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Abstract—Data trees are trees in which each node, besidesroutes. The first takes a specific reasoning task, or a set of
carrying a label from a finite alphabet, also carries a data véue  similar tasks, and builds algorithms for them (see, e.d,, [2
from an infinite domain. They have been used as an abstraction 5], [34], [17], [18]). The second looks for sufficiently geral

model for reasoning tasks on XML and verification. However, t t dels that ina tasks of int
most existing approaches consider the case where only eqitgl automata models that can express reasoning tasks of iteres

test can be performed on the data values. but are still decidable (see, e.g., [14], [6], [24], [36]).

In this paper we study data trees in which the data values  Both approaches usually assume that data values come from
come from a linearly ordered domain, and in addition to equalty  an abstract set equipped only with the equality predicates T
test, we can test whether the data value in a node is greater is already sufficient to capture a wide range of interesting

than the one in another node. We introduce an automata model .. . e . -
for them which we call ordered-data tree automata (ODTA) applications both in databases and verification. Howexer, i

provide its logical characterisation, and prove that its enptiness nas been advocated in [15] that comparisons based on a linear
problem is decidable in 3-NExPTIME . We also show that the two- order over the data values could be useful in many scenarios,
variable logic on unranked trees, studied by Bojanczyk, Musholl, including data centric applications built on top of a dat&ba
Schwentick and Segoufin in 2009, corresponds precisely to a So far, not many works have been done in this direction.

special subclass of this automata model. .
Then we define a slightly weaker version of ODTA, which we A few works such as [31], [35], [36] are on words, while

call weak ODTA, and provide its logical characterisation. The N most applications we need to consider trees. Moreover,
complexity of the emptiness problem drops to NP. However, these works are incomparable to some interesting existing
a number of existing formalisms and models studied in the formalisms [17], [6], [2], [12], [24], [14], [29] known to

literature can be captured already by weak ODTA. We also show pq gple to capture various interesting scenarios common in

that the definition of ODTA can be easily modified, to the case fi ont f that ful techni tablgeh
where the data values come from a tree-like partially ordere practice. On top of that many useful techniques, notablgeno

domain, such as strings. introduced in [17], [8], [6], [24], can deal only with data
Index Terms—Automata, data unranked trees, logic, two- equality, and are highly dependent on specific combindtoria
variable logic, ordered data values. properties of the formalisms. They are rather hard to adapt

to other more specific tasks, let alone being generalised to
include more relations on data values, and they tend to gedu

Classical automata theory studies words and trees oves firgiktremely high complexity bounds, such as non-primitive-
alphabets. Recently there has been a growing interest in teeursive, or at least as hard as the reachability problem in
so-called “data” words and trees, that is, words and treesRetri nets. Furthermore, most known decidability resutts a
which each position, besides carrying a label from a finitest as soon as we add the order relation on data values. See,
alphabet, also carries a data value from an infinite domaine.g., [8].

Interest in such structures with data springs due to theirln this paper we study the notion of data trees in which
connection to XML [1], [2], [5], [12], [17], [18], [32], as the data values come from a linearly ordered domain, which
well as system specifications [9], [13], [36], where manwe call ordered-data treesin addition to equality tests on
properties simply cannot be captured by finite alphabets Tlhhe data values, in ordered-data trees we are allowed to test
has motivated various works on data words [3], [8], [14lwhether the data value in a node is greater than the data value
[22], [25], [33], as well as on data trees [4], [6], [20], [21]in another node. To the extent it is possible, we aim to unify
[24]. The common feature of these works is the addition efrious ad hoc methods introduced to reason about data trees
equality test on the data values to the logic on trees. Whiad generalise them to ordered-data trees to make them more
for finitely-labeled trees many logical formalisms (e.dhet accessible and applicable in practice. This paper is the firs
monadic second-order logic MSO) are decidable by conwgrtistep, where we introduce an automata model for ordered-data
formulae to automata, even FO (first-order logic) on dateees, provide its logical characterisation, and prove ithzas
words extended with data-equality is already undecid&@#de, decidable emptiness problem. Moreover, we also show that it
e.g., [8], [17], [33]. can capture various well known formalisms.

Thus, there is a need for expressive enough, while computa- Brief description of the results in this papefmhe trees
tionally well-behaved, frameworks to reason about stmastu that we consider aranrankedtrees where there is no a priori
with data values. This has been quite a common theme in XMilound in the number of children of a node. Moreover, we
and system specification research. It has largely followed t also have an order on the children of each node. We consider
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a natural logic for ordered-data trees, which consists ef tfiormalism is NP-complete. In fact, it is also shown in [12]

following relations. that a single set constraint (without tree automaton arghlin
« The parent relatiors|, where E (,y) means that node constraint) already yields NP-hardness. Weak ODTA are es-
x is the parent of node. sentially equivalent to the formalism in [12] extended wittle

« The next-sibling relation?_,, where E_, (z,y) means full expressive power of the first-order logic £O, <, <suc).
that nodesr and y have the same parent andis the It is worth to note that despite such extension, the empgines
next sibling ofx. problem remains in NP.

