {1, 2, . . . , k}, for all a ∈ S, andf(a) = 0, for all
a /∈ S.

Let t be an ordered-data tree andd1 < · · · < dm be the
data values found int. The k-extended representationof t is
the stringVk

Γ(t) = (S1, f1) · · · (Sm, fm) ∈ 2Γ × FΓ,k such
that S1 · · ·Sm = VΓ(t) and for eachi ∈ {1, 2, . . . ,m} and
for eacha ∈ Γ,

1) fi is a k-characteristic function for the setSi,
2) if 1 ≤ fi(a) ≤ k − 1, then there arefi(a) number of

a-nodes int with data valuedi,
3) if fi(a) = k, then there are at leastk number ofa-nodes

in t with data valuedi.

We assume that in every formula in MSO(∼,≺,≺suc) all
the monadic second-order quantifiers precede the first-order
part. That is, sentences in MSO(∼,≺,≺suc) are of the form:
ϕ := Q1X1 · · ·QsXs ψ, where theXi’s are monadic second-
order variables, theQi’s are∃ or ∀ andψ ∈ FO(∼,≺,≺suc)
extended with the unary predicatesX1, . . . , Xs. We call
the integers, the MSO quantifier rank ofϕ, denoted by
MSO-qr(ϕ) = s, while we write FO-qr(ϕ) to denote the

quantifier rank ofψ, that is the quantifier rank of the first-
order part ofϕ.

Lemma 11: Lett1 and t2 be ordered-data trees overΓ
such thatVk2s

Γ (t1) = Vk2s

Γ (t2). For any MSO(∼,≺,≺suc)
sentenceϕ such thatMSO-qr(ϕ) ≤ s and FO-qr(ϕ) ≤ k,
t1 |= ϕ if and only if t2 |= ϕ.

V. AUTOMATA FOR ORDERED-DATA TREE

In this section we are going to introduce an automata model
for ordered-data trees and study its expressive power.

Definition 12: An ordered-data tree automaton, in short
ODTA, over the alphabetΣ is a tripletS = 〈T ,M,Γ0〉, where
T is a letter-to-letter transducer fromΣ × {⊤,⊥, ∗}3 to the
output alphabetΓ; M is an automaton on strings over the
alphabet2Γ; andΓ0 ⊆ Γ.

An ordered-data treet is accepted byS, denoted byt ∈
Ldata(S), if there exists an ordered-data treet′ over Γ such
that

• on inputProfile(t), the transducerT outputst′;
• the automatonM accepts the stringVΓ(t

′); and
• for everya ∈ Γ0, all thea-nodes int′ have different data

values.

We describe a few examples of ODTA that accept the lan-
guages described in Examples 6, 7, 8 and 9.

Example 13:An ODTA Sa = 〈T ,M,Γ0〉 that accepts the
languageLa

data in Example 6 can be defined as follows. The
output alphabet of the transducerT is Γ = {α, β, γ}. On an
input treet, the transducerT marks the nodes int as follows.
There is only one node marked withα, one node marked with
β, and that theα-node is an ancestor ofβ. The automaton
M accepts all the strings in which the position labeled with
S ∋ β is less than or equal to the position labeled withS′ ∋ α.
(These two positions can be equal, which meansS = S′.)
Finally, Γ0 = ∅.

Example 14:An ODTA SS,m = 〈T ,M,Γ0〉 that accepts
the languageLS,m

data in Example 7 can be defined as follows.
The transducerT is an identity transducer. The automatonM
accepts all the strings in which the symbolS appears exactly
m times, andΓ0 = ∅.

Example 15:An ODTA SS, (mod m) = 〈T ,M,Γ0〉 that
accepts the languageLS, (mod m)

data in Example 8 can be de-
fined as follows. The transducerT is an identity transducer.
The automatonM accepts a string in which the number of
appearances of the symbolS is a multiple ofm, andΓ0 = ∅.

