Fundamenta Informaticae 69 (2006) 301-318 301
I0S Press

Regular Expressions for Languages over Infinite Alphabets

Michael Kaminski*

Department of Computer Science
Technion — Israel Institute of Technology
Haifa 32000, Israel
kaminski@cs.technion.ac.ll

Tony Tan

Department of Computer Science
National University of Singapore
3 Science Drive 2

Singapore 117543

Abstract. In this paper we introduce a notion ofregular expressiorover infinite alphabetsand
show that a language is definable by an infinite alphabetaegupression if and only if it is accepted
by finite-state unification based automatera model of computation that is tightly related to other
models of automata over infinite alphabets.

Keywords: Finite state automata, infinite alphabets, regular exmess

1. Introduction

A new model of finite-state automata dealing witfinite alphabetscalledfinite-state datalog automata
(FSDA) was introduced in [16]. These automata were interidethe abstract study of relational lan-
guages. Since the character of relational languages esqgthie use of infinite alphabets of names of
variables, in addition to a finite set of states, FSDA aregugd with a finite set of “registers” capable
of retaining a variable name (out of an infinite set of namédsje equality test, which is performed in

*Address for correspondence: Department of Computer Sgjdiechnion — Israel Institute of Technology, Haifa 32068aél

302 M. Kaminski and T. Tan/Regular Expressions for Languages Infinite Alphabets

ordinary finite-state automata (FA) was replaced witification which is a crucial element of relational
languages.

Later, FSDA were extended in [7] to a more general model dgakith infinite alphabets, called
finite-memory automatéFMA). FMA were designed to accept the infinite alphabet ¢erpart of the
ordinary regular languages. Similarly to FSDA, FMA are gmaid with a finite set of registers which
are either empty or contain a symbol from the infinite alphalmet contrary to FSDA, registers in FMA
cannot contain symbols currently stored in other regist&g restricting the power of the automaton
to copying a symbol to a register and comparing the conteat re@gister with an input symbol only,
without the ability to perfornanyfunctions, the automaton is only able to “remember” a fingiso$ input
symbols. Thus, the languages accepted by FMA possess mémny pfoperties of regular languages.

Whereas decision of the emptiness and containment for Fldidd,(consequently, for FSDA-) lan-
guages is relatively simple, the problem of inclusion for &ldnguages is undecidable, see [11, 12].

An extension of FSDA to a general infinite alphabet cafiaide-state unification based automata
(FSUBA) was proposed in [17]. These automata are similaranynways to FMA, but are a bit weaker,
because a register of FSUBA may contain a symbol currenbisedtin other registers. It was shown
in [17] that FSDA can be simulated by FSUBA and that the pnobtd inclusion for FSUBA languages
is decidable.

While the study of finite automata over infinite alphabetststhas purely theoretical, since the
appearance of [7] and [8] it seems to have turned to moreipadlgt oriented. The key idea for the
applicability is finding practical interpretations to th#inite alphabet and to the languages over it.

e In[11, 12], members of (the infinite) alphaketare interpreted as records @dmmunication ac-
tions “send” and “receive” of messages during inter-procesarnanication. Words in a language
L over this alphabet are MSQsiessage sequence chaapturing behaviors of the communica-
tion network.

¢ In[4], members ob are interpreted as URLS’ addresses of internet sites, awdrds interpreted
as a “navigation path” in the internet, the result of someddiaequence of clicks.

¢ In [5] there is another internet-oriented interpretatidriip namely, XML mark-ups of pages in a
site.

In this paper we introduce a notion ofegular expressiotior languages over infinite alphabets and
show that a language is definable by an infinite alphabet aegxipression if and only if it is accepted
by an FSUBA.

The paper is organized as follows. In the next section wdlréneadefinition of FSDA from [16] and
in Section 3 we recall the definition of FSUBA from [17]. In $iea 4 we present the main result of our
paper —unification based regular expressiofs languages over infinite alphabets, whose equivalence
to FSUBA is proven in Sections 5 and 6. Section 7 contains theff a modification of a technical
lemma from [17]. Finally, Section 8 deals with the complgxf intertranslations between FSUBA and
unification based regular expressions.