« The labeling predicates(-)’s, where a(z) means that  Finally we also show that the definition of ODTA can be
nodez is labeled with symbok. easily modified to the case where the data values come from
« The data equality predicate, wherez ~ y means that & partially ordered domain, such as strings. This work can
nodesz andy have the same data value. be seen as a generalisation of the works in [11] and [27].
« The order relation on data, wherez < y means that However, it must be noted that [11], [27] deal only wilata
the data value in node is less than the one in node words where only equality test is allowed on the data values
« The successive order relation on data,., where and there is no order on them.

r<sue y Means that the data value in nogeis the Related works:Most of the existing works in this area
minimal data value in the tree greater than the one @&f€ on data words. In the paper [8] the modata automata
nodez. was introduced, and it was shown that it captures the logic

We introduce an automata model for ordered-data treé’é\{'SO?(N’ <, +1), the fragment of existential monadic sec-
which we callordered-data tree automat@ODTA), and pro- ond order logic in which the first order part using two varebl
vide its logical characterisation. Namely, we prove tha ttPnly and the predicates: the data equality as well as the
class of languages accepted by ODTA corresponds precis@fger < and the successorl on the domain.

to those expressible by formulas of the form: An important feature of data automata is that their empsines
problem is decidable, even for infinite words, but is at lesst
Xy - 3Xn e A, (1) hard as reachability for Petri nets. It was also shown that th
where X, ..., X, are monadic second-order predicates; t@tisfiability problem for the three-variable first ordegilis

(ijdecidable. Later in [11] an alternative proof was given fo
the decidability of the weaker logigMSO? (+1, ~). The proof
gives a decision procedure with an elementary upper bound

formula using only the predicates, <, <..., as well as the for the sa_tisfaction problem 0BMSO*(+1,~) on strings._
unary predicates(y, ..., X,, anda’s Recently in [27] an automata model that captures precisely

We show that the logi@MSC?(E,, E_,~), first studied the logicIMSO? (41, ~), both on finite and infinite words, is
in [6], corresponds precisely to a special subclass of ODTRfOposed' . o .
where3MSO?(E,, E_, ~) denotes the set of formulas of the Another logical approach is via the so calletear temporal

form (1) in whiche; is a true formula. We then prove that théogic with freeze quantifier_, introd.uced_ir) [14]. Intuitively,_
emptiness problem of ODTA is decidable in 3-K&TIME. these are LTL formulas equipped with a finite number of regis-

Our main idea here is to show how to convert the orderelf's t0 store the data values. We denote by {[X.U], the LTL

data trees back to a string ovienite alphabets. (See our notionWith freeze quantifier, where denotes the number of registers
of string representation of data valués Section Ill.) Such and the only temporal operators allowed are the neXt operato

conversion enables us to use the classical finite state ataom< qnd the Unitil Op_erato"?- It was shown that alternating
to reason about data values. register automata with registers (RA) accept all LTL#_[X, U
Then we define a slightly weaker version of ODTA, whic/i2hguages and the emptiness problem for alternating RA
we call weak ODTA Essentially the only feature of ODTA decidable. How_ev_er,_t_he complexity is non prlmltlve reoLes
missing in weak ODTA is the ability to test whether twdence. the satisfiability problem for LTIEKX’_U) is decidable
adjacent nodes have the same data value. Without such sin?ﬁé/‘iel”' Ad?llng one more register or past time operators) suc
feature, the complexity of the emptiness problem surpglgin @SX ~ or U™, to LTLy(X, U) makes the satisfiability problem
drops three-fold exponentially to NP. We provide its logicd'Ndecidable. In [29] a weaker version of alternating |RA
characterisation by showing that it corresponds preciseliye called safety alternating RA s considered, and the emptiness
languages expressible by the formulas of the form (1) whepgoblem is shown to be EXP_SPACE-CompIete.
¢ does not use the predicate We show that a number of A model for glata words with linearly prdered data values
existing formalisms and models can be captured already WS Proposed in [36]. The model consists of an automaton

weak ODTA, i.e. those in [17], [12], [31]. equipped with a finite number of registers, and its trans#io

We should remark that [12] studies a formalism whicAre based on constraints on the data values stored in the
consists of tree automata and a collectionsef and linear registers. It is shown that the emptiness problem for thideho

constraints. It is shown that the satisfaction problem of suclf decidable in PSPACE. However, no logical charactensati
is provided for such model.

*We will later define formally what set and linear constraiats. In [7] another type of register automata for words was in-

formula ¢ is an FO formula restricted to two variables an
using only the predicate&, E_,, ~, as well as the unary
predicatesXy, ..., X,, anda’s; and the formulay is an FO



troduced and studied, which is a generalisation of the aigi A. Finite state automata over strings and commutative rgul
register automata introduced by Kaminski and Francez [2%§nguages

where the data values also can come from a linearly ordereqy,e usually writeM to denote a finite state automaton on

domain. Thus, the order comparison, not just equality, @n Qtrings. The language accepted by the automatbis denoted
performed on data values. This model is based on the noti PL(M).

of monoid for data words, and is incomparable with our model | o1y, — {a1,...,as}. Forawordw € ¥*, the Parikh image

here. of w is Parikh(w) = (n1,...,ns), wheren; is the number of

Itis shown in the paper [31] that the satisfaction problem fqy,nearances af; in w. For a vector, the inverse of the Parikh
FO?(+1, <suc) OVertextis decidable. Atextis simply a data image of7 is Parikh‘l(ﬁ) = {w | w € £* andParikh(w) =

word in which all the data values are different and they ran

over the positive integers from to n, for somen > 1. We Forl < i</ avectors — (n1,...,n) € N’ is called an
will see later that the satisfat_:tion problem for ?—'(@1, < suc) i-base if_ni ; 0 andn; = 0, for all j # i. A language’ is
can be reduced to the emptiness problem of our model. _periodic, if there exist(¢ + 1) vectorsa, o1, . . ., 5 such that

In [35] it is shown that the satisfaction problem of the logi¢; - N¢ gng eachy; is ani-base and
FO?(<, <) onwordsis decidable. This logic is incomparable
with our model. However, it should be noted that Q) L= U Parikh ™" (7 + hy Ty + - - - + hytp).
cannotcapture the whole class of regular languages. Ri,...;he>0

The work on data trees that we are aware of is in [6], [24}y,s genote such languagby £(a, 1, .., 7).

