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Abstract

We propose a method to approximate a polyhedral object with a deformable smooth surface, namely the t-skin defined by
Edelsbrunner for all 0 < t < 1. We guarantee that they are homeomorphic and their Hausdorff distance is at most ε > 0. This
construction makes it possible for fully automatic, smooth and robust deformation between two polyhedral objects with different
topologies. En route to our results, we also give an approximation of a polyhedral object with a union of balls.
© 2006 Published by Elsevier B.V.
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1. Introduction

Geometric deformation is a heavily studied topic in disciplines such as computer animation and physical simula-
tion. One of the main challenges is to perform deformation between objects with different topologies, while at the
same time maintaining a good quality mesh approximation of the deforming surface.

Edelsbrunner defines a new paradigm for the surface representation to solve these problems, namely the skin
surface [12] which is a smooth surface based on a finite set of balls. It provides a robust way of deforming one
shape to another without any constraints on features such as topologies [4]. Moreover, the skin surfaces possess nice
properties such as curvature continuity which provides quality mesh approximation of the surface [5,6].

However, most of the skin surface applications are still mainly on molecular modelling. The surface is not widely
used in other fields because general geometric objects cannot be represented by the skin surfaces easily. This leaves a
big gap between this nicely defined surface and its potential applications. We aim to fill this gap in this paper.

1.1. Motivation and related works

One of the main goals of the work by Amenta et al. in [1] is to convert a polyhedral object into a skin surface. We can
view our work here as achieving this goal and the purpose of doing so is to perform deformation between polyhedral
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objects. As noted earlier in some previous works [4,12], deformation can be performed robustly and efficiently if the
object is represented by the skin surface [2,8].

Moreover, our work here can also be viewed as a step towards converting an arbitrary smooth object into a provably
accurate skin surface. In this regard, previous work has been done by Kruithof and Vegter [15]. For the input their
method requires a set of r-admissible balls which approximate the object well. Then, it expands all the weights of the
balls by a carefully computed constant t , before taking the 1

t
-skin of the expanded balls to approximate the smooth

object.
However, we observe that there are at least two difficulties likely to occur in such approach. First, such a set of

r-admissible balls is not trivial to obtain. Furthermore, when the computed factor t is closed to 1, the skin surface is
almost the same as the union of balls, thus, does not give much improvement from the union of balls. On the other
hand, our approach proposed here allows the freedom to choose any constant 0 < t < 1 for defining the skin surface.

On top of the skin approximation, we also give an approximation of a polygonal object with a union of balls.
Such approximation has potential applications in computer graphics such as collision detection and deformation [14,
17,18]. Ranjan and Fournier [17] proposed using a union of balls for object interpolation. Sharf and Shamir [18]
also proposed using the same representation for shape matching. Those algorithms require a union of balls which
accurately approximate the object as an input and providing such a good set of balls at the beginning is still not trivial.

At last, as a by-product, our algorithm also gives the constrained Delaunay triangulation of a polyhedral object.

1.2. Approach

Given a polyhedral object, O ⊂ R
3, the first step is to construct a set of balls B whose alpha shape [11] is the

same as the boundary of O, namely, the subdividing alpha complex. All centers of the balls in B lie on the boundary
of O and their radii are at most ε which is a positive number specified by the user. The set B covers the boundary
and acts as a protecting layer similar to some previous work in Delaunay mesh generation and conforming Delaunay
triangulation [9,10].

In the second step, we fill the interior of O with another set of balls B⊥. From the weighted Delaunay tetrahe-
dralization of B , we extract all the tetrahedra in the interior of O. Each ball in B⊥ is an orthogonal ball of such
tetrahedron. It is shown that the union of B⊥, namely, the space that is occupied by balls in B⊥, is homeomorphic to
O and furthermore, the Hausdorff distance between them is at most ε.

To obtain the skin approximation, we construct a set of orthogonal balls B∗ through some modifications of the
balls B . The skin surface is proved to be homeomorphic to ∂O and their Hausdorff distance is at most ε as well.

1.3. Outline

This paper is organized as follows. We start by reviewing some basic concepts and results in Sections 2 and 3 that
will be used throughout this paper, namely, weighted points, Delaunay complexes and alpha complexes. In Section 4
we introduce the concept of the subdividing alpha complex and propose the algorithms to compute it. We describe
our method of ball approximation in Section 5 and the skin approximation in Section 6. Finally, we end with some
concluding remarks in Section 7.

2. The Voronoi complex of weighted points

In this section we will briefly review the basic definitions and notations of weighted points and their Voronoi
complexes and Delaunay complexes.