Example 16:An ODTA Sa∗ = 〈T ,M,Γ0〉 that accepts
the languageLa∗

data in Example 9 can be defined as follows.
The output alphabet of the transducerT is Γ = {α, β}. The
transducerT marks the nodes as follows. A node is marked
with α if and only if it is ana-node and it has different data

value from the one of its parent. All the other nodes are marked
with β. The automatonM accepts a stringv if and only if
the last symbol inv contains the symbolα, while Γ0 = {α}.

The following proposition states that ODTA languages are
closed under union and intersection, but not under negation.
We would like to remark that being not closed under negation
is rather common for decidable models for data trees. Often-
times models that are closed under negation have undecidable
emptiness/satisfaction problem.

Proposition 17: The class of languages accepted by ODTA
is closed under union and intersection, but not under negation.

Proof: For closure under union and intersection, let
S1 = 〈T 1,M1,Γ

1
0〉 andS2 = 〈T 2,M2,Γ

2
0〉 be ODTA. The

unionLdata(S1)∪Ldata(S2) is accepted by an ODTA which
non-deterministically chooses to simulate eitherS1 or S2 on
the input ordered-data tree. The ODTA for the intersection
Ldata(S1)∩Ldata(S2) can be obtained by the standard cross
product betweenS1 andS2.

That ODTA languages are not closed under negation follows
from the fact that the negation of the language in Example 13
is not accepted by ODTA. The proof is rather straightforward,
thus, omitted.

We should remark that in Section VII we will discuss that
extending ODTA with the complement of languages of the
form in Example 13 will immediately yield undecidability.

Next we give the ODTA characterisation of the logic
∃MSO2(E↓, E→,∼).

Theorem 18: A languageLdata is expressible with an
∃MSO2(E↓, E→,∼) formula if and only if it is accepted by
an ODTAS = 〈T ,M,Γ0〉, whereL(M) is a commutative
language.

The next result is the logical characterisation of ODTA.

Theorem 19: A languageLdata is accepted by an ODTA
if and only if it is expressible with a formula of the
form: ∃X1 · · · ∃Xm ϕ ∧ ψ, where ϕ is a formula from
FO2(E↓, E→,∼), andψ from FO(∼,≺,≺suc), both extended
with the unary predicatesX1, . . . , Xm.

Finally, we show that the emptiness problem for ODTA
is decidable. The decision procedure in Theorem 20
runs in 3-NEXPTIME, while the decision procedure for
∃MSO2(E↓, E→,∼) proposed in [6] also runs in 3-
NEXPTIME. However, we should remark that if we use our
algorithm for the satisfaction problem of∃MSO2(E↓, E→,∼)
via the translation in Theorem 18, the complexity will jump
to 5-NEXPTIME, since there is a double exponential blow-up
in the translation.

Theorem 20: The emptiness problem for ODTA is decid-
able.

VI. W EAK ODTA

A weak ODTA overΣ is a tripletS = 〈T ,M,Γ0〉 where
T is a letter-to-letter transducer fromΣ to the output alphabet
Γ, andM is a finite state automaton over2Γ andΓ0 ⊆ Γ. An
ordered-data treet is accepted byS, denoted byt ∈ Ldata(S),
if there exists an ordered-data treet′ overΓ such that

• on inputProj(t), the transducerT outputst′;
• the automatonM accepts the stringVΓ(t

′); and
• for everya ∈ Γ0, all thea-nodes int′ have different data

values.
Note that the only difference between weak ODTA and ODTA
is the equality test on the data values in neighboring nodes.
Such difference is the cause of the triple exponential leap in
complexity, as stated in the following theorem.

Theorem 21: The emptiness problem for weak ODTA is in
NP.

Next, we give the logical characterisation of weak ODTA.

Theorem 22: A languageL is accepted by a weak ODTA
if and only if L is expressible with a formula of the form:
∃X1 · · · ∃Xm ϕ∧ψ, whereϕ is a formula from FO2(E↓, E→),
and ψ is a formula from FO(∼,≺,≺suc), extended with the
unary predicatesX1, . . . , Xm.

The proof of Theorem 22 is the same as the proof of The-
orem 19. The difference is that to simulate the FO2(E↓, E→)
formulaϕ, the profile information is not necessary.

