
Fundamenta Informaticae 69 (2006) 301–318 301

IOS Press

Regular Expressions for Languages over Infinite Alphabets

Michael Kaminski
�

Department of Computer Science

Technion – Israel Institute of Technology

Haifa 32000, Israel

kaminski@cs.technion.ac.il

Tony Tan

Department of Computer Science

National University of Singapore

3 Science Drive 2

Singapore 117543

Abstract. In this paper we introduce a notion of aregular expressionover infinite alphabetsand
show that a language is definable by an infinite alphabet regular expression if and only if it is accepted
by finite-state unification based automaton– a model of computation that is tightly related to other
models of automata over infinite alphabets.

Keywords: Finite state automata, infinite alphabets, regular expressions

1. Introduction

A new model of finite-state automata dealing withinfinite alphabets, calledfinite-state datalog automata
(FSDA) was introduced in [16]. These automata were intendedfor the abstract study of relational lan-
guages. Since the character of relational languages requires the use of infinite alphabets of names of
variables, in addition to a finite set of states, FSDA are equipped with a finite set of “registers” capable
of retaining a variable name (out of an infinite set of names).The equality test, which is performed in
�

Address for correspondence: Department of Computer Science, Technion – Israel Institute of Technology, Haifa 32000, Israel

302 M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets

ordinary finite-state automata (FA) was replaced withunification, which is a crucial element of relational
languages.

Later, FSDA were extended in [7] to a more general model dealing with infinite alphabets, called
finite-memory automata(FMA). FMA were designed to accept the infinite alphabet counterpart of the
ordinary regular languages. Similarly to FSDA, FMA are equipped with a finite set of registers which
are either empty or contain a symbol from the infinite alphabet, but contrary to FSDA, registers in FMA
cannot contain symbols currently stored in other registers. By restricting the power of the automaton
to copying a symbol to a register and comparing the content ofa register with an input symbol only,
without the ability to performanyfunctions, the automaton is only able to “remember” a finite set of input
symbols. Thus, the languages accepted by FMA possess many ofthe properties of regular languages.

Whereas decision of the emptiness and containment for FMA- (and, consequently, for FSDA-) lan-
guages is relatively simple, the problem of inclusion for FMA-languages is undecidable, see [11, 12].

An extension of FSDA to a general infinite alphabet calledfinite-state unification based automata,
(FSUBA) was proposed in [17]. These automata are similar in many ways to FMA, but are a bit weaker,
because a register of FSUBA may contain a symbol currently stored in other registers. It was shown
in [17] that FSDA can be simulated by FSUBA and that the problem of inclusion for FSUBA languages
is decidable.

While the study of finite automata over infinite alphabets started as purely theoretical, since the
appearance of [7] and [8] it seems to have turned to more practically oriented. The key idea for the
applicability is finding practical interpretations to the infinite alphabet and to the languages over it.

� In [11, 12], members of (the infinite) alphabet
�

are interpreted as records ofcommunication ac-
tions, “send” and “receive” of messages during inter-process-communication. Words in a language
�

over this alphabet are MSCs,message sequence charts, capturing behaviors of the communica-
tion network.

� In [4], members of
�

are interpreted as URLs’ addresses of internet sites, a wordin
�

is interpreted
as a “navigation path” in the internet, the result of some finite sequence of clicks.

� In [5] there is another internet-oriented interpretation of
�

, namely, XML mark-ups of pages in a
site.

In this paper we introduce a notion of aregular expressionfor languages over infinite alphabets and
show that a language is definable by an infinite alphabet regular expression if and only if it is accepted
by an FSUBA.

The paper is organized as follows. In the next section we recall the definition of FSDA from [16] and
in Section 3 we recall the definition of FSUBA from [17]. In Section 4 we present the main result of our
paper –unification based regular expressionsfor languages over infinite alphabets, whose equivalence
to FSUBA is proven in Sections 5 and 6. Section 7 contains the proof of a modification of a technical
lemma from [17]. Finally, Section 8 deals with the complexity of intertranslations between FSUBA and
unification based regular expressions.

2. Finite-state datalog automata

We start with examples ofrelational languages which can and cannot be defined by finite-state datalog
automata (FSDA). Relational languages are languages over infinite alphabets whose symbols are of the

M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets 303

form� �������, where� belongs to a finite alphabet of binary relation symbols and�� and�� come from
an infinite alphabet of variables. For example, the relational language

������������ ��������������	�

������ �������
 � � ��
generated by the Horn grammar

� ����� ���������� ������ ��������������� �����
is definable by finite-state datalog automata, see [16, Section 2], whereas the relational language

�� �������� �������

� ���������

� ���������

� �������� �������
 � � ��
generated by the Horn grammar

� ��� �������� ���� ������� ������ �����
is not, because the restrictions of FSDA-languages to finitealphabets are regular, see [8, Proposition 1].

Next we recall the definition of FSDA from [16].
A finite-state datalog automatonor, shortly, FSDA, is a system� � �������� �!�"�#�, where

� �
and � are a finite alphabet ofbinary relation symbolsand an infinite alphabet ofvariables,

respectively,
� $ � � % and& '(� ,1 whereas the input alphabet of� is

�)� �
. That is, an

input symbol is a relation� �������, where� (�
is a binary relation symbol and����� (� are

variables.