2.1. The weighted points

We describe a weighted point b ∈ R
d × R by its location zb ∈ R

d and its weight wb ∈ R. The weighted point b can
also be written as (zb,wb). We assume that a point p ∈ R

d is a point of zero weight when the weight is not specified.
A weighted point b can be alternatively interpreted as an open ball with center zb and radius

√
wb, which is the set

of points {p ∈ R
d | ‖p − zb‖2 < wb}. However, if wb is zero, we treat b as the set containing the point zb only. If wb

is negative then we treat b as an empty set.
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For a set of weighted points X = {b1, . . . , bn}, we use the notation
⋃

X to denote b1 ∪ · · · ∪ bn where each bi is
viewed as a ball. Similarly, we write

⋂
X to denote b1 ∩ · · · ∩ bn. In this paper the terms ball and weighted point will

be used interchangeably.
Affine hulls of balls. Given a set of balls B = {b1, b2, . . . , bn}, we define the affine hull1 of B as

aff(B) =
{

n∑
i=0

λibi

∣∣∣∣
n∑

i=0

λi = 1

}
. (1)

To complete the definition, we need the addition and scalar multiplication of weighted points. Define a bijective lifting
map φ : R3 × R 
→ R

4 such that for a ball b = (zb,wb), φ(b) has the first three coordinates same as zb and the last
coordinate of φ(b) is ‖zb‖2 − wb . The addition and scalar multiplication operations are defined on R

3 × R in such a
way that φ is a vector space isomorphism, that is,

b1 + b2 = φ−1(φ(b1) + φ(b2)
)
, γ · b1 = φ−1(γ · φ(b1)

)
,

where b1, b2 ∈ R
3 × R and γ ∈ R.

Orthogonal balls. The weighted distance between two weighted points b1 and b2 is defined as follows:

πb1(b2) = πb2(b1) = ‖zb1 − zb2‖2 − wb1 − wb2 .

A point p ∈ R
d is inside the ball b if and only if πb(p) < 0. Two weighted points, b1 and b2, are said to be orthogonal

to each other if the weighted distance between them is zero, denoted as b1 ⊥ b2. Note that if b1 ⊥ b2 and the weight
of b1 is positive, z1 is out of b2.

We write B1 ⊥ B2 if b1 ⊥ b2 for all b1 ∈ B1 and b2 ∈ B2. From the thesis of Cheng [3], it is proven that

B1 ⊥ B2 ⇒ aff(B1) ⊥ aff(B2). (2)

2.2. The Voronoi complexes and Delaunay complexes

A Voronoi complex is a partition of the space R
d according to a finite set of balls. Let B = {b1, . . . , bn} be a set of

n balls. The Voronoi cell of the ball bi , with respect to B , is

νbi
= {

p ∈ R
d | πbi

(p) � πbj
(p) for all j = 1, . . . , n

}
.

For a set of balls X ⊆ B , the Voronoi cell of X with respect to B is

νX =
⋂
b∈X

νb.

For every point p ∈ νX , we have πbi
(p) = πbj

(p) for all bi, bj ∈ X. The set νX is known to be convex. The dimension
of νX is defined as the dimension of the minimal affine space that contains νX . If the dimension of νX is zero, then νX

consists of only one point. We call this point a Voronoi vertex.
The Voronoi complex of B , VB , is the collection of all the non-empty Voronoi cells:

VB = {νX | X ⊆ B and νX �= ∅}.
Throughout this paper, we make an important but standard assumption regarding VB :

General Position Assumption. Let B ⊆ R
d × R be a finite number of set of balls and let X ⊆ B . Suppose νX �= ∅.

Then 1 � card(X) � d + 1 and the dimension of νX is d + 1 − card(X).

Such assumption can be achieved by small perturbation on either the weights or the positions of the balls in X.
(See, for example, [13].)

1 This affine hull definition is only for a set of balls. For affine hull of an unweighted point set, we still use the conventional definition.
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Fig. 1. An illustration of Proposition 1. Let X = {b1, b2} and Y = {b2, b3, b4}. The ball bx ∈ ν̂X and by ∈ ν̂Y . We have πby (b1),πby (b2) � 0 and
πbx (b1),πbx (b2) = 0. To be exact, πby (b2) is actually 0.

Associated orthogonal balls. We can associate a Voronoi cell νbi
with the set of balls

ν̂bi
= {

(p,w) | p ∈ νbi
and w = πbi

(p)
}
.

This set of balls is called the associated orthogonal balls of νbi
. If b is an associated orthogonal ball of νbi

then b is
orthogonal to bi and for all bj �= bi , πbj

(b) � 0.2

Similarly, the associated orthogonal balls of νX , where X ⊆ B , can be defined as

ν̂X = {
(p,w) | p ∈ νX and w = πbi

(p) for some bi ∈ X
}
,

and if b is an associated orthogonal ball of νX then b is orthogonal to every ball in X and for all bj /∈ X, πbj
(b) � 0.

