
Feasible Automata for Two-Variable Logic with

Successor on Data Words⋆

Ahmet Kara1, Thomas Schwentick1, and Tony Tan2

1 Technical University of Dortmund
2 University of Edinburgh

Abstract. We introduce an automata model for data words, that is words that
carry at each position a symbol from a finite alphabet and a value from an un-
bounded data domain. The model is (semantically) a restriction of data automata,
introduced by Bojanczyk, et. al. in 2006, therefore it is called weak data automata.
It is strictly less expressive than data automata and the expressive power is in-
comparable with register automata. The expressive power of weak data automata
corresponds exactly to existential monadic second order logic with successor +1 and
data value equality ∼, EMSO

2(+1,∼). It follows from previous work, David, et. al.
in 2010, that the nonemptiness problem for weak data automata can be decided in
2-NEXPTIME. Furthermore, we study weak Büchi automata on data ω-strings. They
can be characterized by the extension of EMSO

2(+1,∼) with existential quantifiers
for infinite sets. Finally, the same complexity bound for its nonemptiness problem
is established by a nondeterministic polynomial time reduction to the nonemptiness
problem of weak data automata.

1 Introduction

Motivated by challenges in XML reasoning and infinite-state Model Checking, an extension
of strings and finitely labelled trees by data values has been investigated in recent years.
In classical automata theory, a string is a sequence of positions that carry a symbol from
some finite alphabet. In a nutshell, data strings generalize strings, in that every position
additionally carries a data value from some infinite domain. In the same way, data trees
generalize (finitely) labelled trees. In XML Theory, data trees model XML documents.
Here, the data values can be used to represent attribute values or text content. Both,
cannot be adequately modelled by a finite alphabet. In a Model Checking3 scenario, the
data values can be used, e.g., to represent process id’s or other data.

Early investigations in this area usually considered strings over an “infinite alphabet”,
that is, each position only have a value, but no finite-alphabet symbol [2, 20, 7, 14, 15, 18].
Many of the automata models and logics that have been studied for data strings and trees

⋆ The first and the second authors acknowledge the financial support by the German DFG under
grant SCHW 678/4-1, and the third author Future and Emerging Technologies (FET) pro-
gramme within the Seventh Framework Programme for Research of the European Commission,
under the FET-Open grant agreement FOX, number FP7-ICT-233599.

3 In the Model Checking setting, a position might carry a finite set of propositional variables,
instead of a symbol.

lack the usual nice decidability properties of automata over finite alphabets, unless strong
restrictions are imposed [10, 4, 3, 1].

A result that is particularly interesting for our investigations is the decidability of the
satisfiability problem for two-variable logic over data strings [4]. Here, as usual, the logical
quantifiers range over the positions of the data string and it can be checked whether a
position x carries a symbol a (written: a(x)), whether it is to the left of a position y

(x + 1 = y), whether x is somewhere to the left of y (x < y) and whether x and y carry
the same data value (x ∼ y). The logic is denoted by FO2(+1, <,∼). The result was shown
with the help of a newly introduced automata model for data words, data automata (DA).
It turned out, that the expressive power of these automata can be actually characterized
by the extension of FO2(+1, <,∼) with existential quantification over sets (of positions)
and an additional predicate that holds for x and y if y is the next position from x with the
same data value.

However, the complexity of the decision procedure for FO2(+1, <,∼) is very high. The
problem is equivalent to the Reachability problem for Petri nets [12], a notoriously hard
problem whose complexity has not been resolved exactly. Thus, it has been investigated how
the complexity can be reduced, by dropping one of the predicates x < y or x+1 = y. In the
latter case (that is, for FO2(<,∼)) the complexity decreases to NEXPTIME [4]. In the former
case (FO2(+1,∼)) the complexity also becomes elementary. In [3] a 3-NEXPTIME bound
was shown for the case of data trees and this bound clearly carries over to data strings. A
more direct proof with a 4-NEXPTIME bound was given in [8] and a 2-NEXPTIME bound
was obtained in [19].

The high complexity of the satisfiability of FO2(+1, <,∼) in [4] results from the high
complexity of the nonemptiness problem for data automata. One of the starting questions
for this paper was:

(1) Is there a natural restriction of data automata with (i) a better complexity and (ii) a
correspondence to FO2(+1,∼)?