� �, � (�, and ! * � are a finite set of states, the initial state, and the set of final states,
respectively.

� " is the number of registers of�, which are capable of either being empty or retaining a variable
from � .

� # * �) �) ����� + + + � "�) ����� + + + � "�) �,�-�-...-/0) � is the transition relation whose
elements are calledtransitions. The intuitive meaning of the transition relation is as follows. If the
automaton is in state� reading relation� ������� and there is a transition���� � 1�� 1��2��3� (#
such that the register14 either contains�4 or is empty,5 � ���, then the automaton can enter state�3, copy�4 into the14th register, if the latter is empty, and empty (reset) the registers whose indices
belong to2. The above registers1� and1� are referred to as thetransition registers.

An actual state of an FSDA� is an element of� together with the contents of all registers of
the automaton. Thus,� has infinitely many states2 which are pairs���6�, where� (� and 6 (
�� 7 �&��/. Such pairs are calledconfigurationsof � and are denoted�8

. The pair�� �&/�, denoted�8 , is the initial configuration, and the configurations with the first component in ! are calledfinal
configurations. The set of final configurations is denoted!8

.
The transition relation# induces the following relation#8

on �8)�)�)�)�8
. Let ���3 (�

and6 � ����

�/ �63 � �3��3�

�3/ (�� 7 �&��/. Then����6��� �������� ��3 �63�� (#8
if and

only if there is a transition���� � 1�� 1��2��3� (# such that the following four conditions are satisfied.

1In this paper we reserve9 to denote an empty register.
2This is the major difference between ordinary finite-state automata and finite-state automata over infinite alphabets.

304 M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets

1. ��� (��4�&�
, 5 � ���. That is, the transition register14 either contains�4 or is empty.

2. If 14 '(2, then�3�� � �4, 5 � ���. That is, if the transition register14 is not reset in the transition,
its content is�4.

3. For all
� (2, �3� � &.

4. For all
� '(2 7 �1��1��, �3� � �� .

Let � � ����������������	�

������������� be a word over
�)� �

. A run of the automaton
� on � consists of a sequence of configurations� ���� + + + ��� such that� is the initial configuration�8 ,
and ��4����4 ���4�����4���4� (#8

, 5 � ���� + + + ��.
We say that� accepts� if there exists a run� ���� + + + ��� of � on � such that�� (! 8

. The set
of all words accepted by� is denoted by

���� and is referred to as an FSDA-language. We refer the
reader to [16] for additional examples of FSDA-languages and their relation to DATALOG.

3. Finite-state unification based automata

Till the end of this paper
�

is an infinite alphabet not containing&. For a word6 � ����

�/ over
� 7 �&�

, we define thecontentof 6, denoted�6�, by �6� � ��� '� &
 � � ���� + + + � "�. That is, �6�
consists of all symbols of

�
which appear in6.

Definition 3.1. ([17]) A finite-state unification based automaton(over
�

) or, shortly, FSUBA, is a sys-
tem� � ������ �!���	�#�, where

� �, � (�, and ! * � are a finite set of states, the initial state, and the set of final states,
respectively.

� � �
�
�

/ (��7�&��/, " � �, is theinitial assignment– register initialization: the symbol
in the 5th register is
4. Recall that& is reserved to denote an empty register. That is, if
� � &,
then the

�
th register is empty.

� 	 * ��� is the “read only” alphabet whose symbols cannot be copied into empty registers.3 One
may think of	 as a set of the language constants which cannot be unified, cf [16].

� # * �)����� + + + � "�)�,�-�-...-/0)� is the transition relation whose elements are called transi-
tions. The intuitive meaning of# is as follows. If the automaton is in state� reading symbol� and
there is a transition��� 1�2��3� (# such that the1th register either contains� or is empty, then
the automaton can enter state�3, write � in the 1th register (if it is empty), and erase the content
of the registers whose indices belong to2. The 1th register will be referred to as thetransition
register.

Like in the case of FSDA, an actual state of� is an element of� together with the contents of all
registers of the automaton. That is,� has infinitely many states which are pairs���6�, where� (�
and6 (�� 7 �&��/. These pairs are calledconfigurationsof �. The set of all configurations of� is

3Of course, we could let� beanysubset of
. However, since the elements of� cannot be copied into empty registers, the
automaton can make a move with the input from� only if the symbol already appears in one of the automaton registers, i.e.,
belongs to the initial assignment.

M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets 305

denoted�8
. The pair�� ���, denoted�8 , is called theinitial configuration,4 and the configurations with

the first component in! are calledfinal configurations. The set of final configurations is denoted!8
.

Transition relation# induces the following relation#8
on �8)�)�8

.
Let ���3 (�, 6 � ����

�/ and63 � �3��3�

�3/. Then the triple����6���� ��3 �63�� belongs

to #8
if and only if there is a transition��� 1�2��3� in # such that the following conditions are satisfied.

� Either�� � & (i.e., the transition register is empty in which case� is copied into it) and� '(,
or �� � � (i.e., the transition register contains�).