In [6] it was shown that the satisfaction pr.oblem.for the.ngi A languagel is commutativef it is closed under reordering.
IMSO?*(E,, E_,,~) over unranked trees is decidable in 3That is, if w — by---by, € £, ando is a permutation on

NEXPTe, Honovr, o automaa model s provided. We; . ) neni, ., <.

gic corresponds precisely to a &lec

subclass of ODTA. Theorem 1: [16, Corollary 2.2]A language is commutative
In [24] alternating tree register automata were introdifoed and regular if and only if it is a finite union of periodic

trees. They are essentially the generalisation of thermitery languages.

RA; to the tree case. It was shown that this model captures the

forward XPath queries. However, no logical charactemssis B. Unranked trees, tree automata and transducers

provided and the emptiness problem, though decidable,is N0 o ynranked finite tree domain is a prefix-closed finite

primitive recursive. , , subsetD of N* (words overN) such thatu - i € D implies

Organisation: This paper is organised as follows. Inu.j e Dforall j <iandu € N*. Given a finite labeling

Section Il we give some preliminary background. In Sectibn 'alphabetE a Y-labeled unranked treeis a structure
we formally define the logic for ordered-data trees and prese '

a few examples as well as notations that we need in this paper. (D,E|,E_ . {a(:)}aex),
In Section IV we present two lemmas that we are going to
need later on. We prove them in a quite general setting, Y ) )
we think they are interesting in their own. We introduce the ¢ D iS an unranked tree domain,
ordered-data tree automata (ODTA) in Section V and weake £ is the child relation{u, u-i) € E, forall u,u-i € D,
ODTA in Section VI. In Section VII we discuss a couple of * £ is the next-sibling relationtu - i,u - (i + 1)) € E,
the undecidable extensions of weak ODTA. In Section Vil forallu-i,u-(i+1)e D,and
we describe how to modify the definition of ODTA when the * the a(-)'s are labeling predicates, i.e. for each nade
data values are strings, that is, when they come from a prtia ~ €xactly one ofa(u), with a € X, is true.
ordered domain. Finally we conclude with some concludirife write Dom(¢) to denote the domaiD. The label of a
remarks in Section IX. nodew in t is denoted bylab;(u). If fabi(u) = a, then we
say thatu is ana-node.
An unranked tree automatdi 0], [38] overX-labeled trees
In this section we review some definitions that we are going a tuple A = (Q, X, 6, F'), where@ is a finite set of states,
to use later on. We usually useé and ¥ to denote finite F C Q is the set of final states, ani: Q x ¥ — 2(@7) is a
alphabets. We writ@" to denote an alphabet in which eachransition function; we requiré(q, a)’s to be regular languages
symbol corresponds to a subsetlofin some cases, we mayover Q for all ¢ € Q anda € X..
need the alphabez2F — an alphabet in which each symbol A run of A over a treet is a functionp4 : Dom(t) — Q
corresponds to a set of subsetslaf We denote the set of such that for each node with n childrenw - 0,...,u - (n —
natural numberg0,1,2,...} by N. 1), the wordp4(u-0)---pa(u-(n—1)) is in the language
Usually we write £ to denote a language, for both stringd(p.a(u), fab:(u)). For a leafu labeleda, this means that
and tree languages. When it is clear from the context, we useuld be assigned a stajdf and only if the empty word: is
the termlanguageto mean either a string language, or a treim 6(¢q,a). A run is accepting ifp4(e) € F, i.e., if the root is
language. assigned a final state. A trees accepted by if there exists

Qere
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an accepting run ofA on ¢t. The set of all trees accepted by The profile of a node: is a triplet({,p,r) € {T, L, x} x
A is denoted byC(A). {T,L,x} x{T,L,x}, wherel = T and! = L indicate that
An unranked tree (letter-to-letter) transducer with theuin the nodeu has the same data value and different data value
alphabetY and output alphabel is a tuple7 = (A, u), as its left sibling, respectivelyi, = * indicates thatu does
where A is a tree automaton with the set of statgs and not have a left sibling. Similarlyp = T, p = L, andp = x
n C Q x X x T is an output relation. We call sucfi a have the same meaning in relation to the parent of the node
transducer fronk to I u, whiler = T, r = L, andr = x means the same in relation
Let ¢ be aX-labeled tree, and aT'-labeled tree such thatto the right sibling of the node. For an ordered-data treee
Dom(t) = Dom(t’). We say that a tre¢ is an output of/ over ., the profile tree oft, denoted byProfile(¢), is a tree
on ¢, if there is an accepting rup4 of A ont and for each overX x {T, L, x}® obtained by augmenting to each node of
u € Dom(t), it holds that(pa(u),ab,(u), baby (u)) € p. tits profile.
We call 7 an identity transducer, ifab;(u) = faby (u) for We write Proj(t) to denote the: projection of the ordered-
all w € Dom(t). We will often view an automatotd as an data tree, that is,Proj(¢) is ¢ without the data values. When
identity transducer. we say that an ordered-data trels accepted by an automaton
A, we mean thaProj(¢) is accepted byAd. An ordered-data

C. Automata with Presburger constraints (APC) e
) ] ) treet’ is an output of a transducér on an ordered-data tree
An automaton with Presburger constraints (APC) is a tuple j¢ Proj(¢') is an output of7 on Proj(t), and for allu €
(A, &), where A is an unranked tree automaton with state@om(t/) we havevaly (u) = valy(u).