We show that such a restriction indeed exists. Data automata consist of two automata A
and B. A is a non-deterministic letter-to-letter transducer that constructs, given the finite
alphabet part of the input data string4 u, a new data string w (where, for each position, the
data value in w is the same as in u). The second automaton B can then check properties
of the subsequences of w that carry the same data value. We define weak data automata
(WDA) which also use a non-deterministic letter-to-letter transducer but can only test some
simple constraints of the subsequences in the second part. These constraints are (unary)
key, inclusion and denial constraints and they are evaluated for each class separately (there
are no inter-class constraints).

It turns out that WDA are expressively weaker than data automata, incomparable
with register automata [14, 1] and that their expressiveness can be precisely characterized
by the extension of FO2(+1,∼) by existential set quantification, that is, EMSO2(+1,∼).
As the property that we use to separate the expressive power of WDA and DA can be
defined in EMSO2(+1, <,∼) we get that EMSO2(+1,∼) 6≡ EMSO2(+1, <,∼) as opposed
to the classical setting (without data values) where EMSO2(+1) ≡ EMSO2(+1, <). Indeed,
one of the benefits of the logical characterization is that it gives an easy means to show

4 The transducer also sees whether a position has the same data value as the next one.

non-expressibility for EMSO2(+1,∼) (and FO2(+1,∼)). From results in [8] it immediately
follows that the nonemptiness problem for WDA can be solved in 2-NEXPTIME.

As mentioned above, one motivation to study data strings comes from Model Checking.
In that context, systems are usually considered to run forever and to produce infinite traces.
Thus, data ω-words need to be considered as well, and this was actually one of the main
motivations of this research. In particular we address the following questions.

(2) Do the complexity results of [8] carry over to data ω-strings?

(3) Can the expressibility results and logical characterizations of the first part of the paper
also be established for data ω-strings?

It is straightforward to adapt weak data automata for data ω-strings. The transducer can
simply be equipped with a Büchi acceptance mechanism. We refer to the resulting model
as weak Büchi data automata (WBDA). It turns out that the answer to both questions,
(2) and (3), is affirmative. For (3), this is not hard to prove. The separation of WDA
from DA also separates WBDA from Büchi data automata. It is also not too hard to
get a logical characterization of WBDA by extending EMSO2(+1,∼) with existential set
quantifiers that are semantically restricted to bind to infinite sets. The answer to question
(2) required considerably more effort. However, we establish a 2-NEXPTIME upper bound
for the nonemptiness problem for WBDAs by a nondeterministic polynomial time reduction
to the nonemptiness for WDA.

Related work. Some related work was already mentioned above. The pioneering works in
Linear Temporal Logic for ω-words with data are the papers [10, 9]. In [9] an extension of
Linear Temporal Logic (LTL) to handle data values is proposed and its satisfiability problem
is shown to be decidable. The decision procedure is a reduction to the reachability problem
in Petri nets, thus resulting in a similarly unknown complexity as for data automata. The
logic and automata considered in [10] are decidable for finite data words, but not primitive
recursive, and undecidable for ω-words. In [17] it is shown that with a safety restriction
both the logic and the automata become decidable, even in EXPSPACE. In [9] a logic with
PSPACE complexity is considered. In [5], MSO logic on data words (with possibly multiple
data values per position) is compared to automata models for various types of successor
relations.

Organization. We give basic definitions in Section 2. In Section 3, weak data automata
are defined, their complexity is given, and their expressive power is compared with other
models. Section 4 gives the logical characterization of WDA by EMSO2(+1,∼). Section 5
studies data ω-strings and shows how the nonemptiness problem of WBDA can be nonde-
terministically reduced in polynomial time to the nonemptiness of WDA. Section 6 states
some open problems. Proofs omitted due to space constraints can be found in the full
version of this paper ([16]).

Acknowledgement. We thank Christof Löding for helpful remarks on automata and logics
for ω-words and Thomas Zeume for thorough proof reading.

2 Notation

Data words. Let Σ be a finite alphabet and D an infinite set of data values. A finite word
is an element of Σ∗, while an ω-word is an element of Σω. A finite data word is an element
of (Σ ×D)∗, while a data ω-word is an element of (Σ ×D)ω . We often refer to data words
also as data strings.

We write a data (finite or ω-) word w as
(

a1

d1

)(

a2

d2

)

· · · , where a1, a2, . . . ∈ Σ and
d1, d2, . . . ∈ D. The symbol ai is the label of position i, while the value di is the data
value of position i. The projection of w to the alphabet Σ is denoted by Str(w) = a1a2
A position in w is called an a-position, if the label of that position is a. We denote by
Vw(a), the set of data values found in a-positions in w, i.e., Vw(a) = {di | ai = a}, for each
a ∈ Σ. Note that some Vw(a)’s may be infinite, while some others finite.