� If 1 '(2, then�3� � �, i.e., if the transition register is not reset in the transition, its content is�.
� For all

� (2, �3� � &.
� For all

� '(2 7 �1�, �3� � �� .
Let � � ����

�� be a word over

�
. A run of � on � consists of a sequence of configurations

� ���� + + + ��� such that� is the initial configuration�8 and ��4����4 ��4� (#8
, 5 � ���� + + + ��.

We say that� accepts�, if there exists a run� ���� + + + ��� of � on� such that�� (! 8
. The set of

all words accepted by� is denoted by
���� and is referred to as an FSUBA-language.

Example 3.1. Let � � ��� �������� ����&/��

�� � ���� + + + �����#� be an�" � ��-register FSUBA,
where# consists of the only one transition��� 1� %�� �. Alternatively,� can be described by the following
diagram.

���
	
� 1

�
% ��

	

��

�
�

&

 & ��

 ��
initialization

Obviously,
���� � � �	, if 1 � ", and

���� � ����/�, otherwise.

Example 3.2. ([17]) Let � � ��� ���������� ���, &�%�#� be a one-register FSUBA, where# consists
of the following two transitions:

� ��� �� %���
� ��� �� %�� �,

see the diagram below.

���
	
� �

�
% ��

	

�

�
�

% ��
	

��

�
�

&
initialization

4Recall that�� and� denote the initial state and the initial assignment, respectively.

306 M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets

Then
���� � ����� (��
 �� � ���: an accepting run of� on �� is ���&�� ������ �� ���.

In contrast, the language
� � ����� (��
 �� '� ��� is not an FSUBA language.5 To prove that,

assume to the contrary that for some FSUBA� � ������ �!���	�#�, � � ����. Since
�

is infinite
and ��� is finite,

����� contains two different symbols�� and��. By the definition of
�

, it contains the
word ����. Let �� ���� ����6��� ����6��, 64 � �4-��4-�

�4-/, 5 � ���, be an accepting run of�
on ���� and let1 be the transition register between configurations����6�� and ����6��. Since neither
of �� and�� belongs to� and�� '� ��, ��-� � & and��-� � ��. Then, replacing��-� with �� in
�� ���� ����6��� ����6�� we obtain an accepting run of� on ����, which contradicts

� � ����.6

The following example shows how FSDA can be simulated by FSUBA.

Example 3.3. ([17]) Let � � �������� �!�"�#�, � � ������� + + + ����, be an FSDA. Consider an
FSUBA �3 � ����3 � �3 �! 3 ���	�#3�, such that

� � � � 7�
,

� �3 � � 7 �#)��"����"����,
� �3 � � ,
� ! 3 � ! ,

� � � &/����

 ��,
� 	 � �

, and

� # consists of all transitions of the form 1, 2, or 3 below

1. ���" ��� %� ������ � 1�� 1��2��3���"����,
2. ������� � 1�� 1��2��3���"���� 1�� %� ������ � 1�� 1� �2��3���"����, or

3. ������� � 1�� 1��2��3���"���� 1� �2��3�,
where����� � 1�� 1��2��3� (#.

That is, we break each transition

��
	
� ��

	
�32 �
�� �1�� 1��

of # into three “consecutive” transitions

5It can be readily seen that� is accepted by afinite-memoryautomaton introduced in [7].
6The decision procedure for the inclusion of FSUBA-languages in [17] is based on a refined version of this argument.

M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets 307

��
	
�

%
�

" ��
	
�

������� � 1�� 1��2��3���"��� 1�

�
%

	
�

������� � 1�� 1��2��3���"���

2
�

1�

��
	
�3

of #3.
A straightforward induction on the word length shows that

����������� �����	�

������������� (����
if and only if

�����������	

���������� (���3�+
Example 3.4. Let � � ��� ���������� ����&&�%�#� be a 2-register FSUBA, where# consists of the
following three transitions:

� ��� �� %���,
� ��� �� ������,
� ��� �� %�� �,

see the diagram below.

���
	
� �

�
%

�

��
	

�

�
���

�
�

% ��
	

��

�
�

& &
initialization

It can be easily seen that
���� � �����

�� (��
 �� � ���.

Example 3.5. ([17], cf [8, Example 1].) Let� � ��� ���������� ����&&�%�#� be an FSUBA with
two registers and# consists of the following five transitions:

308 M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets

� ��� �� ������,
� ��� �� %���,
� ��� �� ������,
� ��� �� %�� �, and

� �� � �� ����� �,
see the diagram below.

�
�

��
	
�

�
���

�
�

%
�

��
	

�

�
���

�
�

%
�

��
	

��

�
�

�
���

& &
initialization

It can be easily seen that

���� � �����

�� (��
 there exist � � 5 � 53 � � such that�4 � �4��+
That is,

���� consists of all words over
�

in which some symbol appears twice or more. For example,
an accepting run of� on ����� is

���&&�� ���&&�� ��� �&�� ��� �&�� �� � �&�� �� � �&�+
Example 3.6. ([17]) Let � � ������ �!���	�#� be an FSUBA such that& does not appear in�
and for all ��� 1�2��3� (#, 2 � %. Then

���� is a regular language over���. In general, since the
restriction of a set of configurations to a finite alphabet is finite, the restrictions of FSUBA-languages to
finite alphabets are regular, cf. [8, Proposition 1].