A. Extending weak ODTA with Presburger constraints

Like in the case of APC, we can extend weak ODTA with
Presburger constraints without increasing the complexityof its
emptiness problem. LetS = 〈T ,M,Γ0〉 be a weak ODTA,
where Σ and Γ are the input and output alphabets ofT ,
respectively. LetΓ = {α1, . . . , αℓ}.

A weak ODTA S = 〈T ,M,Γ0〉 extended with Presburger
constraint is a tuple〈S, ξ〉, where ξ(x1, . . . , xℓ, y1, . . . , y2ℓ)
is an existential Presburger formula with the free variables
x1, . . . , xℓ, y1, . . . , y2ℓ−1. A ordered-data treet is accepted by
〈S, ξ〉, if there exists an outputt′ of T on t, the automaton
M acceptsVΓ(t

′), for eacha ∈ Γ0, all a-nodes int′ have
different data values andξ(Parikh(t′),Parikh(VΓ(t

′))) holds.
We writeLdata(S, ξ) to denote the set of languages accepted
by 〈S, ξ〉.

It should be immediate that the emptiness problem of weak
ODTA extended with Presburger constraint is still decidable
in NP.

B. Comparison with other known decidable formalisms

We are going to compare the expressiveness of weak ODTA
with other known models with decidable emptiness.

1) DTD with integrity constraints:An XML document is
typically viewed as a data tree. The most common XML
formalism is Document Type Definition (DTD). In short, a
DTD is a context free grammar and a treet conforms to a
DTD D, if it is a derivation tree of a word accepted by the
context free grammar.

The most commonly used XML constraints are integrity
constraints which are of two types.

• The key constraintsare constraints of the form:

∀x∀y(a(x) ∧ a(y) ∧ x ∼ y → x = y),

denoted bykey(a).
• The inclusion constraintsare constraints of the form:

∀x∃y(a(x) → b(y) ∧ x ∼ y),

denoted byV (a) ⊆ V (b).
The satisfiability problem of a given DTDD and a collectionC
of integrity constraints asks whether there exists an ordered-
data treet that conforms to the DTD that satisfies all the
constraints inC. In [17] it is shown that this problem is NP-
complete.

Theorem 23: Given a DTDD and a collectionC of in-
tegrity constraints, one can construct a weak ODTAS such
that Ldata(S) is precisely the set of ordered-data trees that
conforms toD and satisfies all constraints inC.

It must be noted that our construction in Theorem 23 outputs
an automatonM of exponential size. This blow-up is tight,
as the following example shows. Consider the case whereC
does not contain inclusion constraints. That is,C contains only
key constraints. Then any equivalent ODTAS = 〈T ,M,Σ0〉
will have L(M) = (2Σ − {∅})∗. Thus, we have exponential
blow-up in the size ofM. Nevertheless, if we are concerned
only with satisfiability, then we can lower the complexity to
NP as stated in the following theorem.

Theorem 24: Given a DTDD and a collectionC of integrity
constraints, one can construct a weak ODTAS in non-
deterministic polynomial time such thatLdata(S) 6= ∅ if and
only if there exists an ordered-data treet that conforms toD
and satisfies all the constraints inC.

2) Set and linear constraints for data trees:In the pa-
per [12] the set and linear constraintsare introduced for
data trees. As argued there, those constraints, together with
automata, are able to capture many interesting properties
commonly used in XML practice. We review those constraints
and show how they can be captured by weak ODTA extended
with Presburger constraints.

Data-terms(or just terms) are given by the grammar

τ := V (a) | τ ∪ τ | τ ∩ τ | τ for a ∈ Σ.

The semantics ofτ is defined with respect to a data wordt:

JV (a)Kt = Vt(a) JτKt = Vt − JτKt
Jτ1 ∩ τ2Kt = Jτ1Kt ∩ Jτ2Kt Jτ1 ∪ τ2Kt = Jτ1Kt ∪ Jτ2Kt

Recall thatVt =
⋃

a∈Σ Vt(a) – the set of data values found in
the data treet.

A set constraintis either τ = ∅ or τ 6= ∅, whereτ is a
term. A data treet satisfiesτ = ∅, written ast |= τ = ∅, if
and only if JτKt = ∅ (and likewise forτ 6= ∅).