A maximal set of positions with the same data value d is called a class cd of the word and
the Σ-string induced by the symbols at its positions is called the class string wd. The profile
word of a data ω-word w =

(

a1

d1

)(

a2

d2

)

· · · is Profile(w) = (a1, s1), (a2, s2), . . . ∈ (Σ×{⊤,⊥})ω,
where for each position i ≥ 1 the component si is ⊤ if and only if di = di+1. The profile
word of a finite data word

(

a1

d1

)(

a2

d2

)

· · ·
(

an

dn

)

is defined similarly, with the addition that the
component sn is ⊥.

Automata and Büchi automata. An automaton A over the alphabet Σ is a tuple A =
〈Σ,Q, q0, ∆, F 〉, where Q is a finite set of states, q0 ∈ Q is the initial state, ∆ ⊆ Q×Σ×Q
is a set of transitions and F ⊆ Q is a set of accepting states. A run of A on a word
w = a1a2 . . . an is a sequence ρ = q1 . . . qn of states from Q−{q0} such that (q0, a1, q1) ∈ ∆

and (qi, ai+1, qi+1) ∈ ∆ for each 1 ≤ i < n. The run ρ is accepting, if qn ∈ F .
A Büchi automaton A is syntactically just an automaton. A run of A on an ω-word w =

a1a2 . . . is an infinite sequence ρ = q1q2 . . . of states from Q−{q0} such that (q0, a1, q1) ∈ ∆

and (qi, ai+1, qi+1) ∈ ∆, for each i ≥ 1. Let Inf(ρ) denote the set of states that appear
infinitely many times in ρ. The run ρ is accepting if Inf(ρ) ∩ F 6= ∅.

A word (resp. an ω-word) w is accepted by an automaton (resp. Büchi automaton) A,
if there exists an accepting run of A on w. As usual, L(A) (resp. Lω(A)) denotes the set
of words (resp. ω-words) accepted by the automaton A.

Letter-to-letter transducers. A letter-to-letter transducer over the input alphabet Σ and the
output alphabet Γ is a tuple T = 〈Σ,Γ,Q, q0, ∆, F 〉, where Q, q0, F are the set of states,
the initial state, and the set of accepting states, respectively, and ∆ ⊆ Q × Σ × Q × Γ

is the set of transitions. The intuitive meaning of a transition (q, a, q′, γ) is that when the
automaton is in state q, reading the symbol a, then it can move to the state q′ and output γ.
A run of T on a word w = a1a2 . . . an is a sequence (q1, γ1), . . . , (qn, γn) over (Q−{q0})×Γ
such that (q0, a1, q1, γ1) ∈ ∆ and (qi, ai+1, qi+1, γi+1) ∈ ∆, for each 1 ≤ i < n. Likewise, a
run of T on an ω-word w = a1a2 . . . is a sequence (q1, γ1), (q2, γ2), . . . over (Q− {q0})× Γ

such that (q0, a1, q1, γ1) ∈ ∆ and (qi, ai+1, qi+1, γi+1) ∈ ∆, for each i ≥ 1. A run is accepting
if it is accepting in the sense of (Büchi) automata. We say that v = γ1γ2 . . . is an output
of T on w, if there exists an accepting run (q1, γ1), (q2, γ2), . . . of T on w.

Data automata. A data automaton (DA) is a pair (A,B), where A is a letter-to-letter
transducer with input alphabet Σ × {⊤,⊥} and output alphabet Γ and B is a finite state

automaton over the alphabet Γ . A data word w is accepted by (A,B) if the following
holds.

– Profile(w) is accepted by A, yielding an output u.
– For each data value d of w, the class string ud is accepted by B.

Data automata were introduced in the stated form in [4]. In [1] it was shown that their
expressive power is not affected, if A gets Str(w) as input as opposed to Profile(w). In more
recent papers, data automata are therefore defined in the (syntactically) weaker form with
input Str(w).

3 Weak data automata

In this section we define a new automata model for finite data words and study its expres-
sive power and its complexity. The model follows a similar approach as the model of data
automata. The profile of the input data word is transformed by a letter-to-letter transducer
and then further conditions on the resulting class strings are imposed. However, the con-
ditions that can be stated in the new automata model are much more limited than those
of a data automaton (hence the name weak data automata).

Let Γ be an alphabet. Weak data automata allow three kinds of data constraints over
Γ :

1. key constraints, written in the form: key(γ), where γ ∈ Γ .
2. inclusion constraints, written in the form: V (γ) ⊆

⋃

γ′∈R V (γ′), where γ ∈ Γ , R ⊆ Γ .
3. denial constraints, written in the form: V (γ) ∩ V (γ′) = ∅, where γ, γ′ ∈ Γ .