4. Regular expressions for FSUBA languages

In this section we introduce an alternative description of FSUBA languages by the so calledunification
basedexpressions which are the infinite alphabet counterpart of the ordinary regular expressions.

Definition 4.1. Let � � ���� + + + ��/� be a set of variables such that� $ � � % and let	 be a finite
subset of

�
. Unification based regular expressions over���	�, or shortly UB-expressions, if���	� is

understood from the context, are defined as follows.

� %� �, and each element of� 7 	 are UB-expressions.

� If �� and�� are UB-expressions, then so is��� � ���.

M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets 309

� If � 3 *� and�� and�� are UB-expressions, then so are���
�� ��� and ������ �.
The intuition behind the above definition is as follows. Eachvariable in� corresponds to a register

of the automaton and a “variable” assignment of symbols from
� � 	 to variables in� is the register

assignment. Finally, subscripts� 3 indicate the set of registers reset by the automaton.
The definition of languages defined by UB-expressions is based on the observation that the set of

all sequences of an"-register FSUBA diagram labels corresponding to its accepting runs is a regular
language over

����� + + + � "�) �,�-�-...-/0. Thus, with a unification based regular expressions� over
���	� we associate an ordinary regular expression over (finite) alphabet� 7 	 7 �� , denoted�, that
is defined by induction as follows.

� If � (�%� �� 7� 7 	, then� is �.

� ��� � ��� is ��� � ���.
� ���
�� ��� is ����
� 3�
���.
� Finally, ����� � is ���
� 3���.
Let 6 � ����

�� (�� 7	7�� ��. With the5th symbol�4 of 6, 5 � ���� + + + ��, we associate

a word�4 (� 7 ��� as described below, cf. [7, Definition 3].

� If �4 (, then�4 � �4.
� If �4 � � 3 *�, then�4 � �.

� If �4 � � (�, then�4 satisfies the following (global) conditions.

– If for each53 � 5 such that�4� � �, there exists533, 53 � 533 � 5, such that� (�4��,7 then�4
can be any element of

� �	.

– Otherwise, let53 be the maximal integer less than5 such that�4� � � and no symbol� 3 *�
that appears between the53th and the5th positions of6 contains�. Then�4 � �4�.

The word6 � ����

��, where�4 is as defined above,5 � ���� + + + ��, is called aninstanceof6. The set of all instances of6 is denoted by
� �6�.

Example 4.1. Let 6��6� (�� 7 	 7 �� ��. Then
� �6�%6�� � � �6�6��.8

Next, for a language
� * �� 7	7�� ��, we denote by��� the set of all instances of all elements of

�
. That is,��� � �

���
� �6�.

Finally, for a UB-expression� we define the language
���� (over

�
) as the set of all instances of the

elements of
����: ���� � ������.9

7Of course, in such case,���� must be of the form	 �
	.
8Note that��
�� � �	 �� � ����.
9Recall that���� is a language over	 �� � ��.

310 M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets

Example 4.2. It can be readily seen that
� and
��

behave like the ordinary concatenation and Kleene
star, respectively. In addition, for a non-empty� 3, ��� is redundant, because

������ � � ����
�� �����.10

Example 4.3. The language from Example 3.2 is
���
� ��. Similarly, for a UB-expression� � �
�

�����
� � over ������� %�, ���� consists of all words over
�

having the same first and last symbols.
Thus,

�������
� �
� �����
� �
� ������ is the language from Example 3.5.

Example 4.4. Consider a subclass of UB-expressions, calledFSDA-expressions, that is defined below.

� %� �, and UB-expressions of the form��
� ���
� ����, where
� (and����� (� are FSDA-

expressions.

� If �� and�� are FSDA-expressions, then so are��� � ���, ���
�� ���, and������ �.
It easily follows from Example 3.3 and the constructions in Sections 5 and 6 that FSDA languages are
defined by FSDA-expressions and vice versa, each FSDA expression defines an FSDA language.

Theorem 4.1. A language is defined by a UB-expression if and only if it is accepted by an FSUBA.

The proof of the “if” part of Theorem 4.1 is based on a tight relationship between FSUBA and the
ordinary finite automata. It is presented in the next section. The proof of the “only if” part of the theorem
is based on the relevant closure properties of FSUBA-languages and is quite standard. For the sake of
completeness, we present it in Section 6.

We conclude this section with one more closure property of FSUBA-languages that is an immediate
corollary to Theorem 4.1.

Corollary 4.1. FSUBA languages are closed under reversing.11

Proof:
It can be easily verified that, for a UB-expression�, ������� � �����, where�

�
is defined by the

following induction.

� If � (�%� �� 7� 7 	, then�
�

is �.

� ��� � ���� is ���� � �
�� �.

� ���
�� ���� is ����
�� ��� �.
� ������� �� is ������� . ��

Remark 4.1. Using an alternative equivalent model of computation that is similar to M-automata intro-
duced in [8], one can show that FSUBA languages are also closed under intersection.12

10Of course,� is redundant as well (but, still, very useful), because��
�� 	
��.
11It should be pointed out that FMA languages are not closed under reversing, see [8, Example 8]. Therefore, it is unlikely that
there is a kind of regular expressions for FMA languages.
12It follows from Example 3.2 that FSUBA languages are not closed under complementation.