G0, > Gm and¢ is an existent_ial Presburger formula with free Figure 1 shows an example of an ordered-data treeer
variableszo, ...,z A treet is accepted by A, &), denoted the aphabet{a, b, ¢} with its profile tree. The notatiof®)
by ¢t € L(A,), if there is an accepting rupa of A Onw  means that the node is labeled witrand has data valué

such that¢(no, ..., n.,) is true, wheren; is the number of
appearances af; in p 4. A. String representations of data values
Theorem 2:[37], [40] The emptiness problem for APC is Let? be an ordered-data tree over For a setS C I', let
decidable inNP. S]; = ﬂ Vi(a) N ﬂ Vi(b).
It is worth noting also that the class of languages accepted acs bg s
by APC is closed under union and intersection. Note that for each: € T,
Oftentimes, instead of counting the number of states in the
accepting run, we need to count the number of occurrences of Vi(a) = U (STt
alphabet symbols in the tree. Since we can easily embed the S staes

alphabet symbols inside the states, we always assume that3ince the setgS];’s are disjoint, it is immediate thaV; (a)| =

Presburger formuld has the free variables,’s to denote the 3. o [[S]:].

number of appearances of the symhadh the tree. Letd; < --- < d,, be all the data values found in The
As in the word case, we leRarikh(z) denote the Parikh string representationf the data values in, denoted byr(t),

image of the tree¢. We will need the following proposition. is the stringS; - - - S,, over the alphabe2™ — {(} of length

_m such thatd; € [S;];, for eachi = 1,...,m. The notation

a{lg]t is already introduced in [11], [12], but ndtr(t).
Consider the example of the treein Figure 1. The data

Proposition 3: [37], [40] Given an unranked tree automa
ton A, one can construct, in polynomial time, an existenti

Presburger formul& 4(z1,. .., x¢) such that | - L2467 wh
« for every treet € L(A), {4(Parikh(t)) holds; values ini arel, 2,%,0, 7, where
o for everyn = (n1,...,n.) such that{ 4(7) holds, there [{b,c}]; = {1},
exists a treet € £(.A) with Parikh(t) = 7. Ha,bclle = {2}
1. ORDERED-DATATTREES AND THEIR LOGIC a0} = {47},
An ordered-data tree over the alphabkis a tree in which Hactle = {6}, ’
each node, besides carrying a label from the finite alphgbet [S]s = 0, for all the otherS’s.
also carries a data value frofh= {0,1,...}. The string Vr(t) is S1 S» S Si Ss, whereS; = {b,c},

Let ¢ be an ordered-data tree ovErandu € Dom(t). We So = {a,b,c}, S5 = S5 = {a,b} and Sy = {a, c}.
write va/, (u) to denote the data value in the nodeThe set B ’ ’
of all data values in the-nodes int is denoted by by;(a). B. A logic for ordered-data trees
That is, Vi(a) = {vali(u) | lab(u) = a andu € Dom(t)}.  An ordered-data tree over the alphabeE can be viewed
We write V; to denote the set of data values found in the treg; 5 structure

t. We also write#,(a) to denote the number af-nodes int.
t = <D’ {a(')}an, Eia E—>7 ~, =, '<suc>7
THere we use the natural numbers as data values just to beetenthe
results in our paper applies trivially for any linearly orelé domain. where



Fig. 1.

o the relations{a(-)}qex, E|, E_, are as defined before in
Subsection II-B,

u ~ v holds, if val;(u) = vali(v),

u < v holds, if val;(u) < val,(v),

u=<sue v holds, if val, (v) is the minimal data value in

greater tharval; (u).

Obviously, x<.,. y can be expressed equivalently as<
y AVz(=(z < 2z Az < y)). We include<,,. for the sake

(b,(*,

(a,(*;«,*))

TN

1J_,J_)) (c,(J_,QT,J_)) (a,(J_llJ_,J_)) (a,(J_éJ_,*))

AN

(b,(*,;,L)) (b,uj,*)) (ay(l%L*))
(c,(*,ll,*)) (c,(*,;,*)) (b,(*%‘r,*))

An example of an ordered-data tree (on the left) amghibfile (on the right).

Theorem 4:(See, for example, [8], [17], [33]The satisi-
faction problem for FQE,, E_,, ~) is undecidable.

One of the deepest results in this area is the following
decidability result for the logi@MSQ* (Ey, E_,, ~).

Theorem 5:[6] The satisfaction
IMSC(E,, E_,, ~) is decidable.

problem  for

of convenience. We also assume that we have the predicatesa few examples
root(z), first-siblingx), last-siblingz), and leafz) which ) . )
stand for Vy(—E, (y,2)), Yy(~E_(y.)), Vy(=E_(z,y)), In this subsection we present a few examples of properties

and Vy(~E, (z,y)), respectively. We also write: = y to of ordered-data trees expressible in our logic. Some of the
denote—(z ~ y). examples are special cases of more general techniques that

ForO C {E|,E_,~, =<, <suc}, We let FQO) stand for will be used later on.

the first-order logic with the vocabulary), MSO(O) for
its monadic second-order logic (which extends(BX with
quantification over sets of nodes), amMSO(O) for its
existential monadic second order logic, i.e., formulastaf t
form 3X; ... 3X,, ¥, wherey is an FQO) formula over the
vocabulary® extended with the unary predicat&s, ..., X,,.
We let FG'(0) stand for FQO) with two variables, i.e.,
the set of FQO) formulae that only use two variables
andy. The set of all formulae of the formX; ...3X,, ¥,
where ) is an FG(0) formula is denoted bygMSO?(O).