Proposition 1. Let X,Y ⊆ B such that νX, νY �= ∅. Let bx ∈ ν̂X and by ∈ ν̂Y . Then, for every ball b ∈ X, πby (b) �
πbx (b) = 0.

Proof. We illustrate this proof in Fig. 1. Let b′ ∈ Y . By definition, by = (zby ,πb′(zby )). Since zby ∈ νb′ , πb(zby ) �
πb′(zby ). Thus, πb(by) � πb′(by) = 0.

In addition, bx = (zbx ,πb(bx)), thus, πb(bx) = 0. Therefore, πb(by) � πb(bx), or, equivalently, πby (b) � πbx (b).
This proves our proposition. �

For a set of balls X, we abuse the notation zX to denote the set of the ball centers of X, that is, zX = {zb | b ∈ X}.
The Delaunay complex of B is the collection of simplices,

DB = {
conv(zX) | νX ∈ VB

}
.

We call a simplex in DB a Delaunay simplex.
Assuming the general position assumption, if νX �= ∅ then the dimension of conv(zX) is card(X) − 1. So, if

card(X) = d + 1 and conv(zX) is Delaunay then the associated orthogonal ball ν̂X consists of only one ball b, where
b is orthogonal to every ball in X. The center of b is on the Voronoi vertex νX .

3. The alpha complexes

Given a set of balls B , the alpha complex of B is

KB =
{

conv(zX)
∣∣ (⋃

X
)

∩ νX �= ∅, νX ∈ VB

}
.

2 Let zb be the center of b, πb (zb) � πb (zb) ⇒ πb (b) � πb (b) � 0.

j i j i
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Intuitively, a Delaunay simplex conv(zX) is in KB if its corresponding Voronoi cell νX intersects with the union of
balls

⋃
X.3 A simplex in an alpha complex is referred to as an alpha simplex. The alpha shape of B is the underlying

space of KB , which we denote by |KB |, namely, the union of all the simplices in KB .
We give a proposition regarding alpha complexes that forms the ideas behind almost every main result found in

this paper, especially Theorem 5 in Sections 4 and 5.

Proposition 2. A simplex conv(zX) ∈KB if and only if there exists a ball in ν̂X with a negative weight.

Proof. If conv(zX) ∈KB , there exists a point p ∈ νX ∩b for a ball b ∈ X. Since πb(p) is negative and equal to πb′(p)

for any b′ ∈ X, (p,πb(p)) ∈ ν̂X . Conversely, if there is a ball b ∈ ν̂X with the weight wb is negative, then the point
zb ∈ ⋃

X. Since zb is also in νX , the simplex conv(zX) ∈KB . �
With this proposition, we can prove the following lemma about the relationship between the associated orthogonal

balls and the alpha simplex for Theorem 4, then Theorem 5.

Lemma 3. Suppose conv(zX) ∈KB . For every orthogonal ball b ∈ ν̂X , b ∩ conv(zX) = ∅.

Proof. From Proposition 2, there exists a point p ∈ νX ∩ (
⋃

X). The ball b = (p,wp) ∈ ν̂X has a negative weight
and is orthogonal to all balls in aff(X). This implies that all balls in aff(X) have positive weights. Any ball b′ in ν̂X is
orthogonal to aff(X) and this implies that aff(zX) ∩ b′ = ∅ for b′ ∈ ν̂X . �

Combining Proposition 1 with Lemma 3, we have the following theorem.

Theorem 4. Let b be an associated orthogonal ball of any νX ∈ VB . Then, b ∩ |KB | = ∅.

Proof. Let b ∈ ν̂X . For another conv(zX′) ∈ KB , we prove that it does not intersect with b. First, for any weighted
points b′ ∈ X′, and an associated orthogonal ball b̂′ ∈ ν̂X′ , we have π

b̂′(b′) � πb(b
′) from Proposition 1. This implies

π
b̂′(zb′) � πb(zb′). With Lemma 3, the vertex zb′ is also out of b because πb(zb′) � π

b̂′(zb′) � 0.
So we have zX′ ∩ b = ∅. To argue that conv(zX′) is also out of b, we partition the space into

h = {
p ∈ R

d | πb(p) � π
b̂′(p)

}
, and

h′ = {
p ∈ R

d | πb(p) � π
b̂′(p)

}
.

Since zX′ ⊆ h′, conv(zX′) ⊆ h′. In another word, each p ∈ conv(zX′) has a larger weighted distance to b than b̂′. Since
π

b̂′(p) � 0 by Lemma 3, πb(p) � 0. �
4. Subdividing alpha complex

In this section we introduce the notion of subdividing alpha complexes. Given a set of polygons in R
3, our goal is

to construct a set of weighted points whose alpha shape is the same as the space occupied by the polygons. We assume
the input given is in the form of a piecewise linear complex (PLC) which is a set P of vertices, line segments and
polygons.