Whether a data word w satisfies a data constraint C, written as w |= C, is defined as
follows.

1. w |= key(γ), if every two γ-positions in w have different data values.
2. w |= V (γ) ⊆

⋃

γ′∈R V (γ′), if Vw(γ) ⊆
⋃

γ′∈R Vw(γ′).
3. w |= V (γ) ∩ V (γ′) = ∅, if Vw(γ) ∩ Vw(γ′) = ∅.

If C is a collection of data constraints, then we write w |= C, if w |= C for all C ∈ C.
A weak data automaton (WDA) over the alphabet Σ is a pair (A, C), where A is a

letter-to-letter transducer with input alphabet Σ × {⊤,⊥} and output alphabet Γ and C
is a collection of data constraints over the alphabet Γ . A data word w =

(

a1

d1

)(

a2

d2

)

· · ·
(

an

dn

)

is accepted by a WDA (A, C), if

– there is an accepting run of A on Profile(w), with an output γ1γ2 . . . γn, and
– the induced data word w =

(

γ1

d1

)(

γ2

d2

)

· · ·
(

γn

dn

)

satisfies all the constraints in C.

We write L(A, C) to denote the language that consists of all data words accepted by (A, C).
We first discuss some extensions of WDA by the constraints that were studied in [8].

– Disjunctive key constraints are written in the form: key(K), where K ⊆ Γ . Such a
constraint is satisfied by a data word if each of its classes has at most one position with
a symbol from K.

– Disjunctive inclusion constraints are written in the form:
⋃

γ∈S V (γ) ⊆
⋃

γ′∈R V (γ′),
where S,R ⊆ Γ . Such a constraint is satisfied by a data word if each class with a
position with a symbol from S also has a position with a symbol from R.

An extended weak data automaton is defined like a WDA but it further allows disjunctive
key and inclusion constraints.

Lemma 1. From each extended WDA (A, C) an equivalent WDA of polynomial size can
be constructed in polynomial time.

The proof can be found in the full version of this paper ([16]).
Next, we compare the expressive power of weak data automata with other automata

models for data words. More precisely we compare it with register automata [14, 1] and
data automata. Register automata are an extension of finite state automata with a fixed
number of registers in which they can store data values and compare them with the data
value of subsequent positions. For a precise definition we refer1 the reader to [1].

We consider the following two data languages.

– La<b consists of all data words over the alphabet {a, b} with the property that for every
a-position i there is a b-position j > i with the same data value;

– La∗b is the subset of La<b where the next b-position j with the same data value as i
always satisfies j = i+ 2.

Lemma 2. Neither La∗b nor La<b can be decided by a WDA.

Proof. We first show that no WDA decides La∗b. Towards a contradiction, we thus assume
that La∗b is decided by some weak data automata (A, C).

To this end, let n = |Γ |4 + 1 and let d1, d
′
1, d2, d

′
2, . . . dn, d

′
n be pairwise different data

values. We consider the data word

w =

(

a

d1

)(

a

d′1

)(

b

d1

)(

b

d′1

)(

a

d2

)(

a

d′2

)(

b

d2

)(

b

d′2

)

· · ·

(

a

dn

)(

a

d′n

)(

b

dn

)(

b

d′n

)

of length 4n. Clearly, w is in La∗b and its profile is ((a,⊥)(a,⊥)(b,⊥)(b,⊥))n.
Let γ = γ1γ2 · · · γ4n be an output of A on the profile of w such that

(

γ1

d1

)

· · ·
(

γ4n

d′

n

)

satisfies

all constraints in C. By the choice of n, there exist numbers i, j with 0 ≤ i < j < n such
that γ4i+1γ4i+2γ4i+3γ4i+4 = γ4j+1γ4j+2γ4j+3γ4j+4.

Let u be the data word obtained from w by swapping the positions of the data values
di+1d

′
i+1 and dj+1d

′
j+1. That is,

u =

(

a

d1

)

· · ·

(

a

di+1

)(

a

d′i+1

)(

b

dj+1

)(

b

d′j+1

)

· · ·

(

a

dj+1

)(

a

d′j+1

)(

b

di+1

)(

b

d′i+1

)

· · ·

(

b

d′n

)

.