A linear constraint ξ over the alphabetΣ is a linear
constraint on the variablesxa, for eacha ∈ Σ andzS , for each

S ⊆ Σ. A data treet satisfiesξ, if ξ holds by interpretingxa
as the number ofa-nodes int, andzS the cardinality|[S]t|.

Theorem 25: Given a tree automatonA and a setC of
set and linear constraints, there exists a weak ODTA〈S, ϕ〉
extended with Presburger constraints such thatLdata(S, ϕ)
is precisely the set of ordered-data trees accepted byA that
satisfies all the constraints inC.

Its proof is simply a restatement of the proof in [12] into a
language of weak ODTA.

3) FO2(+1,≺suc) over text: Here we focus our attention
on ordered-data words, which can be viewed as trees where
each node has at most one child. We writew =

(

a1

d1

)

· · ·
(

an

dn

)

to denote ordered-data word in which positioni has labelai
and data valuedi. It is called atext, if all the data values are
different and the set of data values{d1, . . . , dn} is precisely
{1, . . . , n}.

It is shown in the paper [31] that the satisfaction problem for
FO2(+1,≺suc) over text is decidable.§ The following theorem
shows that this decidability can be obtained via weak ODTA.

Theorem 26: For every formulaϕ ∈ FO2(+1,≺suc), one
can construct effectively a weak ODTAS such that

• for every textw, if w ∈ Ldata(ϕ), thenw ∈ Ldata(S);
• for every ordered-data wordw ∈ Ldata(S), there exists

a textw′ ∈ Ldata(ϕ) such thatProj(w) = Proj(w′).

VII. A N UNDECIDABLE EXTENSION

In this section we would like to remark on an undecidable
extension of weak ODTA. Recall the language in Example 6.
It has already noted in the proof of Proposition 17 that its
complement is not accepted by any ODTA. Formally, the
complement of the language in Example 6 can be expressed
with formula of the form:

∀x ∀y
∨

a∈Σ0

a(x) ∧
∨

a∈Σ0

a(y) ∧ E↓
∗(x, y) → x ≺ y, (2)

whereΣ0 ⊆ Σ andE↓
∗ denotes the transitive closure ofE↓.

It can already be deduced from [8, Proposition 29] that given
an ODTA and a collectionC of formulas of the form (2), it
is undecidable to check whether there is an ordered-data tree
t ∈ Ldata(S) such thatt |= ψ, for all ψ ∈ C.

At this point we would also like to point out that extending
ODTA with operation such as addition on data values will
immediately yield undecidability. This can be deduced imme-
diately from [23] where we know that together with unary
predicates, addition yields undecidability.

VIII. W HEN THE DATA VALUES ARE STRINGS

In this section we discuss data trees where the data values
are strings from{0, 1}∗, instead of natural numbers. We call
such treesstring data trees. There are two kinds of order for

§The definition of text in [31] is slightly different, but it isequivalent to
our definition. However, it turns out that the key lemma proved in [31] has
a serious gap, which is filled later on in [19]. The final resultis still correct
though.

strings: the prefix order, and the lexicographic order. Strings
with lexicographic order are simply linearly ordered domain,
thus, ODTA can be applied directly in such case.

For the prefix order, we have to modify the definition of
ODTA. Consider a string data treet over the alphabetΣ. Let
Vt be the set of data values found int. We defineVΣ(t) as a
tree over the alphabet2Σ, where

• Dom(VΣ(t)) is Vt ∪ {ǫ};
• for u, v ∈ Dom(VΣ(t)), u is a parent ofv if u is a prefix

of v and there is now ∈ Dom(VΣ(t)) such thatu is a
prefix of w andw is a prefix ofv;

• for u ∈ Dom(VΣ(t)) the label ofu is S, if u ∈ [S]t; and
ROOT, if u = ǫ.

We callVΣ(t) the tree representationof the data values int.
Consider an example of a string data tree in Figure 2. We have

[{a}]t = {0101} [{b}]t = {0100}
[{c}]t = {01011} [{a, b}]t = {01}
[{b, c}]t = {01000} [{a, b, c}]t = {010011}.