Note thatIMSO?(E,, E_,) is equivalent in expressive powerwe consider the language’:™

Example 6:Let X = {a,b}. Consider the languagéy,;.
of ordered-data trees ovel where an ordered-data trees
Lga:e If @and only if there exist twai-nodesu andv such that
u IS an ancestor of and eitherw ~ u or v < u. This language
can be expressed with the formd& 3Y37 ¢, whereyp states
that X contains only the node, Y contains only the node,
Z contains precisely the nodes in the path franto v, and
v~uorv<u.

Example 7:For a fixed setS C ¥ and an integem > 1,

such thatt € £5™ if and

data data

to MSQ(Ey, E_,) over the usual (without data) trees. That isenly if |[S];| = m.

it defines precisely the regular tree languages [39].

S,m
data

We pick an arbitrary symbaol € S. The languageC

As usual, we define4q:q(p) as the set of ordered-datacan be expressed #MSO?(E,, E_,, ~) with the formula of

trees that satisfy the formula. In such case, we say that thethe form 3.X;

---3X,, ¢, wherey is a conjunction of the

formula o expresses the languad@ . ().* following.

The following theorem is well known. It shows how even , That the predicated, . . ., X,, are disjoint and each of
extending FQE,, E_,) with equality test on data values  them contains exactly one node, which is@node.
immediately yields undecidability. . That the data values found in nodesiq, ..., X,, are

all different.
» That for eachi € {1,...,m}, if a data value is found in

*To avoid confusion, we put the subscrigtta on £g.:, to denote a
language of ordered-data trees. We use the synibulithout the subscript
data to denote the usual language of trees/strings without data.

a node inX;, then it must also be found in somenode,
for everyb € S.



» That for eachi € {1,...,m}, if a data value found in a Ehrenfeucht-Fraissé type lemma for ordered-data traed,
node inX;, then it mustnot be found in any-node, for we will use it in our proof of the logical characterization of
everyb ¢ S. ODTA.

o That for everya-node (recall that: € S) that does not ) ]
belong to theX;’s, either it has the same data value a8+ A combinatorial lemma

the data value in a node belongs to one of s, or it Let G be an (undirected and finite) graph. For simplicity,

has the data valueotin [S];. we consider only the graph without self-loop. We denote by
That its data value does not belong[t; can be stated V(G) the set of vertices iti and E(G) the set of edges. For
as the negation of a nodeu € V(G), we write deg(u) to denote the degree of
— for eachb € S, there is a-node with the same datathe nodeu anddeg(G) to denotemax{deg(u) | u € V(G)}.
value; and A data graphover the alphabel is a graphG in which
— the data value cannot be found in abynode, for each node carries a label frofhand a data value fromy. A
everyb ¢ S. nodeu € V(G) is called ana-node, if its label isa, in which

case we writelabg(u) = a. We denote bwalc(u) the data
Example 8:For a fixed seS C ¥ and an integem > 1, we value found in node:, andV¢(a) the set of data values found
consider the languagg? "™ ™ such that € £5; med™ I a-nodes inG.

data
if and only if [[S];| =0 (mod m). Lemma 10: LetG be a data graph ovel. Suppose for

This language £, "**™ can be expressed ineacha ¢ I, we have|Vg(a)| > deg(G)[T| + deg(G) + 1.
IMSC?(E,, E_,, ~) with a formula of the form Then we can reassign the data values in the node§' ito
obtain another data grapld”’ such thatV(G) = V(G’) and
X0 3X,13Y0 -+ - Y137 W, E(G) = E(G") and
where the intended meanings of(1) for eachu e V(G), Labg(u) = Labgr (u);
Xo,... ,.Xm_hYO, <oy Yymo1,Z are as follows. For a (2) for eacha €T, Vg (a) = Ve (a);
nodew in an ordered-data trelec Lgqia, (3) foreachu,v € V(G), if (u,v) € E(G"), thenval: (u) #
« the number of nodes belonging 0 is precisely|[S]:|; vale: (v).
and if Z(u) holds int, then the data value in the node ) )
belongs to[S];; No_te that in Lemma 10, the data grap differs from G
« Xi(u) holds int if and only if in the subtree’ rooted in on!y in the data_ vzjllues on_the nodes, where we require that
u we have|[S]y| =i (mod m); adjacent nodes iG’ have different data values.
o if wy,...,u; are all the left-siblings ofw, and B. An Ehrenfeucht-Fiss tvpe lemma
X, (01), .., Xi, (vx) holds, therl; (u) holds if and only - as type o _
if iy + - +ip =i (mod m). We need the following notation. A-characteristic function

To express all these intended meanings, it is sufficient thoja_{? the alphabel’, is a functionf : T - {.O’ 1,2, '."’k}' Let
r.. be the set of all suck-characteristic functions oh. A
Y € FO*(E, B, ~). )

function f € Fr, is a k-characteristic function for a sef,

Example 9:Let ¥ = {a,b}. Consider the languagé it f(a) € {1,2,....k}, for all a € S, and f(a) = 0, for all

data
S.
of ordered-data trees ovél where an ordered-data tre a¢
& Let ¢ be an ordered-data tree adg < --- < d,, be the

e IFand only if all thea-nodes with data values differentd ta val tound i The k-extended tatinf £ i
from the ones in their parents satisfy the following corufisi: tha:aas;/r?nl:;e]'/s’“ ((z;m I(S fe) -e>(<Sen fe )reepgersin; : sulcsh
. . i T = 1,J1)" """ myJm Ik
« the data values found in these nodes are all dn‘ferept, hatS; --- S, = Vr(t) and for eachi € {1,2,...,m} and
« one of the these data values must be the largest in ¢ eacha € T