Clearly, u 6∈ La∗b. However, because Profile(u) = Profile(w), γ1γ2 . . . γ4n is also an output
of A on Profile(u). Moreover, the sets of Vu(γ) = Vw(γ), for each γ ∈ Γ , and therefore the
validity of inclusion and denial constraints does not change. Furthermore, as in u and w

1 The precursor model finite-memory automata was defined on “strings over infinite alphabets”,
that is, essentially data strings without a Σ-component [14].

every data value occurs at exactly one a-position and at exactly one b-position, they cannot
be distinguished by key constraints, either. Thus, u ∈ L(A, C), the desired contradiction.

The proof for La<b is exactly the same, as w ∈ La<b and u 6∈ La<b (because of
(

a
dj+1

)

).
⊓⊔

Theorem 1. (a) The class of data languages that are decided by WDA is strictly included
in the class of data languages decided by DA.

(b) The classes of languages decided by WDA and by register automata are incomparable.

Proof. Towards (a) we first show that every WDA can be translated into a DA and thus
WDA decide a subclass of DA. That the subclass is strict can then be concluded from (b)
as register automata are captured by DA [1] and thus there is a data language that can be
decided by a DA but not a WDA.

Let thus (A, C) be a WDA. Then (A,B) is a data automaton for L(A, C), where the
automaton B tests the constraints in C as follows.

– For every key constraint key(γ) of C, B tests that every class string has at most one
γ-position.

– For every inclusion constraint V (γ) ⊆
⋃

γ′∈R V (γ′), B tests that every class string with
a γ-position also has a γ′-position, for some γ′ ∈ R.

– For every denial constraint V (γ) ∩ V (γ′) = ∅, B checks that classes with a γ-position
do not have any γ′-positions.

To show statement (b) we first consider the separation language L = La∗b which cannot
be decided by a WDA by Lemma 2. However, La∗b can be easily decided by a register
automaton that always stores the last two data values in two registers and the information
about their symbols in its state.

On the other hand, the set of all data strings over Σ = {a} in which every data value
occurs only once can easily be decided by a WDA by the identity-transducer and the key
constraint key(a) but not by a register automaton [14]. ⊓⊔

The complexity of the nonemptiness problem for WDA follows directly from results in
[8].

Theorem 2. The nonemptiness problem for WDA is decidable in 2-NEXPTIME.

Proof. In [8], it was shown that given an automaton A that reads profile strings and a set C
of disjunctive key and inclusion constraints, to decide whether there is a data word w such
that A accepts Profile(w) and w |= C can be done in nondeterministic double exponential
time.

Clearly, this is basically the same as the nonemptiness problem for WDA with disjunc-
tive key and inclusion constraints only. It thus only remains to show that denial constraints
can be translated into disjunctive constraints in a nonemptiness respecting fashion. To this
end, a denial constraint V (γ1) ∩ V (γ2) = ∅ can be replaced as follows. We add two new
symbols γ′1, γ

′
2 and require that in each class with γi one γ′i occurs but γ′1 and γ′2 do not

co-occur by two inclusion constraints V (γ1) ⊆ V (γ′1) and V (γ2) ⊆ V (γ′2) and a disjunctive
key constraint for {γ′1, γ

′
2}. ⊓⊔

4 A logical characterization of weak data automata

In this section, we give a logical characterization of the data languages decided by weak data
automata in terms of existential second order logic. The characterization is an analogue of
the Theorem of Büchi, Elgot and Trakhtenbrot [6, 11, 22] for string languages. This theorem
can be stated for various logics, the most interesting one for our context is that EMSO2(+1)
characterizes exactly the regular languages.

We represent data words by logical structures w = 〈{1, . . . , n},+1, <, {a(·)}a∈Σ,∼〉,
where {1, . . . , n} is the set of positions, +1 is the successor relation (i.e., +1(i, j) if i+1 = j),
< is the order relation (i.e., < (i, j) if i < j), the a(·)’s are the label relations, and i ∼ j

holds if positions i and j have the same data value. As the empty data word can not be
properly represented, the logical characterization of WDA ignores empty data words. That
is, if some WDA (A, C) accepts the empty data string then its language is different from
the language of the corresponding formula ϕ: L(A, C) = L(ϕ) ∪ {ǫ}.

For a set S ⊆ {+1, <,∼} of relation symbols, we write FO(S) for first-order logic with
the vocabulary S, MSO(S) for monadic second-order logic (which extends FO(S) with
quantification over sets of positions), and EMSO(S) for existential monadic second order
logic, that is, all sentences of the form ∃R1 . . . ∃Rm ψ, where ψ is an FO(S) formula extended
with the unary predicates R1, . . . , Rm. By FO2(S) we denote the restriction of FO(S) to
sentences with two variables x and y, and by EMSO2(S) the restriction of EMSO(S) where
the first-order part uses only two variables.