So Dom(VΣ(t)) = {01, 0100, 0101, 010011, 010000, 01011},
and

• 01 is the parent of0100 and0101;
• 0100 is the parent of010011 and010000; and
• 0101 is the parent of01011.

Now an ODTA for string data trees isS = 〈T ,A,Γ0〉,
whereT is a letter-to-letter transducer fromΣ × {⊤,⊥, ∗}3

to Γ; A is an unranked tree automaton over the alphabet2Γ;
Γ0 ⊆ Γ. The requirement for acceptance is the same as in
Section V, except thatA takes a tree over the alphabet2Γ as
the input. All the results in Sections V and VI can be carried
over immediately to this model.

IX. CONCLUDING REMARKS

In this paper we study data trees in which the data values
come from a linearly ordered domain, where in addition to
equality test, we can test whether the data value in one node is
greater than the other. We introduce ordered-data tree automata
(ODTA), provide its logical characterisation, and prove that
its emptiness problem is decidable. We also show the logic
∃MSO2(E↓, E→,∼) can be captured by ODTA.

Then we define weak ODTA, which essentially are ODTA
without the ability to perform equality test on data values on
two adjacent nodes. We provide its logical characterisation.
We show that a number of existing formalisms and models
studied in the literature so far can be captured already by
weak ODTA. We also show that the definition of ODTA can
be easily modified, to the case where the data values come
from a partially ordered domain, such as strings.

We believe that the notion of ODTA provides new tech-
niques to reason about ordered-data values on unranked trees,
and thus, can find potential applications in practice. We also
prove that ODTA capture various formalisms on data trees
studied so far in the literature. As far as we know this is the
first formalism for data trees with neat logical and automata
characterisations.

(

a
01

)

� / w j
(

b
0100

) (

c
01011

) (

a
010011

) (

a
0101

)

/ w j
(

b
01

) (

b
010011

) (

a
0101

)

? ? ?
(

c
010011

) (

c
010000

) (

b
010000

)

ROOT

?

{a, b}

/ w

{b} {a}

/ w ?

{a, b, c} {b, c} {c}

Fig. 2. An example of a string data tree (on the left) and the tree representation of its data values (on the right).

Acknowledgment. Work is supported by FET-Open Project
FoX, grant agreement 233599. The author would like to thank
Egor V. Kostylev for careful proof reading of this paper and
for many useful suggestions to improve it. The author also
thanks Leonid Libkin and Claire David for helpful discussions,
and Nadime Francis for pointing out the reference [23]. The
author was also supported by theQuerying and Managing
Navigational Databasesproject realized within the Homing
Plus programme of the Foundation for Polish Science, co-
financed by the European Union from the Regional Devel-
opment Fund within the Operational Programme Innovative
Economy (“Grants for Innovation”). Finally, the author also
thanks the anonymous referees for their careful reading and
comments.

REFERENCES

[1] N. Alon, T. Milo, F. Neven, D. Suciu, V. Vianu. XML with data values:
typechecking revisited.J. Comput. Syst. Sci.66(4): 688-727 (2003).

[2] M. Arenas, W. Fan, L. Libkin. On the complexity of verifying consistency
of XML specifications.SIAM J. Comput.38(3): 841-880 (2008).

[3] M. Benedikt, C. Ley, G. Puppis. Automata vs. Logics on Data Words.
In CSL 2010.

[4] H. Björklund, M. Bojanczyk. Bounded depth data trees. In ICALP 2007.
[5] H. Björklund, W. Martens, T. Schwentick. Optimizing conjunctive queries

over trees using schema information. InMFCS 2008.
[6] M. Bojanczyk, A. Muscholl, T. Schwentick, L. Segoufin. Two-variable

logic on data trees and XML reasoning.J. ACM 56(3), 2009.
[7] M. Bojanczyk, B. Klin, S. Lasota. Automata with Group Actions. In

LICS 2011.
[8] M. Bojanczyk, C. David, A. Muscholl, T. Schwentick, L. Segoufin. Two-

variable logic on data words.ACM TOCL2011.
[9] P. Bouyer, A. Petit, D. Thérien. An algebraic characterization of data and

timed languages. InCONCUR 2001.
[10] H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, C. Löding,

D. Lugiez, S. Tison, M. Tommasi. Tree Automata: Techniques and
Applications. 2007.

[11] C. David, L. Libkin, T. Tan. On the Satisfiability of Two-Variable Logic
over Data Words. InLPAR 2010.