M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets 311

5. Proof of the “if” part of Theorem 4.1

The proof of the “if part” of Theorem 4.1 is based on a tight relationship between FSUBA and ordinary
FA. We shall use the following model of FA.

Definition 5.1. ([10]) A (non-deterministic) finite state automaton over a finite alphabet
�3 is a system� � ���� �!���, where

� � is a finite set of states.
� � (� is the initial state.
� ! * � is the set of final states.
� � is a finite subset of�)�3�)� called thetransition relation.

A word 6 over alphabet
�3 is accepted by

�
, if there is a partition6 � ��

�� of 6, �4 (�3�,

and a sequence of states� ���� + + + ��� such that

� � � � ,
� �� (! , and
� and for each5 � �� �� + + + �� � �, ��4 ��4����4��� (�.

We shall also need the following modification of [17, Lemma 2](see Remark 5.1 below).

Lemma 5.1. Let � � ������ �!���	�#� be an"-register FSUBA, where��� � ������� + + + ����,
and	 � ������������� + + + ����. Then the language

���� is accepted by an FSUBA�3 of the form
����3 � �3 �! 3 �&/����

�� � ������� + + + �����#3� such that for each transition��� 1�2��3� (#3, 2 *����� + + + � "�.13

The proof of Lemma 5.1 is presented in Section 7.

Remark 5.1. The only difference between Lemma 5.1 and [17, Lemma 2] is that in the latter

1. some of the
��s may appear in two or more registers of the initial assignment, and

2. the indices of the registers which may be reset do not necessarily belong to
����� + + + � "�.

Let
�

be an FSUBA language. By Lemma 5.1, we may assume that
�

is accepted by an FSUBA
� � ������ �!�&/����

�� � ������� + + + �����#� such that for each transition��� 1�2��3� (#, 2 *����� + + + � "�.

Let� � ���� + + + ��/�and consider a finite state automaton
�� � ���� �!��� over� 7	7��,

where transition relation� is defined as follows. For every transition��� 1�2��3� (#, � contains:

� ������/� 3 � �3�, if 1 � ", and

� ������ 3 � �3�, if 1 � ",

where� 3 � ��4
 5 (2�
.

13That is, only the first� registers of�� may be reset.

312 M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets

Remark 5.2. Note that the diagrams of� and
��

differ only in the transition labels which can be
recovered from each other in a straightforward manner.

The proof of the “if” part of Theorem 4.1 is based on the fact that set of the sequences of labels of
the accepting paths of

��
is regular. Namely, the “if” part of Theorem 4.1 immediatelyfollows from

Theorem 5.1 below.

Theorem 5.1. Let � be a regular expression over� 7	7 �� such that
���� � ����� and let� be a

UB-expression that results from� in replacing each occurrence of� 3 * ������� + + + ���� with ��
�� ��,
each occurrence of
 with
�, and each occurrence of

�

with
��

.14 Then,
���� � ����.

Proof:
It follows from Example 4.1 that������ � ������. Therefore, since

���� � �����, the proof will be
completed if we show that

���� consists of all instances of the elements of
�����.

Let � � ��� + + + ��� be a path of edges in the diagram of�. One can think of� as the diagram of an
FSUBA, also denoted by�. Then

���� consists of all words of length� over
�

which “drive � through
� from its first to its last vertex (state).”

Let � denote the set of all paths� starting from the initial state and ending at a final state. Then

���� � �
���

����+

On the other hand, by Remark 5.2,� has the corresponding path in
��

, also denoted by�, that
differs from it only in the transition labels. These labels form a word over� 7 	 7 �� that we shall
denote by6�. Therefore,

����� � �6�
� (� �+
Consequently the equality

���� � ������� will follow if we prove that for each path�
� �6�� � �����

i.e.,
���� consists of all instances of6�.
The proof is by induction on the length� of �. The case of� � � is immediate because the only

instance of� is �.
For the induction step, we assume that equality

� �6�� � ���� holds for all paths� of length� and
shall show that it holds for all paths�3 of length� � �.

Let � be a path of length� and �3 � � � ��� 1�2��3� be a path of length� � �. Let 6�� �6���������.
If 1 � ", then, by the definition of

��
, ���� � ���/. Therefore,

���3� � ����������/� and, by
the definition of an instance of a word,

� �6�� � � �� �6�������/�. Since, by the induction hypothesis,� �6�� � ����, � �6�� � � ���3� follows.
If 1 � ", then, by the definition of

��
, ���� � ��.

Let 5 be the greatest integer less than� � � such that�4 is ��, if such integer exists, and be�,
otherwise. That is,5 is the last time register1 appears in�. Also, let 53 be the greatest integer less than

14Cf. Example 4.2.

M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets 313

� � � such that�� (�4�, if such integer exists, and be�, otherwise. That is,53 is the last time register1
is reset in�.

We shall distinguish between the cases of53 � 5 and53 � 5.
Assume first that53 � 5. Then

� �6�� � � �� �6����� �	�. Similarly, the1th register of FSUBA�3 is
reset at the53th move and not updated until its last move. Therefore,

���3� � �������� �	�. Since, by
the induction hypothesis,

� �6�� � ����, the desired equality
� �6�� � � ���3� follows.