4.1 From weak data automata to EMSO
2(+1, ∼)

Theorem 3. For every weak data automaton (A, C), an equivalent EMSO
2(+1,∼)-formula

ϕ is constructible in polynomial time.

The construction can be found in the full version of this paper ([16]). It is the same as the
classical translation from NFAs to MSO formulas. See, for example, [21].

4.2 From EMSO
2(+1, ∼) to weak data automata

In the following, we use the abbreviation F (x, y) for the formula ¬y = x + 1 ∧ ¬x =
y + 1 ∧ x 6= y, which states that the distance of x and y is at least two.

Theorem 4. There is an algorithm that translates every EMSO
2(+1,∼)-formula ϕ into

an equivalent weak data automaton (A, C) in doubly exponential time. In particular, the
output alphabet Γ of A and the number of constraints in C is at most exponenotial.

Proof. In the first step, the algorithm transforms ϕ into an equivalent EMSO2(+1,∼)
formula in Scott normal form (SNF) of the form ψ = ∃R1 . . . ∃Rn[∀x∀y χ′∧

∧m

i=1
∀x∃y χ′

i],
where χ′ and each χ′

i are quantifier-free [13]. The size of ψ is linear in the size of ϕ, in
particular, n = O(|ϕ|) and m = O(|ϕ|).

Then it rewrites formula χ′ into an, at most exponential, conjunction χ =
∧

j ¬(αj(x)∧
βj(y)∧ δj(x, y)∧ ǫj(x, y)), where, for every j, αj , βj are conjunctions of literals with unary
relation symbols, δj is x ∼ y or x 6∼ y and ǫj(x, y) is one2 of x = y, y = x+ 1 and F (x, y).

2 The case x = y + 1 does not need to be considered as it can be obtained by swapping x and y.

Likewise, it rewrites every χ′
i into an, at most exponential, disjunction χi =

∨

j(α
i
j(x)∧

βi
j(y)∧ δ

i
j(x, y)∧ ǫ

i
j(x, y)), where the atomic formulas are of the respective forms as above.

The idea of the construction is that A guesses some relations that allow to state some
of the properties expressed in ψ by constraints of C. The details are given in [16]. ⊓⊔

We note that in the upper bound of the algorithm for nonemptiness of WDA transferred
from [8], the doubly exponential term only depends on the alphabet size. By combing this
with the bounds of Theorem 4 we obtain a 3-NEXPTIME upper bound for satisfiability of
FO2(+1,∼) (which is worse than the bound in [19]). We also note that the construction
underlying the proof of Theorem 4 can be turned into a nondeterministic exponential
time reduction from satisfiability for FO2(+1,∼) to nonemptiness for WDA resulting in an
automaton with a singly exponential number of states. The reduction guesses the order in
which types appear in the accepted string (as opposed to the construction in the proof of
Theorem 4).

The previous two theorems yield the following logical characterization of WDA.

Theorem 5. Weak data automata and EMSO
2(+1,∼) are equivalent in expressive power.

We note that on strings EMSO2(+1) and EMSO2(+1, <) are expressively equivalent. It
is an interesting consequence of the above characterization that this equivalence does not
hold for data strings.

Corollary 1. The logic EMSO
2(+1,∼) is strictly less expressible than EMSO

2(+1, <,∼).

Proof. The inclusion holds by definition. It is strict because the language La<b cannot be
decided by an WDA (Lemma 2) and thus cannot be defined in EMSO2(+1,∼), but it can
be expressed by the simple formula ∀x∃y(a(x) → (b(y) ∧ x < y ∧ x ∼ y)). ⊓⊔

5 Weak Büchi data automata

In this section we consider automata and logics for data ω-words, that is, data words of
infinite length. Weak data automata (A, C) can easily be adapted for data ω-words. The
automaton A is simply interpreted as a letter-to-letter Büchi transducer. A run is accepting
if it visits infinitely often a state from F . We refer to the resulting model as weak Büchi data
automata (WBDA). We write Lω(A, C) for the set of data ω-words accepted by (A, C). The
results regarding expressive power of WDA compared with other automata models easily
carry over to WBDA.