Piecewise linear complex. For two elements σ1, σ2 ∈ P , we say σ1 is a face of σ2 if σ1 ⊂ σ2. Denote ∂σ is the
set of all the faces of σ . The interior of σ is the space σ − ⋃

∂σ . The elements of a PLC P is constrained by the
following two conditions:

1. all the faces of an element in P also belong to P , and,
2. for σ1, σ2 ∈P , their intersection is a common face of both or empty.

3 Recall that a ball b is viewed as a set of points {p | ‖p − zb‖2 < wb}, which excludes the boundary of b. For a simplex conv(zX) to be an alpha
simplex, the Voronoi region νX needs to intersect the interior of some ball in X.
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Fig. 2. An illustration of the function lgs.

The underlying space of P , denoted by |P|, is the space occupied by P . The k-skeleton of P is

P(k) = {
σ ∈P | dim(σ ) � k

}
.

The local gap size [9] is a function lgs : |P| 
→ R where lgs(x) is the radius of the smallest ball centered on x that
intersects an element of P that does not contain x. See Fig. 2 for some illustrations. It must be pointed out that lgs is
continuous on the interior of each element in P .

4.1. Conditions for subdividing alpha complex

An alpha complex KB is said to subdivide a piecewise linear complex P if the following two properties are satisfied.

P1. Every simplex in KB is contained in an element in P .
P2. Every element in P is a union of some simplices in KB .

We also call KB a subdividing alpha complex, or in short, an SAC, of P . Furthermore, if all the weights in B are less
than a real value ε, then KB is called an ε-SAC of P . Note that if KB is an SAC of P then |KB | = |P|.

Theorem 5 below will be used to construct the set of balls B that forms the SAC of P .

Theorem 5. Let P be a PLC and B be a set of balls. Define B(σ) = {b ∈ B | b ∩ σ �= ∅}. If B satisfies the following
two conditions:

C1. For X ⊆ B , if
⋂

X �= ∅ then conv(zX) ⊆ σ for some σ ∈ P , and,
C2. For each σ ∈ P , zB(σ) ⊆ σ ⊆ ⋃

B(σ),

then KB subdivides P .

A few notes concerning condition C2: A ball b ∈ B(ρ) does not intersect another element σ unless ρ is a face of σ .
Condition C2 also demands that B(ρ) ⊆ B(σ) whenever ρ is a face of σ . The two conditions proposed here are very
similar to the notion of protecting balls in computing the conforming Delaunay triangulation [10].

Fig. 3 illustrates how Theorem 5 can be used to obtain a set of weighted points whose alpha complex subdivides
a certain PLC. In the figure we focus our attention on the segment HL which is covered by 11 “white” weighted
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Fig. 3. An illustrated example of Theorem 5.

points. According to condition C1, none of these white weighted points intersect with weighted points located on the
polygon ABCDEFG. Thus, we avoid creating any extra alpha simplex between the segment HL and the polygon
ABCDEFG.

Furthermore, only the “white” weighted points intersect the segment HL and their centers are all located along
the segment HL(condition C2). Since they cover the whole segment, the white weighted points will form some alpha
simplices that partition the segment HL.

We divide the proof into two lemmas. Lemma 6 states that condition C1 implies property P1. Lemma 9 states that
conditions C1 and C2 imply property P2.

Lemma 6. If B satisfies condition C1, then every simplex in KB is contained in an element in P , that is, property P1.

Proof. It is immediate that every vertex in KB is inside an element in P . Let conv(zX) be a simplex in KB . By the
remark in the definition of alpha complex,

⋂
X �= ∅. Then, by condition C1, there is an element σ ∈ P such that

conv(zX) ⊆ σ . �
Before we proceed to prove the second part of the theorem, we give a lemma to assist the proof.

Lemma 7. If B satisfies conditions C1 and C2, for b ∈ B and σ ∈ P , we have

νb ∩ σ �= ∅ ⇒ zb ∈ σ.

Proof. Given νb ∩ σ �= ∅, assume that zb is not in σ . For a point p ∈ νb ∩ σ , p is inside
⋃

B(σ) and there exists a
ball b′ ∈ B(σ) such that π ′

b(p) < 0. However, p ∈ νb implies πb(p) � π ′
b(p) < 0. This contradicts the condition C2

because p is in both σ and b. �
In other words, this lemma states that the Voronoi region of b can intersect with an element σ ∈ P only if the center

of b is in σ . We claim that the converse is true, which is part of the following claim.
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Claim 8. If B satisfies conditions C1 and C2, for b ∈ B and σ ∈P(d), we have

1. zb ∈ σ ⇒ νb ∩ σ �= ∅,
2. |KB(σ)| = σ , and
3. for a simplex conv(zX) ∈ KB(σ), νX ∩ σ �= ∅.