Now assume that53 � 5. By the definition of an instance of a word, the symbol assigned to �� in the
5th position must be assigned to it again in the�����th position. That is,����

������ (� �6�� � if
and only if����

�� (� �6�� and���� � �4. Similarly, the1th register of FSUBA�3 is used in the
5th transition and is not reset till the end of the computation. Thus, a word is accepted by FSUBA�3 if
and only if it is accepted by� and the symbol that appears in the5th position of the word also appears in
its �� � ��th position. Since, by the induction hypothesis,

� �6�� � ����, the equality
� �6�� � � ���3�

follows in the latter case as well.
This completes the proof of the induction hypothesis and thetheorem.

��

6. Proof of the “only if” part of Theorem 4.1

The proof is quite standard: it is based on the relevant closure properties of FSUBA languages.15

Let � be a UB-expressions over���	�, where� � ������� + + + ��/� and	 � ������� + + + ����. We
shall prove by induction on the length of� that

���� is accepted by an FSUBA whose initial assignment� is &/��

�� and whose last� registers may not be reset,16 cf. Lemma 5.1.
The basis is, actually, Example 3.1 and for the induction step we start with the case in which� is

of the form ��� � ���. By the induction hypothesis, there are FSUBA�� � ��������- �!����	�#��
and �� � ��������- �!����	�#�� such that

����� � ����� and
����� � �����. Renaming

the automaton states, if necessary, we may assume that�� and �� are disjoint. Consider an FSUBA
� � ������ �!���	�#�, where� is a new initial state state,� � �� 7 �� 7 �� �,

! �
� !� 7 !�� if ��- '(!� and ��- '(!�

!� 7 !� 7 �� �� otherwise
�

and # � #� 7 #� 7 ��� � 1�2���
 ���- � 1�2��� (#� or ���- � 1�2��� (#��+
That is, depending on the first move,� acts either like�� or ��. Thus,

���� � ���� � ��� � ����� 7����� � ����� 7����� � ����+

Let � be of the form ���
�� ���. By the induction hypothesis, there are FSUBA�� and ��
such that

����� � ����� and
����� � �����. Let �� � ��������- �!����	�#�� and �� �

��������- �!����	�#�� Renaming the automaton states, if necessary, we may assume that�� and��
15In [17] the author deals with the inclusion problem only and does not address the closure properties of FSUBA languages at
all.
16That is, for each transition�� � �� ����� of the automaton,�

�� �� � � � ���.

314 M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets

are disjoint. Consider an FSUBA� � ����� 7 �����- �!����	�#�, where

� #� 7 #�7
����1� �5
 �4 (� 3�� ��- �
 for some2 * ����� + + + � "�

and some�3 (!�� ��� 1�2��3� (#��+
That is, instead of entering a final state of��, � may enter the initial state of�� and reset the registers
corresponding to the elements of� 3. Thus,

���� � ����
�� ��� � ����+
The case in which� is of the form������ �, � 3 *�, is similar to the above and is omitted.

7. Proof of Lemma 5.1

The proof basically follows the proof of [17, Lemma 2]. The idea lying behind the construction of�3
is quite standard. We replace all

��s in the registers of� with &, add to� � new registers containing��s,� � ���� + + + ��, and remember the registers of� containing
��s by a state of�3. That is, FSUBA

�3 � ����3 � �3 �! 3 �&/����

�� � ������� + + + �����#3� is defined as follows.

� �3 � �)�&������� + + + ��� � ��/.
The intended meaning of component����

�/ (�&������� + + + ��� � ��/ in �������

�/� (�3
is that it corresponds to the register component����

�/ of a configuration�������

�/� of
� in the following sense.

�� �
� �� � if �� (�&������� + + + ����

�� otherwise
� � � ���� + + + � "+

Note that in�3 only the �" ���th register contains
��, � � ���� + + + ��.

� �3 � �� ���. That is, the second component of�3 is � � ����

�/, where

�� �
� &� if
� � &
�� � if
� � ��

� � � ���� + + + � "+

� ! 3 � !)�&������� + + + ��� � ��/.
� #3 consists of all transitions��������

�/�� 13 � 23 � ��3 ��3��3�

�3/�� such that

– 23 * ����� + + + � "�,
– for all

� (23, �3� � &,

– for all
� '(23 7 �13�, �3� � �� ,

and conditions 1,2 and 3 below are satisfied.

M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets 315

1. If 13 (����� + + + � "�, then��� 13 � 23 � �3� (#, ��� (���&�
, and

�3�� �
�

�� if 13 '(23
&� if 13 (23 +

2. If 13 � " � �, � � ���� + + + ��3,17 then for some1 (����� + + + � "�, ��� 1�23 � �3� (#,
�� (�&����

,18 and

�3� �
� �� � if 1 '(23

&� otherwise
�

3. If 13 � " ��, � � �3 � ���3 � �� + + + ��, then for some1 (����� + + + � "�, ��� 1�23 � �3� (#,
�� � ��, and

�3� �
� �� � if 1 '(23

&� otherwise
�

see the intuition of the
��s in the definition of�3.