treet.
s . 1) f; is ak-characteristic function for the sét,
The languageC?;,, can be expressed iBMSO?(E|, ~, <) 2) if 1 < fi(a) < k — 1, then there aref;(a) number of

with the following formula: a-nodes int with data valued,,

3) if f;(a) = k, then there are at leakthumber ofa-nodes

3X ( VI(X(I) = al@) A (B y, @) Ay = x)) ) int E/w)th data valued;.
We assume that in every formula in M§O, <, <) all
A Eaz(X(a:) AVyly < xVax~ 1/))) the monadic second-order quantifiers precede the first-orde
part. That is, sentences in M$Q, <, <,.) are of the form:
p:=Q1X1---QsX, v, where theX;’s are monadic second-
order variables, th€);'s ared or V andvy € FO(~, <, <suc)

In this section we prove two lemmas which will be usedxtended with the unary predicates,,..., X;. We call
later on. The first is combinatorial by nature, and we will uséhe integers, the MSO quantifier rank ofp, denoted by
it in our proof of the decidability of ODTA. The second is arMSO-qr(p) = s, while we write FO-gr(¢) to denote the

AN VaVy(X () AX(y)ANe~y—x=1y)

IV. TWO USEFULLEMMAS



quantifier rank ofy, that is the quantifier rank of the first-value from the one of its parent. All the other nodes are ntarke
order part ofyp. with 8. The automatonM accepts a string if and only if

Lemma 11: Lett; and t, be ordered-data trees over the last symbol in; contains the symba, while I'o = {a}.

such thatV? (t1) = VI (t2). For any MSQ~, <, <suc) The following proposition states that ODTA languages are
sentencep such thatMSO-qr(¢) < s and FO-ar(¢) < k, closed under union and intersection, but not under negation

ti e ifandonlyif & = ¢. We would like to remark that being not closed under negation
is rather common for decidable models for data trees. Often-
V. AUTOMATA FOR ORDERED-DATA TREE times models that are closed under negation have undeeidabl

In this section we are going to introduce an automata moddPtiness/satisfaction problem.

for ordered-data trees and study its expressive power. Proposition 17: The class of languages accepted by ODTA

Definition 12: An ordered-data tree automaton, in shoig closed under union and intersection, but not under negati
ODTA, over the alphabet is a tripletS = (T, M, T'y), where
T is a letter-to-letter transducer frodd x {T, L, x}? to the
output alphabef’; M is an automaton on strings over th
alphabet2"; andTy C T.

e Proof: For closure under union and intersection, let
S = <T1,M1,F(1J> andS, = <T2,M2,F%> be ODTA. The
union Lgat(S1) U Laata(S2) is accepted by an ODTA which
An ordered-data tree is accepted byS, denoted byt € non-deterministically chooses to simulate eitifgror S, on
Laata(S), if there exists an ordered-data tréeover I' such the input ordered-data tree. The ODTA for the intersection

that Laata(S1) N Laata(S2) can be obtained by the standard cross
« on inputProfile(t), the transducef” outputst’; product betweeis; andS,.
« the automatonM accepts the strinyyr(¢'); and That ODTA languages are not closed under negation follows
«» for everya € Ty, all thea-nodes int’ have different data from the fact that the negation of the language in Example 13
values. is not accepted by ODTA. The proof is rather straightforward
We describe a few examples of ODTA that accept the latHwus, omitted. ]

guages described in Examples 6, 7, 8 and 9. We should remark that in Section VIl we will discuss that

Example 13:An ODTA §* = (T, M,T,) that accepts the extending ODTA with the complement of languages of the
language’y,,;, in Example 6 can be defined as follows. Théorm in Example 13 will immediately yield undecidability.
output alphabet of the transducgris I' = {a, 3,7}. On an  Next we give the ODTA characterisation of the logic
input treet, the transducey” marks_the nodes inas foIIows_. IMSC*(E,, E_,,~).

There is only one node marked with one node marked with

8, and that then-node is an ancestor ¢f. The automaton  Theorem 18: A language ., iS expressible with an
M accepts all the strings in which the position labeled witAMSCT' (E|, E_,, ~) formula if and only if it is accepted by
S > Bis less than or equal to the position labeled withe a.  an ODTAS = (T, M, T;), where L(M) is a commutative
(These two positions can be equal, which me&nhs- S’.) language.

Finally, T'o = 0. The next result is the logical characterisation of ODTA.

Example 14:An ODTA S5 = (T, M,Ty) that accepts  Theorem 19: A languag€ ., is accepted by an ODTA
the languageC,,;, in Example 7 can be defined as followsit and only if it is expressible with a formula of the
The transduceT is an identity transducer. The automatd  form: 3x,...3X,, © A 1), where ¢ is a formula from

accepts all the strings in which the symlolappears exactly FO*(E,, E_,,~), andy from FO(~, <, <.,c), both extended

m times, andl'y = 0. with the unary predicate¥(1, ..., X,,.