2. Finite-state datalog automata

We start with examples a€lational languages which can and cannot be defined by finite-statéiogata
automata (FSDA). Relational languages are languages wfieite alphabets whose symbols are of the

M. Kaminski and T. Tan/Regular Expressions for Languages Ioinite Alphabets 303

form p(z1, z2), wherep belongs to a finite alphabet of binary relation symbols aneindz, come from
aninfinite alphabet of variables. For example, the relational languag

{p1(z1, 22)p2(w2, 23)p1 (23, 74) - - - P2(T2n, T2n11) 1 0 > 1}

generated by the Horn grammar

P(z,y) = pi(z, 2)p2(z, w) P(w,y)|p1(z, 2)p2(z,y)

is definable by finite-state datalog automata, see [16,@e2}i whereas the relational language

{p(iUl,Iz)P(l’mfIis) e 'p(xnflvljn) v 'p(l’naxnfl) v 'p(iv?,,ivz)p(ﬂUz,fIil) tn o2 2}

generated by the Horn grammar

P(x) = p(z,y)P(y)p(y,) |p(z, y)p(y, z)

is not, because the restrictions of FSDA-languages to fatfleabets are regular, see [8, Proposition 1].
Next we recall the definition of FSDA from [16].
A finite-state datalog automataor, shortly, FSDA, is a systed = (R, V., Q, qo, F,r, 1), where

e R andV are a finite alphabet dinary relation symbolsand an infinite alphabet ofariables
respectively,R NV = () and# ¢ V,! whereas the input alphabet df is R x V2. That is, an
input symbol is a relatiop(x1, z2), wherep € R is a binary relation symbol anch,z, € V are
variables.

e Q, g0 € Q, andF C (are a finite set of states, the initial state, and the set of §ies,
respectively.

e 1 is the number of registers oA, which are capable of either being empty or retaining a égia
fromV.

e C QxRx{1,2,...,r} x {1,2,...,r} x 21121} x @ is the transition relation whose
elements are callemansitions The intuitive meaning of the transition relation is asdulk. If the
automaton is in state reading relatiom(z1, z2) and there is a transitiofy, p, k1, k2, S, ¢') € p
such that the registér; either containg; or is empty;; = 1, 2, then the automaton can enter state
¢, copyz; into thek;th register, if the latter is empty, and empty (reset) théstegs whose indices
belong toS. The above registers, andk, are referred to as theansitionregisters.

An actual state of an FSDA is an element of) together with the contents of all registers of
the automaton. Thus4 has infinitely many statéswhich are pairgq, w), whereq € Q andw €
(XU {#})". Such pairs are callecbnfigurationsof A and are denote@°. The pair(qo, #"), denoted
g5, is theinitial configuration, and the configurations with the first componenF’ are calledfinal
configurations. The set of final configurations is dendtéd

The transition relatiom induces the following relatiop on Q¢ x R x V x V x Q. Letq,q' € Q
andw = wywy - - wy, w' = wiwh - -wl € (VU{#})". Then((¢,w),p(z1,z2), (¢, w')) € pif and
only if there is a transitiofig, p, k1, k2, S, ¢') € u such that the following four conditions are satisfied.

LIn this paper we reserv# to denote an empty register.
2This is the major difference between ordinary finite-statimmata and finite-state automata over infinite alphabets.

304 M. Kaminski and T. Tan/Regular Expressions for Languages Infinite Alphabets

1. wg, € {z;,#},7=1,2. Thatis, the transition registéf either containg; or is empty.