Proof. We will prove this claim by induction on d � 0. Indeed, Claim 8 is true for d = 0 because for each vertex
σ ∈ P , B(σ) consists of only one ball b with center on σ . The vertex σ is only contained in b and so σ ∈ νb .4 The set
of balls

⋃
dim(σ )=0 B(σ) forms the alpha complex that is the same as P(0).

To simplify the notation, we denote by Bi = ⋃
dim(σ )=i B(σ ) and Ki , the alpha complex of Bi . Assuming the

claim is true for d = i − 1. By item 3 of our claim, if a simplex conv(zX) is an alpha simplex, the intersection
νX ∩P(i−1) �= ∅. Condition C2 implies every ball in Bi − Bi−1 does not intersect P(i−1). Thus, Ki−1 ⊆ Ki .

We consider the set B(σ), where σ ∈ P(i) and dim(σ ) = i. Since the balls in B(σ) are all centered on σ , we focus
only on the space aff(σ ). That is, when we say νb , we mean the Voronoi region of b restricted to aff(σ ).

Notice that DB(σ) forms a constrained Delaunay triangulation of σ because each ρ ∈ ∂σ is partitioned by the
Voronoi cells of B(ρ) and KB(ρ) remains in Ki . Furthermore, for a ball b whose center is in the interior of σ ,
its Voronoi cell does not touch any boundary element of σ because of Lemma 7. However, the Voronoi cell of b

is not outside σ , otherwise, we can find an orthogonal ball b̂ that has its center out of σ but intersecting b. This
contradicts Theorem 4 because the orthogonal ball also intersects the boundary of σ , which is partitioned into some
alpha simplices of Ki−1. So, we have νb ⊂ σ , in particular, νb ∩ σ �= ∅.

For the second item of the claim, it is equivalent to say that every element in DB(σ) with dimension i and within
σ , remains in KB(σ). For any ball b whose center is in the interior of σ , it is connected locally as a topological disk
because νb ⊂ σ . It means any such interior ball does not contribute to the boundary of KB(σ). If there exist a boundary
element in KB(σ) within σ , it has an (i − 1)-dimensional element that connects two balls from two faces of σ , which
contradicts conditions C1 and C2. Therefore, it is either that KB(σ) covers σ , or it is only the boundary of σ . Together
with the interior vertices of σ , the second case is false. Therefore |KB(σ)| = σ .

For the simplices in KB(σ) that are on the boundary of σ , the item 3 of this claim remains true. Otherwise, a simplex
conv(zX) has a vertex zb that is not on the boundary of σ . The Voronoi region νb is inside σ , thus, νX ⊂ σ . �

Statement 3 of the claim above immediately implies that if conv(zX) ∈ KB(σ) then νX ∩ σ ⊆ ⋃
X, thus, νX ∩ σ ∩

(
⋃

X) �= ∅. This is because condition C2 demands that σ is covered by
⋃

B(σ), thus, the points in νX ∩ σ must be
covered by balls in X.

Moreover, all the balls B − B(σ) do not intersect with σ . Thus, adding them will not effect the alpha simplices in
KB(σ). Therefore, KB(σ) ⊆ KB . Combining this with statement 2 of the claim above, we have:

Lemma 9. |P| ⊆ |KB |.

4.2. The algorithm

In this subsection we describe our algorithm to construct the ε-SAC of a given piecewise linear complex P . The
aim is to construct a set of balls B that satisfies conditions C1 and C2 in Theorem 5 and at the same time all the
weights of the balls are bounded above by an input real number ε > 0.

First, we fix a constant real number 0 < γ < 0.5. Then we construct the set of balls B(σ) for each σ ∈ P , starting
with those of dimension 0, then dimension 1 and ending with those of dimension 2.

The construction of B(σ) where dim(σ ) = 0 is trivial. For each vertex v in P , we add a ball with center v and
radius r = min(γ · lgs(v),

√
ε). So, B(v) = {(v, r2)}.

To describe the construction of B(σ) when σ is of dimension 1 or 2, we need the notation of restricted Voronoi
complex. The restricted Voronoi complex of a set of balls X on σ ∈ P , denoted by VX(σ), is the complex which
consists of νX ∩ σ , for all νX ∈ VX . A restricted Voronoi vertex u in VX(σ) is called positive if πb(u) > 0, for all

4 Here we abuse the notation. To be more precise, we should write that σ = {p} and p is contained only in b. So, p ∈ νb .
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1: for i = 1,2 do
2: for all σ ∈P and dim(σ ) = i do
3: X := ⋃

B(∂σ)

4: while there exists a positive restricted Voronoi vertex u in VX and u ∈ σ do
5: r := min(γ · lgs(u),

√
ε )

6: X := X ∪ {(u, r2)}
7: end while
8: B(σ) := X

9: end for
10: end for

Algorithm 1. To construct B(σ) for all σ ∈ P .

b ∈ X. Note that such a restricted vertex is outside every ball in X. To determine whether a restricted vertex is positive,
it suffices to compute πb′(u) where u is the restricted Voronoi vertex in the restricted Voronoi cell νb′(σ ).