Example 15:An ODTA S% (mod m) _ (T, M,Tg) that Finally, we show that the emptiness problem for ODTA
accepts the languagé’: ™* ™ in Example 8 can be de-is decidable. The decision procedure in Theorem 20

fined as follows. The transducéF is an identity transducer. runs in 3-NExPTIME, while the decision procedure for

The automatonM accepts a string in which the number ofMSO?*(E|, E_,,~) proposed in [6] also runs in 3-

appearances of the symbslis a multiple ofm, andl', = . NEXPTIME. However, we should remark that if we use our
algorithm for the satisfaction problem GMSOQ(E¢, B, ~)
via the translation in Theorem 18, the complexity will jump

Example 16:An ODTA 8% = (T, M,I;) that accepts 10 5-NEXPTIME, since there is a double exponential blow-up
the languageC®’,, in Example 9 can be defined as followsin the translation.

ata

The output alphabet of the transducgris T' = {«a, §}. The

transducer/ marks the nodes as follows. A node is markegb'll'eheorem 20: The emptiness problem for ODTA is decid-
with « if and only if it is ana-node and it has different data '



VI. WEAK ODTA The most commonly used XML constraints are integrity

A weak ODTA overX is a tripletS = (7, M, T,) where constraints which are of two types.
T is a letter-to-letter transducer fromto the output alphabet  Thekey constraintsre constraints of the form:
T, and M is a finite state automaton ovef andT'y C T. An

VaVv A AT ~ =
ordered-data treeis accepted bys, denoted by € L 44:4(S), Wyla(z) Naly) Ne~y = @ =),

if there exists an ordered-data tréeover I such that denoted bykey(a).
« on inputProj(t), the transduce?” outputst’; « Theinclusion constraintsare constraints of the form:
« the automaton\ accepts the stringr('); and Vady(a(z) = by) Az ~y),
« for everya € Iy, all thea-nodes int’ have different data

Note that the only difference between weak ODTA and ODTANe satisfiability problem of a given DTD and a collectior
is the equality test on the data values in neighboring nod&%.integrity constraints asks whether there exists an edter
Such difference is the cause of the triple exponential leap §ata treet that conforms to the DTD that satisfies all the

complexity, as stated in the following theorem. constraints irC. In [17] it is shown that this problem is NP-
complete.
Theorem 21: The emptiness problem for weak ODTA is in ) _ )
NP. Theorem 23: Given a DTDD and a collectionC of in-

) . o tegrity constraints, one can construct a weak ODJAsuch
NeXt, we g'Ve the IOg|CaI Characte”sat'on Of Weak ODTAthat Edata(s) |S preC|Se|y the set Of Ordered_data trees that

Theorem 22: A languag€ is accepted by a weak obDTAconforms toD and satisfies all constraints il

if and only if £ is expressible with a formula of the form: |y must be noted that our construction in Theorem 23 outputs
3X, -+ 3X, 9 At wherep is a formula from FO(E|, E-),  an automatonM of exponential size. This blow-up is tight,
and ¢ is a formula from FQ~, <, <), extended with the a5 the following example shows. Consider the case where
unary predicatesy, ..., Xo,. does not contain inclusion constraints. Thatigontains only

The proof of Theorem 22 is the same as the proof of ThEEY constraints. Then any equivalent ODEA= (7, M, Xo)
orem 19. The difference is that to simulate the’fB,, E_,) Will have L(M) = (2% — {0})". Thus, we have exponential

formula ¢, the profile information is not necessary. blow-up in the size ofM. Nevertheless, if we are concerned
_ ) ) only with satisfiability, then we can lower the complexity to
A. Extending weak ODTA with Presburger constraints NP as stated in the following theorem.

Like in the case of APC, we can extend weak ODTA with
Presburger constraints without increasing the complefitts
emptiness problem. Le§ = (7, M,I'y) be a weak ODTA
where > and I are the input and output alphabets Bt
respectively. Lel = {aq, ..., as}.

A weak ODTAS = (T, M,T) extended with Presburger
constraint is a tupldS, &), where&(zq, ...,z Y1, ..., Yor) 2) Set and linear constraints for data tree$n the pa-
is an existential Presburger formula with the free varigbl@er [12] the set and linear constraintsare introduced for
Ti,...,Te, Y1, -, Y2e_1. A ordered-data treeis accepted by data trees. As argued there, those constraints, togethler wi
(S,€), if there exists an output of 7" on ¢, the automaton automata, are able to capture many interesting properties
M acceptsVr(t'), for eacha € T, all a-nodes int’ have commonly used in XML practice. We review those constraints
different data values ang{ Parikh(¢'), Parikh(Vr(#'))) holds. and show how they can be captured by weak ODTA extended
We write L44:4(S, €) to denote the set of languages acceptetdith Presburger constraints.
by (S,¢). Data-terms(or just terms) are given by the grammar

It should be immediate that the emptiness problem of weak
ODTA extended with Presburger constraint is still decidabl

Theorem 24: Given a DT and a collectiorC of integrity
constraints, one can construct a weak ODTA in non-

' deterministic polynomial time such tha&t;,:,(S) # 0 if and
only if there exists an ordered-data treghat conforms taD
and satisfies all the constraints

T:=V(a) |TUT | TNT|T fora € X.

in NP. The semantics of is defined with respect to a data wotrd
B. Comparison with other known decidable formalisms [V(a)], = Vi(a) 71, = V. - [7],

We are going to compare the expressiveness of weak opTalt N7l = [nl Nlnl,  [nUm], =In], VUi,
with other known models with decidable emptiness. Recall thatV; = |J, 5, Vi(a) — the set of data values found in

1) DTD with integrity constraints:An XML document is the data tree.
typically viewed as a data tree. The most common XML A set constraintis eitherr = () or 7 # (), wherer is a
formalism is Document Type Definition (DTD). In short, aterm. A data treg satisfiest = 0, written ast = 7 = 0, if
DTD is a context free grammar and a tre€onforms to a and only if [7], = 0 (and likewise forr # 0).
DTD D, if it is a derivation tree of a word accepted by the A linear constraint ¢ over the alphabe® is a linear
context free grammar. constraint on the variables,, for eacha € ¥ andzg, for each



S C X. A data treet satisfiese, if £ holds by interpreting:,  strings: the prefix order, and the lexicographic order.ngsi
as the number ofi-nodes int, andzg the cardinality|[S]:|.  with lexicographic order are simply linearly ordered domai
thus, ODTA can be applied directly in such case.