2. Itk €5, thenw;ci = z;,1 = 1,2. That s, if the transition registdy; is not reset in the transition,
its content is;.

3. Forallj € S, w; = #.
4. Forallj ¢ S U {ky, ka}, wj = wj.

Letr = py(z1,z2)pa(xs, 1) - Pu(Ton_1,T2,) De @ word overR x V2. A run of the automaton

A onr consists of a sequence of configuratiensc, . . ., ¢, such thaty is the initial configurationyg,
and(c¢j—1, pi(z9i—1,9),¢) € pc,i=1,2,...,n.
We say thatA acceptsr if there exists a runyg, cq, ..., c, of A onr such thake,, € F¢. The set

of all words accepted by is denoted byl.(A) and is referred to as an FSDA-language. We refer the
reader to [16] for additional examples of FSDA-languagestaeir relation to DATALOG.

3. Finite-state unification based automata

Till the end of this papek is an infinite alphabet not containing. For a wordw = wyws - - - w, over
¥ U {#}, we define theontentof w, denotedw], by [w] = {w; # # : j = 1,2,...,r}. Thatis,[w]
consists of all symbols of which appear inv.

Definition 3.1. ([17]) A finite-state unification based automat(over X)) or, shortly, FSUBA, is a sys-
temA = (Ea Q7 q, F,u, @7 :U‘)’ where

e Q,q0 € Q, andF C (are a finite set of states, the initial state, and the set of §itses,
respectively.

o u=ujuy---u, € (XU{#})",r > 1, is theinitial assignment- register initialization: the symbol
in theith register isu;. Recall that# is reserved to denote an empty register. That i, i= #,
then thejth register is empty.

e O C [u] is the “read only” alphabet whose symbols cannot be copitdémpty registerd. One
may think of® as a set of the language constants which cannot be unifietGcf [

e 1 CQx{1,2,...,r} x 21121} x Q is the transition relation whose elements are called transi
tions. The intuitive meaning of is as follows. If the automaton is in stajeeading symbob and
there is a transitioriq, &, S, ¢') € p such that theith register either contains or is empty, then
the automaton can enter statewrite o in the kth register (if it is empty), and erase the content
of the registers whose indices belong%o The kth register will be referred to as theansition
register.

Like in the case of FSDA, an actual stateAfis an element of) together with the contents of all
registers of the automaton. That i4, has infinitely many states which are pafis w), whereq € Q
andw € (X U {#})". These pairs are callembnfigurationsof A. The set of all configurations oA is

30f course, we could le® beany subset of. However, since the elements ©fcannot be copied into empty registers, the
automaton can make a move with the input frénonly if the symbol already appears in one of the automatoistesg, i.e.,
belongs to the initial assignment.

M. Kaminski and T. Tan/Regular Expressions for Languages Ioinite Alphabets 305

denoted®. The pair(go, u), denoted;s, is called thenitial configuratiort and the configurations with
the first component i are calledinal configurations. The set of final configurations is denatéd
Transition relatioru induces the following relatiop® on Q¢ x X x Q°.
Letq,q' € Q, w = wywsy - - w, andw’ = wjw} - - - wl.. Then the triplg (¢, w), 0, (¢',w’)) belongs
to ¢ if and only if there is a transitiofy, k, S, ¢') in p such that the following conditions are satisfied.

e Eitherw; = # (i.e., the transition register is empty in which cases copied into it) andr ¢ ©,
orwy, = o (i.e., the transition register contain3.

o If k¢S, thenw), = o, i.e., if the transition register is not reset in the traipsitits content is.

o Forallj € S, w; = #.

e Forallj ¢ SU{k}, w; = w;.

Leto = 01090, be aword ove. A run of A on o consists of a sequence of configurations
o, €1, .- ., cp SUCh thaty is the initial configuratiory§ and(c;_1, 04, ¢;) € p¢,i=1,2,...,n.

We say thatA acceptso, if there exists arumg, ¢y, ..., ¢, of A ono such that,, € F¢. The set of
all words accepted by is denoted by.(A) and is referred to as an FSUBA-language.

Example 3.1. Let A = (X,{q, f}, ¢, {f}, #7601 ---0¢,{01,...,0,}, 1) be an(r + £)-register FSUBA,
wherey consists of the only one transitidn. k. (), f). Alternatively, A can be described by the following
diagram.

initialization
Obviously,L(A) =X\ O, if k <r,andL(A) = {6, }, otherwise.