Let � � ����

�� (��

. We shall prove by induction on� that there is a run� � � ���� + + + ���
of � on �, �4 � ��4 �64�, 5 � �� �� + + + ��, if and only if there is a run�3 � �3 ��3�� + + + ��3� of �3 on �,
�34 � ���4 ��4���4����

���, �4 � �4-��4-�

�4-/ (�&������� + + + ��� � ��/ and�4 � �4-��4-�

�4-/ (
�� � ������� + + + �����/, 5 � �� �� + + + ��, such that for all5 � �� �� + + + ��, conditions 1,2, and 3 below are
satisfied.

1.

�4-� �
� �4-� � if �4-� (�&������� + + + ����

�� otherwise
� � � ���� + + + � "+

2.

�4-� �
� �4-� � if �4-� '(������� + + + ����

&� otherwise
� � � ���� + + + � "+

3. Let1 and13 be the transition registers between configurations�4�� and�4 and configurations�34��
and�34, respectively,5 � ���� + + + ��. Then

13 �
� " ��� if �4 � �� � � � ���� + + + ��

1� otherwise
+

The lemma will follow from the above equivalence and the definition of ! 3 � !)��������� + + + ��� �&�/
.

Basis: � � � implies that� � � � �� ��� and�3 � �3 � ��3 �&/����

��� � ��� ����&/����

���
are runs of� and�3 on� �� ��, respectively. Then conditions 1 and 2 follow from the definition of the
initial assignment of�3, and condition 3 is satisfied, because there are no transitions on the empty word.

17Recall that
�
�
� 	
������ � � � ���� and� 	
������ ������ � � � � ���, see the statement of Lemma 5.1.

18That is, the�th register of� either contains
��

or is empty.

316 M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets

Induction step: Assume that the induction hypothesis is true for all words of length� and prove it for a
word� � ����

������ (��

. We start with the proof of the “only if” direction.
Let � � � ���� + + + ��������, where�4 � ��4 �64�, 5 � �� �� + + + ��, be a run of� on � and let

���� 1�2������ be the transition of� on ���� between configurations�� and����. By the induction
hypothesis, there is a run�3 � �3 ��3�� + + + ��3� of �3 on ����

��, �34 � ���4 ��4���4�, 5 � �� �� + + + ��,
such that for all5 � �� �� + + + ��, conditions 1,2, and 3 above are satisfied. Let

����-� �
� ����-� � if ����-� (�&������� + + + ����

�� otherwise
� � � ���� + + + � "� (1)

�3��� � �����������,

����-� �
� ����-� � if ����-� '(������� + + + ����

&� otherwise
� � � ���� + + + � "� (2)

and let

13 �
� " ��� if ���� � �� � � � ���� + + + ��

1� otherwise
+

Recall that1 is the transition register between configurations�� and����.
The proof will be completed if we show that���3����������� ��3���������� is in #38 and that13 is

the transition register between configurations�3� and �3���. We shall distinguish between the cases of
���� '(������� + + + ����, ���� (������� + + + �����, and���� (������������� + + + ����.

Let ���� '(������� + + + ����. Then 13 � 1 (����� + + + � "�. First we show that the transition
��������� 1�2� ������������ is in #3:

� By definition, ���� 1�2������ (#.

� Since���� '(������� + + + ����, ��-� '(������� + + + ���� either. Thus, by the induction hypothesis,
��-� (���&�

.

� Since���� 1�2������ is the transition between configurations�� and����, ����-� (������&�
.

Thus, by (1),����-� (���&�
.

� If
� (2, then����-� � &. Consequently, by (1),����-� � &.

� If
� '(2 7 �1�, then����-� � ��-� , and, by (1) and the induction hypothesis,����-� � ��-� .

That is, condition 1 of the definition of#3 is satisfied.
We continue to prove that��������� 1�2� ������������ is a transition of�3 on ���� between con-

figurations�3� and�3���.
� Since either��-� � & (and ���� '(������� + + + ����) or ��-� � ����, by condition 2 of the

induction hypothesis, either��-� � & or ��-� � ����.
� If 1 '(2, then����-� � ����, and, by (2),����-� � ����.
� Let

� (2. Then����-� � & and, by (2),����-� � &.

M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets 317

� Let
� '(2 7 �1�. Then����-� � ��-� and, by (2) and the induction hypothesis,����-� � ��-� .

Thus,��������� 13 � 2� ������������ is a transition of�3 on���� between configurations�3� and�3���.
The treatment of the cases of���� (������� + + + ����� and���� (������������� + + + ���� (which

correspond to conditions 2 and 3 of the definition of#3) is similar to the above and is omitted.
For the proof of the “if” direction let�3 � �3 ��3�� + + + �����3���, be a run of�3 on �, where�34 �

���4 ��4���4�, 5 � �� �� + + + ��, and let ��������� 13 � 23 � ����������� be the transition of�3 on ����
between configurations�3� and �3���. By the induction hypothesis, there is a run� � � ���� + + + ���,
�4 � ��4 �64�, 5 � �� �� + + + ��, of � on � such that for all5 � �� �� + + + ��, conditions 1,2 and 3 of the
induction hypothesis are satisfied. Let

����-� �
�

����-� � if ����-� � �

����-� � otherwise
� � � ���� + + + � "+ (3)

The proof will be completed if we show that���� �6�������� ������6����� is in #8
. Like in the

case of the “only if” direction, we shall distinguish between the cases of���� '(������� + + + ����, ���� (������� + + + �����, and���� (������������� + + + ����. These cases are treated similarly each to other, and
we shall consider only the case of���� (������� + + + �����.