For the prefix order, we have to modify the definition of
ODTA. Consider a string data treeover the alphabell. Let
V; be the set of data values found@nWe defineVx(¢) as a
tree over the alphabe?™, where

o Dom(Vsx(t)) is Vi U {e};
Its proof is simply a restatement of the proofin [12] into a , for 4, » € Dom(Vx(t)), u is a parent o if  is a prefix

language of weak ODTA. of v and there is nav € Dom(Vx(t)) such thatu is a
3) FO?(+1, <4..) Over text: Here we focus our attention prefix of w andw is a prefix ofu;

on ordered-data words, which can be viewed as trees wherg for 4 ¢ Dom(Vs(t)) the label ofu is S, if u € [S];; and
each node has at most one child. We wiite= (4!) - -- (3:) ROOT, if u = .

. . C\dy g
to denote ordered-data word in which positiohas labela; —\ye ¢ Vs (t) the tree representatiomf the data values in.
Consider an example of a string data tree in Figure 2. We have

Theorem 25: Given a tree automatod and a setC of
set and linear constraints, there exists a weak OQOBAy)
extended with Presburger constraints such tiat,;.(S, ¢)
is precisely the set of ordered-data trees accepteddbthat
satisfies all the constraints if.

and data valuel;. It is called atext if all the data values are

different and the set of data valuéd,,...,d,} is precisely
{1,...,n}. [{a}]: = {0101} [{b}]: = {0100}
It is shown in the paper [31] that the satisfaction problem fo [{c}]: = {01011} [{a,b}]: = {01}
FO? (41, <suc) Over text is decidablé The following theorem [{b, c}]: = {01000} [{a,b,c}]: = {010011}.

shows that this decidability can be obtained via weak ODT,%O Dom(Vs(t)) = {01,0100,0101,010011, 010000, 01011}
z - ) Y ) ) ) 1

Theorem 26: For every formula € FO?*(4+1, <4,.), one and

can construct effectively a weak ODTAsuch that « 01 is the parent 0f)100 and 0101;
o for every textw, if w € Liaa(p), thenw € Liygia(S); o 0100 is the parent 0H10011 and010000; and
« for every ordered-data word € Lj4¢4(S), there exists  « 0101 is the parent 001011.
atextw’ € Laata(y) such thatProj(w) = Proj(w’). Now an ODTA for string data trees i§ = (7, .A,T),
where 7 is a letter-to-letter transducer frodd x {T, L, *}3
VII. AN UNDECIDABLE EXTENSION to I'; A is an unranked tree automaton over the alphabet

In this section we would like to remark on an undecidablee S T'- The requirement for acceptance is the same as in

extension of weak ODTA. Recall the language in Example §€ction V. except thatl takes a tree over the alphal®t as

It has already noted in the proof of Proposition 17 that i{§'€ NPUt. All the results in Sections V and VI can be carried
complement is not accepted by any ODTA. Formally, th@Ver immediately to this model.

complement of the language in Example 6 can be expressed
with formula of the form:

IX. CONCLUDING REMARKS

In this paper we study data trees in which the data values
vevy \/ a@) A \/ aly) AE(z,y) > 2 <y, (2) come from a linearly ordered domain, where in addition to
a€Xo a€Xo equality test, we can test whether the data value in one reode i
whereX, C ¥ and E,* denotes the transitive closure &f . greater than the other. We introduce ordered-data treeratito

It can already be deduced from [8, Proposition 29] that givd@DTA), provide its logical characterisation, and provaith -
an ODTA and a collectio of formulas of the form (2), it its emptiness problem is decidable. We also show the logic
is undecidable to check whether there is an ordered-data tMSO”(E,, E-, ~) can be captured by ODTA.
t € Laara(S) such thatt = 1, for all 1 € C. Then we define weak ODTA, which essentially are ODTA
At this point we would also like to point out that extendingVithout the ability to perform equality test on data values o
ODTA with operation such as addition on data values wiflvo adjacent nodes. We provide its logical characterisatio
immediately yield undecidability. This can be deduced immé&Ve show that a number of existing formalisms and models
d|a‘[e|y from [23] where we know that together with unar?tud|ed in the literature so far can be Captured already by

predicates, addition yields undecidability. weak ODTA. We also show that the definition of ODTA can
be easily modified, to the case where the data values come
VIIl. W HEN THE DATA VALUES ARE STRINGS from a partially ordered domain, such as strings.

In this section we discuss data trees where the data value¥Ve believe that the notion of ODTA provides new tech-
are strings from{0, 1}*, instead of natural numbers. We calhiques to reason about ordered-data values on unrankex tree
such treestring data treesThere are two kinds of order for and thus, can find potential applications in practice. We als

prove that ODTA capture various formalisms on data trees

§The definition of text in [31] is slightly different, but it isquivalent to studied so far in the literature. As far as we know this is the
our definition. However, it turns out that the key lemma prbwe [31] has fi f l for d ith logical d
a serious gap, which is filled later on in [19]. The final ressistill correct irst formalism for data trees with neat logical and automata

though. characterisations.



(01b00) (Ol(c)ll) (010%11) (01‘101)

(Obl) (010%11) (01‘101)

(0100011) (0100000) (010000

ROOT

{a, b}

{b} {a}

{a,b,c} {b,c} A{c}

Fig. 2.  An example of a string data tree (on the left) and tke tepresentation of its data values (on the right).
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