[12] C. David, L. Libkin, T. Tan. Efficient Reasoning about Data Trees via
Integer Linear Programming. InICDT 2011.

[13] S. Demri, D. D’Souza, R. Gascon. A Decidable Temporal Logic of
Repeating Values. InLFCS 2007.

[14] S. Demri, R. Lazic. LTL with the freeze quantifier and register automata.
ACM TOCL10(3), 2009.

[15] A. Deutsch, R. Hull, F. Patrizi, V. Vianu. Automatic verification of
data-centric business processes. InICDT 2009.

[16] A. Ehrenfeucht, G. Rozenberg. Commutative Linear Languages. Tech-
nical Report CU-CS-209-81, June 1981.

[17] W. Fan, L. Libkin. On XML integrity constraints in the presence of
DTDs. J. ACM 49(3): 368–406 (2002).

[18] D. Figueira. Satisfiability of downward XPath with dataequality tests.
In PODS 2009.

[19] D. Figueira. Forward-XPath and extended register automata on data-
trees. Inhttp://arxiv.org/abs/1204.2495.

[20] D. Figueira. Satisfiability for two-variable logic with two successor
relations on finite linear orders. InICDT 2010.

[21] D. Figueira, L. Segoufin. Bottom-up automata on data trees and vertical
XPath. InSTACS 2011.

[22] O. Grumberg, O. Kupferman, S. Sheinvald. Variable Automata over
Infinite Alphabets. InLATA 2010.

[23] J. Y. Halpern. Presburger Arithmetic with Unary Predicates isΠ1
1

Complete.Journal of Symbolic Logic, 56(2), 1991.
[24] M. Jurdzinski, R. Lazic. Alternation-free modal mu-calculus for data

trees. InLICS 2007.
[25] M. Kaminski, N. Francez. Finite-memory automata.Theoretical

Computer Science, 134(2): 329–363 (1994).
[26] M. Kaminski, T. Tan. Tree automata over infinite alphabets. In Pillars

of Computer Science, 2008.
[27] A. Kara, T. Schwentick, T. Tan. Feasible Automata for Two-Variable

Logic with Successor on Data Words. InLATA 2012.
[28] A. Kara, T. Schwentick, T. Zeume. Temporal Logics on Words with

Multiple Data Values. InFSTTCS2010.
[29] R. Lazic. Safety alternating automata on data words.ACM TOCL(12)2,

2011.
[30] L. Libkin. Elements of Finite Model Theory. Springer 2004.
[31] A. Manuel. Two orders and two variables. InMFCS 2010.
[32] F. Neven. Automata, logic, and XML. InCSL 2002.
[33] F. Neven, Th. Schwentick, V. Vianu. Finite state machines for strings

over infinite alphabets.ACM TOCL5(3), 403–435 (2004).
[34] T. Schwentick. XPath query containment.SIGMOD Record33(1): 101-

109 (2004).
[35] T. Schwentick, T. Zeume. Two-Variable Logic with Two Order Rela-

tions. In CSL 2010.
[36] L. Segoufin, S. Torunczyk. Automata based verification over linearly

ordered data domains. InSTACS 2011.
[37] H. Seidl, Th. Schwentick, A. Muscholl, P. Habermehl. Counting in trees

for free. In ICALP 2004.
[38] J. Thatcher. Characterizing derivation trees of context-free grammars

through a generalization of finite automata theory.JCSS 1, 1967.
[39] W. Thomas. Languages, automata, and logic. InHandbook of Formal

Languages, Vol. 3, Springer, 1997, pages 389–455.
[40] K. Verma, H. Seidl, T. Schwentick. On the complexity of equational

horn clauses. InCADE 2005, pages 337–352.