So, let���� � �� (������� + + + �����. Then13 � " �� and, by the definition of#3, for some1 ����� + + + � ", ���� 1�23 � ����� (#. We contend that���� 1�23 � ����� is a transition of�3 on���� �� ���
between configurations����6�� and ������6����.

� By the definition of#3, ��-� (�&���. Thus, by condition 1 of the induction hypothesis,��-� (�&���.
� If 1 '(23, then����-� � ��. Thus, by condition 2 of the induction hypothesis,����-� � ��.

� Let
� (23. Then����-� � & and, by (3),����-� � &.

� Let
� '(23 7 �1�. Then����-� � ��-� and ����-� � ��-� . Therefore, by condition 2 of the

induction hypothesis and (3),����-� � ��-� .
That is, ���� 1�23 � ����� is indeed a transition of�3 on ���� between configurations����6�� and
������6����, which completes the proof.

8. Concluding remarks

We conclude the paper with a discussion of the complexity of intertranslations between FSUBA and
UB-expressions.

It follows from [1, Theorem 5.5, p. 198] that the complexity of the construction of a UB-expression
from an FSUBA given by Lemma 5.1 is cubic in the number of the FSUBA states, whereas the complex-
ity of the construction of an FSUBA from a UB-expression is linear in the UB-expression length, cf. [1,
Theorem 9.2, p. 322]. That is, the complexity of these constructions is the same as of the corresponding
classical ones.

However, in order to construct a UB-expression from a general FSUBA, we first convert it into a
FSUBA given by Lemma 5.1, which makes the complexity exponential in the number of the FSUBA
registers.

318 M. Kaminski and T. Tan / Regular Expressions for Languages over Infinite Alphabets

References

[1] Aho, A., Hopcroft, J., Ullman, J.:The Design and Analysis of Computer Algorithms, Addison-Wesley,
Reading, MA, USA, 1981.

[2] Autebert, J.-M., Beauquir, J., Boasson, L.: Langages des Alphabets Infinis,Discrete Applied Mathematics,
2, 1980, 1–20.

[3] Autebert, J.-M., Beauquir, J., Boasson, L.: Formes de langages et de grammaries,Acta Informatica, 17,
1982, 193–213.

[4] Bielecki, M., Hidders, J., Paredaens, J., Tyszkiewicz,J., den Bussch, J. V.: Navigating with a browser,
Proceedings of the 29th International Colloquium on Automata, Languages and Programming – ICALP
2002(P. Widmayer, F. Triguero, R. Morales, M. Hennessy, S. Eidenbenz, R. Conejo, Eds.), Springer, Berlin,
2002, 764–775, Lecture Notes in Computer Science 2380.

[5] Bolling, B., Leucker, M., Noll, T.: Regular MSA Languages, Technical report, Department of Computer
Science, Aachen University of Technology, 2001.

[6] Itd, J.: Automates a pile sur des alphabets infinis,Proceedings of the Symposium of Theoretical Aspects of
Computer Science, Springer-Verlag, Berlin, 1984, 260–273, Lecture Notes inComputer Science 166.

[7] Kaminski, M., Francez, N.: Finite-Memory Automata,Proceedings of the 31th Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society Press, Los Alamitos, CA, 1990, 683–688.

[8] Kaminski, M., Francez, N.: Finite-memory automata,Theoretical Computer Science A, 138, 1994, 329–363.

[9] Kleene, S.: Representation of Events by Nerve Nets and Finite Automata, in:Automata Studies(C. Shannon,
J. McCarthy, Eds.), Princeton University Press, PrincetonNJ, USA, 1956, 3–42.

[10] Lewis, H., Papadimitriou, C.:Elements of the Theory of Computation, Prentice-Hall, Inc., Englewood Cliffs,
NJ, USA, 1981.

[11] Neven, F., Schwentick, T., Vianu, V.: Towards Regular Languages over Infinite Alphabets,Proceedings
of the 26th International Symposium on Mathematical Foundations of Computer Science(J. Sgall, A. Pultr,
P. Kolman, Eds.), Springer, Berlin, 2001, 560–572, LectureNotes in Computer Science 2136.

[12] Neven, F., Schwentick, T., Vianu, V.: Finite State Machines for Strings over Infinite Alphabets,ACM Trans-
actions on Computational Logic, 5, 2004, 403–435.

[13] Otto, F.: Classes of regular and context-free languages over countably infinite alphabets,Discrete Applied
Mathematics, 12, 1985, 41–56.

[14] Rabin, M., Scott, D.: Finite Automata and Their Decision Problems,IBM Journal of Research and Develop-
ment, 3, 1959, 114–125.

[15] Sakamoto, H., Ikeda, D.: Intractability of decision problems for finite-memory automata,Theoretical Com-
puter Science A, 231, 2000, 297–308.

[16] Shemesh, Y., Francez, N.: Finite-State Unification Automata and Relational Languages,Information and
Computation, 114, 1994, 192–213.

[17] Tal, A.: Decidability of Inclusion for Unification Based Automata, M.Sc. thesis, Department of Computer
Science, Technion – Israel Institute of Technology, 1999.