Algorithm 1 describes the construction of B(σ) where dim(σ ) = 1,2. The basic idea is to add a ball centered on
a positive restricted Voronoi vertex in an edge (or, a polygon) until it is covered by the balls. To avoid unwanted
elements, we set the radius of every ball to be less than both

√
ε and γ times the lgs of the ball center.

Fig. 4 illustrates some steps of Algorithm 1 when dim(σ ) = 1. In the beginning we have the set X = B(H) ∪
B(L) = {b1, b2}, since B(H) = {b1} and B(L) = {b2}. The algorithm computes the restricted Voronoi complex
VX(HL). The restricted Voronoi vertex νb1,b2(HL) is positive, so we add the ball b3, centered on νb1,b2(HL), to
X. Then we recompute VX(HL). The restricted Voronoi vertex νX(HL) is positive. So we add the ball b4, centered
on νb1,b3(HL), to X. We repeat the whole process until there is no more positive restricted Voronoi vertex in VX(HL).

We claim that our algorithms terminate and the output B = ⋃
σ∈P B(σ) satisfies both conditions C1 and C2. It

should be clear that all weights in B are at most ε. Since every ball with center p has radius less than 0.5 × lgs(p), it
is obvious that condition C1 is satisfied. Condition C2 follows from Proposition 10 below. Lemma 12 establishes the
termination of our algorithm.

Proposition 10. Let X be a set of balls. Suppose zX ⊆ σ . Then σ ⊆ ⋃
X if and only if there is no positive restricted

Voronoi vertex in VX(σ).

Proof. The “only if” part is immediate. We will show the “if” part. Suppose there is no positive restricted Voronoi
vertex in VX(σ). We claim that νb(σ ) ⊆ b for all b ∈ X. This claim follows from the fact that νb(σ ) is the convex
hull of its Voronoi vertices and bounded. Thus, by our assumption that all the restricted Voronoi vertices are not
positive, it is immediate that νb(σ ) ⊆ b for any b ∈ X. Since σ is partitioned into νb(σ ) for all b ∈ X, it follows that
σ ⊆ ⋃

X. �
To establish the termination of the algorithm, we observe the following remark.

Remark 11. Let σ ∈ P and let Γ ⊂ σ be a closed region such that it does not intersect the boundary of σ . Then there
exists a constant c > 0 such that for every point p ∈ Γ , lgs(p) > c.

The reasoning is as follows. We observe that lgs is a continuous function on Γ . Moreover, Γ is compact. Thus,
there exists p0 ∈ Γ such that lgs(p0) = minp∈Γ lgs(p). The value lgs(p0) �= 0 since p0 is in the interior of σ . Thus,
we can choose 1

2 lgs(p0) as the value for c.

Lemma 12. Algorithm 1 terminates.

Proof. It suffices to show that for each σ the while-loop does not iterate infinitely many times. We concern ourselves
only with dim(σ ) = 1. The case for dim(σ ) = 2 is similar, thus, omitted. The proof is by contradiction and it follows
from the fact that each element ρ in P is compact.

Assume to the contrary that for some edge σ = (v1, v2) ∈ P the while-loop iterates infinitely many times. That
is, it inserts infinitely many balls to B(σ) whose centers are in the region σ − (b1 ∪ b2) where bi ∈ B(vi) for i = 1,2.
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Fig. 4. An illustrated example of Algorithm 1 on the segment HL.

The region σ − (b1 ∪ b2) is a closed region which does not intersect with the boundary of σ . By Remark 11, there
exists a constant c > 0 such that all the radii of the balls are greater than c.

Moreover, σ − (b1 ∪ b2) is compact, so if B(σ) contains infinitely many balls, then there are two balls b and b′
whose centers are at the distance less than c. Without loss of generality, we assume that b was inserted before b′. This
is impossible, because at the time b′ was inserted, its center would be a negative restricted Voronoi vertex. Therefore,
the while-loop iterates only finitely many times.

Readers may concern about the number of balls used in creating the ε-SAC, which depends on the function lgs and
input ε. For a good approximation of the object, we assume the user may set a value for ε that is smaller than the local
gap size in general. If we assume the local gap size dominates, each polygon with area a is covered by approximately
O(a/ε2) balls. If the totally surface area of O is A, the number of balls is O(A/ε2).