Data ω-words can be represented by logical structures w = 〈N,+1, <, {a(·)}a∈Σ,∼〉,
where N is the set {1, 2, . . .} of natural numbers which represent the positions and the other
relations are as in the case of data words. For a set S ⊆ {+1, <,∼} of relation symbols
E∞MSO(S) consists of all formulas of the form ∃∞R1 . . . ∃∞Rm∃S1 . . . ∃Sℓ ϕ where
ϕ ∈ FO2(S). Here all relation symbols Ri, Si are unary. The ∃∞ are semantically restricted
to bind to infinite sets only.

Remark 1. It is folklore that languages (without data) accepted by Büchi automata are
precisely languages expressible in formulae of the form:

∃∞R1 · · · ∃∞Rm∃S1 · · · ∃Sℓ ϕ

for some ϕ ∈ FO2(+1). However, we have not found an explicit reference for this result in
the literature.

The following theorem is a straightforward generalization of Theorem 5.

Theorem 6. Weak Büchi data automata and E∞MSO
2(+1,∼) are equivalent in expressive

power.

The proof is sketched in [16].

Theorem 7. The nonemptiness problem for weak Büchi data automata is decidable in
2-NEXPTIME.

Proof. We show in the following that the nonemptiness problem for WBDA can be poly-
nomially reduced to the nonemptiness problem for WDA. The result then follows from
Theorem 2. The approach is a classical one. We show that if the language of a WBDA
(A, C) is non-empty then a finite data string of the form uv can be constructed such that
there is a run of A which loops over v. The “unravelling” uvω is then also accepted by the
automaton. However, some care is needed to assign data values in a suitable manner.

Let (A, C) be a WBDA with A = 〈Σ,Γ,Q, q0, ∆, F 〉. Since we are only interested in
whether Lω(A, C) = ∅, we can assume, without loss of generality, that the transitions of
A are all of the form (q, γ, q′, γ). Otherwise, we can replace it by a transducer which reads
Γ -strings and guesses, for every position i, a symbol ai ∈ Σ, its profile symbol si (and
store them in the state) and verifies that its output would be (the actual input symbol)
γi. Therefore, we consider A in this proof just as a normal Büchi automaton that gets a
Γ -string as input. The constraints are applied to the same string.

We first fix some notation. We refer to the symbols that occur in key constraints of C
as key symbols.

A zone is a finite data string over Γ in which all positions carry the same data value.
An ω-zone is an infinite data string over Γ in which all positions carry the same data
value. The zones of a data string w are the maximal zones of w. An adorned zone is a zone
together with a pair (q, q′) of states of A. We write a-Proj(z) for the triple (Str(z), q, q′) of
a zone z that is adorned with the pair (q, q′).

We next define an important notion for this proof, (singular and non-singular) wit-
nesses. We will show that the nonemptiness of (A, C) boils down to deciding whether such
witnesses exist. Singular witnesses correspond to data strings in Lω(A, C) with an infinite
zone whereas non-singular witnesses correspond to data strings with finite zones only.

A singular witness for (A, C) is a data string uv over Γ the following properties.

– uv |= C.
– There is a state q̂ ∈ F and a (partial) run ρ = ρuρv of A on input Profile(uv)⊤ in which

the state after reading u and after reading v is q̂. Here, Profile(uv)⊤ denotes the profile
string that is obtained from Profile(uv) by setting the last profile symbol to ⊤.

– All positions of v and the last zone of u carry the same data value and v does not carry
any key symbol.

A non-singular witness for (A, C) is a data string uv over Γ which fulfills the following
conditions.

– All zones in uv are of length at most |Q|(|Γ | + 1).
– The data value of the last position of u is different from the value of the first position

of v.
– There is a state q̂ and a (partial) run ρ = ρuρv of A on input uv in which the state

after reading u and after reading v is q̂. Furthermore, ρv contains some state from F .
In the following, each zone z of w is adorned by the pair (q, q′) where q is the state of
ρ before reading z and q′ is the state after reading z.

– The classes of uv can be colored3 with the four colors black, yellow, white and blue such
that all black, yellow and white classes satisfy 4 all constraints from C and furthermore
the following conditions hold.

(black) There are at most 3|Q|2 black classes. There are no key symbols in black zones of
v. Furthermore, it is not the case that the first zone and the last zone of v are from
the same black class.

(yellow) There are at most |Q|2 yellow classes and they consist of at most |Γ | zones. All
these zones are located in v.

(white) All zones of the white classes are located in u.
(blue) For each blue zone z there is a yellow zone z′ such that a-Proj(z)=a-Proj(z′).

The proof of decidability of the nonemptiness problem for WBDA now reduces to
proving the following three claims.