Example 3.2. ([17]) Let A = (2, {q, s, f}, ¢, {f}, #.0, u) be a one-register FSUBA, whegeconsists
of the following two transitions:

i (q7 17 @7 S)

° (87]‘7 ®7 f)’
see the diagram below.

(O—)1
Oy Uy @
#
initialization

“4Recall thalgo andu denote the initial state and the initial assignment, retyy.

306 M. Kaminski and T. Tan/Regular Expressions for Languages Infinite Alphabets

ThenL(A) = {0109 € X% : 01 = 09} an accepting run oA onoo is (¢, #), (s,0), (f,0).

In contrast, the language = {0109 € X2 : 01 # 02} is not an FSUBA language.To prove that,
assume to the contrary that for some FSUBA= (X, Q, qo, F,u,0,u), L = L(A). SinceX is infinite
and[u] is finite, ¥\ [u] contains two different symbols; andos. By the definition ofL, it contains the
word oy03. Let (qo,), (¢1,w1), (g2, w2), w; = wijw;2---w;,, + = 1,2, be an accepting run cA
on ooy and letk be the transition register between configurations w) and(qgs, w2). Since neither
of o1 andoy, belongs tou andoy # o9, wi;, = # andws; = o2. Then, replacingv, ; with oy in
(qo,u), (q1,w1), (g2, w2) We obtain an accepting run of ono; 0y, which contradicts, = L(A).8

The following example shows how FSDA can be simulated by FSUB

Example 3.3. ([17]) Let A = (R,V,Q, qo, F,r, 1), R = {601,64,...,6x}, be an FSDA. Consider an
FSUBAA' = (X,Q',), F',u, 0, '), such that

e X =V UR,

* Q' =QU(px{arg,args}),
* 4y = o,

« F'=F,

o u=H#0,0y 0y,

e ©=R,and

4 consists of all transitions of the form 1, 2, or 3 below

1. (Q7T+m7®7((q79m7k17k2757ql)7aT91))'
2. (((Q70’m7 k17 k?u Su ql)7argl)7 k17 ®7 ((q7 97717 kla k?a Su ql)u CL’I‘QQ)), or
3. (((qaemaklakQaSaql)aaT92)7k2757q,)’

Where(Qu Hmu k17 k?u Su ql) € p.

That is, we break each transition

0, (k1. k
. (; 2) .

of u into three “consecutive” transitions

5It can be readily seen thdtis accepted by inite-memonautomaton introduced in [7].
5The decision procedure for the inclusion of FSUBA-langsaigd17] is based on a refined version of this argument.

M. Kaminski and T. Tan/Regular Expressions for Languages Ioinite Alphabets 307

Olr +m

k1
Q((L 0m7 klu k27 S7 ql)u alrgl) D—@’Q((L 0m7 k17 k?u Su ql)7 argg))

S| ko

of u'.
A straightforward induction on the word length shows that

p1(z1, 2)pa(xs, 24) - - - Pp(@on—1,T2n) € L(A)

if and only if
PIT1ToP2T3T4 - * - PnTon—1T2n € L(A').

Example 3.4. Let A = (X, {q, s, [}, q. {f}, ##, 0, 1) be a 2-register FSUBA, wheyeconsists of the
following three transitions:

° (q7]"w7 8)’
o (s,2,{2},5),
° (8’]‘7®’f)’
see the diagram below.
2
{2}
() !
Oy Uy @
|
initialization

It can be easily seen tha{A) = {109+ 0, € X* : 01 = 0y}

Example 3.5. ([17], cf [8, Example 1].) LetA = (X,{q,s, f},q,{f}, ##,0,) be an FSUBA with
two registers ang consists of the following five transitions:

308 M. Kaminski and T. Tan/Regular Expressions for Languages Infinite Alphabets

(9,2,{2},9),
(¢,1,0,5),
(s,2,{2},s),
(

(

s, 1,0, f), and
° f7 2’ {2}7 f)’
see the diagram below.