5. Approximating polyhedral object with a union of balls

We define a polyhedral object to be O ⊆ R
3 such that: O is a 3-dimensional compact manifold and its boundary,

denoted by ∂O, is decomposable into a PLC, namely P . We assume that |P| is a 2-manifold without boundary.
Our method in approximating O with a union of balls can be summarized as follows.

1. Construct a set of balls B such that KB is an ε2-SAC of P .
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2. Compute the Voronoi complex of B .
3. Let T be the set of Voronoi vertices in VB which are located inside the object O.
4. Let B⊥ be the set of all associated orthogonal balls of νX ∈ T .
5. Output B⊥.

We will show that
⋃

B⊥ approximates the object O well, in the sense, that the Hausdorff distance between ∂
⋃

B⊥
and ∂O is less than ε and they are homeomorphic. The approach suggested here is very similar to the power crust
method proposed by Amenta et al. [1]. As analogy, we can view the ε-SAC as the sample points of the object O and
B⊥ as the “polar” balls, defined in [1].

We give here the definition of Hausdorff distance. The Hausdorff distance from a set A to a set B is d(A,B) =
supa∈A infb∈B ‖a − b‖. The Hausdorff distance between two sets A and B is the larger value between d(A,B) and
d(B,A).

First, we prove that the Hausdorff distance between ∂
⋃

B⊥ and ∂O is less than ε. By Theorem 4,
⋃

B⊥ ∩ ∂O is
empty, and by Claim 8, every center of B⊥ lies within O. Therefore,

⋃
B⊥ is contained in O and so is ∂

⋃
B⊥. With

the following lemma, we can prove that ∂
⋃

B⊥ ⊂ ⋃
B . In this lemma, the convex hull of a set of balls is similar to

the definition of the affine hull of a set of balls in Eq. (1) except that all the coefficients λi � 1.

Lemma 13. Let X = {b1, b2, b3, b4} and b a ball such that {b} ⊥ X. Then,

conv(zX) −
⋃

X ⊆ b.

Proof. Let p ∈ conv(zX)−⋃
X and w ∈ R such that (p,w) ∈ conv(X). Since

⋃
X = ⋃

conv(X), the weight w < 0.
Furthermore, (p,w) is orthogonal to b. Thus, ‖zb − p‖2 − wb = w < 0. Therefore, p ∈ b. �

This lemma implies that no point in ∂
⋃

B⊥ lies in O − ⋃
B . Thus, ∂

⋃
B⊥ ⊂ ⋃

B and we have the following
theorem.

Theorem 14. The Hausdorff distance between ∂
⋃

B⊥ and ∂O � ε.

For the homeomorphism proof, we leave it together with the skin approximation in the end of next section, namely,
Theorem 19.

6. Approximating polyhedral object with the skin surface

In this section we discuss our method in obtaining a skin surface which approximates a given polyhedral object.
We start by reviewing the basic definition of skin surface in Section 6.1, to be followed by the construction of the
approximation and the proofs of homeomorphism and Hausdorff distance guarantee.

6.1. The skin surface

The skin surface was first defined by Edelsbrunner [12] based on an algebraic structure of balls. Readers interested
in a detailed treatment of the algebra of balls may find the text by Pedoe [16] useful.

With the additions and scalar multiplication of balls in Section 2.1, we can define the convex hull of a set of balls
B = {b1, . . . , bn} as

conv(B) =
{

n∑
i=1

γibi

∣∣∣∣
n∑

i=1

γi = 1 and γi � 0 for all i = 1, . . . , n

}
.

It must also be noted that
⋃

B = ⋃
conv(B) [12]. For a ball b and t ∈ R,we define bt = (zb, twb). For a set of balls

B , Bt is defined as Bt = {bt | b ∈ B}.
For 0 � t � 1, the skin body of a set of balls B is defined as

bodyt (B) =
⋃

conv(B)t ,
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that is, the set of points obtained by shrinking all balls in the convex combination of B . The skin surface is the
boundary of the skin body of B , denoted by

skint (B) = ∂ bodyt (B).

It is known that skint (B) is a smooth surface for 0 < t < 1.
Note that

⋃
B = body1(B) and bodys(B) ⊆ bodyt (B) for 0 � s < t � 1. We cite here an important relation

between a union of balls
⋃

B and the skin body that it generates.

Theorem 15. The union of balls
⋃

B is homeomorphic to bodyt (B), for 0 < t � 1 [12].

At this point, we highlight a rather obvious, but important, fact concerning the skin body and surface. Though very
trivial in nature, this is the main idea of the proof in the next section.

Remark 16. Let B be a set of balls and b ∈ conv(B). If wb > 0 then the point zb is in the interior of the bodyt (B), for
all 0 < t � 1.