(Claim 1) If there exists a witness for (A, C) then Lω(A, C) 6= ∅.
(Claim 2) If Lω(A, C) 6= ∅ then there exists a witness for (A, C).
(Claim 3) There is a nondeterministic algorithm which constructs, for every WBDA (A, C),

in polynomial time some WDA (A′, C′) such that every possible (A′, C′) accepts
only witnesses for (A, C) and for each witness uv there is a run of the algorithm
producing some (A′, C′) that accepts uv.

Therefore, the nonemptiness problem for WBDA can indeed be reduced non-deterministically
in polynomial time to the nonemptiness problem for WDA. The proofs of these claims are
given in [16]. ⊓⊔

6 Conclusion

We conclude this paper with two open problems for future directions. An obvious open
problem is the exact complexity of the nonemptiness problem for weak data automata.
The current 2-NEXPTIME yields a 3-NEXPTIME upper bound for the satisfiability prob-
lem for EMSO2(+1,∼). However, as it is known that this problem can be solved in 2-
NEXPTIME [19], some room for improvement is left.

Another interesting question is how our results can be applied to temporal logics. In [10],
a restriction of LTL with one register, simple LTL, was considered with the same expressive
power as some two variable logic. We conjecture that there is a correspondence between
our logics and the restriction of simple LTL to the operators X , X−1 and an operator that
allows navigation to some other position.

3 Each class gets exactly one color. We refer to zones and positions in a black class as black zones
and positions, respectively, and likewise for the other colors.

4 We do not require that the blue classes satisfy C.

References

1. Henrik Björklund and Thomas Schwentick. On notions of regularity for data languages. Theor.
Comput. Sci., 411(4-5):702–715, 2010.

2. Luc Boasson. Some applications of CFL’s over infinte alphabets. In Theoretical Computer
Science, pages 146–151, 1981.

3. Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, and Luc Segoufin. Two-variable logic
on data trees and XML reasoning. J. ACM, 56(3), 2009.

4. Mikolaj Bojanczyk, Anca Muscholl, Thomas Schwentick, Luc Segoufin, and Claire David.
Two-variable logic on words with data. In LICS, pages 7–16, 2006.

5. Benedikt Bollig. An automaton over data words that captures EMSO logic. CoRR,
abs/1101.4475, 2011.

6. J. R. Büchi. Weak second-order arithmetic and finite automata. Z. Math. Logik Grundl.
Math., 6:66–92, 1960.

7. Edward Y. C. Cheng and Michael Kaminski. Context-free languages over infinite alphabets.
Acta Inf., 35(3):245–267, 1998.

8. Claire David, Leonid Libkin, and Tony Tan. On the satisfiability of two-variable logic over
data words. In LPAR (Yogyakarta), pages 248–262, 2010.

9. Stéphane Demri, Deepak D’Souza, and Régis Gascon. A decidable temporal logic of repeating
values. In LFCS, pages 180–194, 2007.

10. Stéphane Demri and Ranko Lazic. LTL with the freeze quantifier and register automata. ACM
Trans. Comput. Log., 10(3), 2009.

11. Calvin C. Elgot. Decision problems of finite automata design and related arithmetics. Trans-
actions of The American Mathematical Society, 98:21–21, 1961.

12. Jay L. Gischer. Shuffle languages, Petri nets, and context-sensitive grammars. Commun.
ACM, 24(9):597–605, 1981.

13. Erich Grädel and Martin Otto. On logics with two variables. Theor. Comput. Sci., 224(1-
2):73–113, 1999.

14. Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994.

15. Michael Kaminski and Tony Tan. Regular expressions for languages over infinite alphabets.
Fundam. Inform., 69(3):301–318, 2006.

16. Ahmet Kara, Thomas Schwentick, and Tony Tan. Feasible automata for two-variable logic
with successor on data words. Available from arXiv:1110.1221v1.

17. Ranko Lazic. Safety alternating automata on data words. ACM Trans. Comput. Log., 12(2):10,
2011.

18. Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004.

19. Matthias Niewerth and Thomas Schwentick. Two-variable logic and key constraints on data
words. In ICDT, pages 138–149, 2011.

20. Friedrich Otto. Classes of regular and context-free languages over countably infinite alphabets.
Discrete Applied Mathematics, 12(1):41 – 56, 1985.

21. Wolfgang Thomas. Languages, automata, and logic. In G. Rozenberg and A. Salomaa, editors,
Handbook of Formal Languages, Vol. III, pages 389–455. Springer, New York, 1997.

22. Boris Trakhtenbrot. Finite automata and logic of monadic predicates. Doklady Akademii
Nauk SSSR, 140:326–329, 1961.