6.2. Approximation by the skin surface

For each simplex conv(zX) ∈ DB , we define the orthogonal ball of conv(zX) as b⊥
X = (z⊥

X,w⊥
X) such that

z⊥
X = aff(zX) ∩ νX,

w⊥
X = ∥∥z⊥

Xzi

∥∥2 − wi,

for all bi ∈ X such that b⊥
X ⊥ bi . We pick all the simplices inside O and define the orthogonal balls of these simplices

as

B∗ = {
b⊥
X | conv(zX) ⊆ O, conv(zX) ∈ KB,z⊥

X �= ∅} ∪ B⊥.

We claim that:

Lemma 17. O − ⋃
B = body0(B∗).

Proof. First, we show that O − ⋃
B ⊆ body0(B∗). Let p ∈ O − ⋃

B and it is in a Voronoi cell νb1 in the Voronoi
complex of B for some b1 ∈ B . The goal of this proof is to show that there exists a ball bp = (p,wp) in conv(B∗)
such that wp � 0, and it implies p ∈ body0(B∗).

Consider the set of tetrahedra

Φ1 = {
conv

({
z⊥{b1}, z

⊥
X1

, z⊥
X2

, z⊥
X3

}) | z⊥
Xi

∈ B∗ and b1 ∈ Xi

}
.

Note that the union of all tetrahedra in Φ1 contains O ∩ νb1 because the tetrahedra in Φ1 contain all the intersection
of Voronoi edges of νb1 with ∂O and Voronoi vertices of νb1 inside O. This implies the existence of a tetrahedron
conv({z⊥

b1
, z⊥

X1
, z⊥

X2
, z⊥

X3
} ∈ Φ such that it contains p.

Let bp = (p,wp) ∈ conv({b⊥{b1}, b
⊥
X1

, b⊥
X2

, b⊥
X3

}). Because b1 ⊥ b⊥{b1} and b1 ⊥ b⊥
Xi

for i = 1 to 3, we have b1 ⊥ bp .

Thus, wp � 0 if p is not in b1. Since bp is also in conv(B∗) and it implies p ∈ body0(B∗).
For O − ⋃

B ⊇ body0(B∗), first we cite the result in Cheng’s thesis [3] that if b∗ is in the convex hull of B∗ such
that b∗ = ∑

i λibi for bi ∈ B∗, the weighted distance between b∗ and another ball b is

πb(b
∗) =

∑
λiπb(bi).

For every b ∈ B and bi ∈ B∗, πb(bi) � 0 because B∗ is a subset of all the associated orthogonal balls. Thus, πb(b
∗) =

‖zbzb∗‖2 − wb − wb∗ � 0 if b ∈ conv(B∗). If the center of b∗ is inside
⋃

B , ‖zbzb∗‖2 < wb and wb∗ < 0. Therefore,
the interior of

⋃
B does not touch body0(B∗) because it is the union of all centers of the balls in B∗ which have

non-negative weights. �
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This lemma immediately implies the Hausdorff distance between skint (B∗) and ∂O is less than ε because the
surface skint (B∗), for 0 < t < 1, is located in between the surface ∂

⋃
B within O and the surface ∂O.

The homeomorphism between skint (B∗) and ∂O can be established via the smooth deformation contraction from
the boundary of

⋃
B within O, i.e. skin0(B∗) to |P| [11].5 Therefore, we have the following theorem.

Theorem 18. skint (B∗) is homeomorphic to ∂O and the Hausdorff distance between bodyt (B∗) and ∂O is less than ε.

All the balls in B∗ − B⊥ have negative weights. Thus,
⋃

B⊥ = ⋃
B∗ = skin1(B∗), and the above theorem, we

also have:

Theorem 19.
⋃

B⊥ is homeomorphic to O.

7. Conclusion

In this paper we propose a method to approximate a given polyhedral object with a union of balls (Theorems 14
and 19), as well as, with the skin surface (Theorem 18). By representing polyhedral objects with a union of balls
and the skin surface, we hope to be able to perform deformations between objects. Moreover, we would also like
to apply the same idea to obtain an approximation of smooth object with the skin surface. Such representation will
enable a deformation to be performed between smooth objects. The other main result is Theorem 5, together with
the algorithm to compute the subdividing alpha complex. Although these are all in R

3, the proof is able to extend
for objects in arbitrary dimensions. Also, other than using the local gap size for condition C1, we may also use the
protecting cells in the earlier work of the authors [7].

One possible future direction is to implement the same idea in approximating smooth objects with skin surfaces.
Amenta et al. [1] showed that given a sufficiently dense sample points on a smooth surface, the set of polar balls
obtained can be used to approximate the object well. There is an analogy between such approach with our method
here. We can view the ε-SAC constructed as the sample points and B⊥ as the polar balls.

By appropriately assigning certain weights to the sample points and taking the polar balls, we hope to be able to
approximate the smooth object by a skin surface. At this point, the usefulness of this idea is still under investigation.
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