2 2 2

(2} (2} 9

1
(4) —{)

=| =
Ccn

initialization
It can be easily seen that
L(A) = {0109+ 0, € X" : there existl < i < ' < n such thato; = oy }.

That is,L(A) consists of all words ovex in which some symbol appears twice or more. For example,
an accepting run afA on abcbd is

(q, #4), (q, #4£), (s, b#), (s, 03), (f, b)), (f, b#).

Example 3.6. ([17]) Let A = (X, Q, qo, F,u, O, 1) be an FSUBA such tha# does not appear in
and for all(q, %, S,q") € u, S = 0. ThenL(A) is a regular language ovéxr]. In general, since the
restriction of a set of configurations to a finite alphabetrigdi the restrictions of FSUBA-languages to
finite alphabets are regular, cf. [8, Proposition 1].

4. Regular expressions for FSUBA languages

In this section we introduce an alternative description 8UBA languages by the so calledification
basedexpressions which are the infinite alphabet counterpatiebtdinary regular expressions.

Definition 4.1. Let X = {z1,...,,} be a set of variables such th&tN X = () and let© be a finite
subset of. Unification based regular expressions oyef, ©), or shortly UB-expressions, {{X, ©) is
understood from the context, are defined as follows.

e (), ¢, and each element df U © are UB-expressions.

e If oy anday, are UB-expressions, then so(ig; +).

M. Kaminski and T. Tan/Regular Expressions for Languages Ioinite Alphabets 309

e If X' C X anda; anday are UB-expressions, then so &t - x as) and(o[{X’).

The intuition behind the above definition is as follows. Egahiable inX corresponds to a register
of the automaton and a “variable” assignment of symbols floin© to variables inX is the register
assignment. Finally, subscrip®§' indicate the set of registers reset by the automaton.

The definition of languages defined by UB-expressions isthasethe observation that the set of
all sequences of anregister FSUBA diagram labels corresponding to its adegptuns is a regular
language ovef1,2,...,r} x 2{1.2,.1} * Thus, with a unification based regular expressianever
(X, ©) we associate an ordinary regular expression over (finifg)addetX U © U 2%, denotedh, that
is defined by induction as follows.

e Ifae{fe} UXUO,thenaisa.
o (a1 +ag)is(aq +ag).

o (a1 -xr o) is((ar- X') - ay).

e Finally, (a*x")is ((a- X')).

Letw = wyws - - - w, € (X UOU2Y)*. With theith symbolw; of w,i = 1,2, ..., n, we associate
awordw; € ¥ U {e} as described below, cf. [7, Definition 3].

o If w; € O, thenw; = w;.
o If w; = X' C X, thenw; = e.
e If w; =z € X, thenw; satisfies the following (global) conditions.

— If for eachi’ < i such thatw; = z, there exists”, i’ < i’ < i, such that: € w;»,” thenw;
can be any element &f \ ©.

— Otherwise, let’ be the maximal integer less thasuch thatw; = x and no symbaX’ C X
that appears between tiféh and theith positions ofw containsz. Thenw; = wy.

The wordw = wyws - - - wy,, Wherew; is as defined above,= 1,2, ...,n, is called arinstanceof
w. The set of all instances aé is denoted by (w).

Example 4.1. Letw;, wo € (X U O U2%)*. Thenl(w,fws) = I(w w-).8

Next, for a languagé, C (X U© U2%)*, we denote byL] the set of all instances of all elements of
L. Thatis[L] = | JI(w).
w€EL
Finally, for a UB-expression. we define the languagk(«) (over) as the set of all instances of the
elements of(a): L(a) = [L(a)].®

"Of course, in such case;;» must be of the fornX’ C X.
8Note thatw; fw» € (X U© U 2%)".
°Recall thatL(a) is a language ovek U © U 2*.

310 M. Kaminski and T. Tan/Regular Expressions for Languages Infinite Alphabets

Example 4.2. It can be readily seen that and*x behave like the ordinary concatenation and Kleene
star, respectively. In addition, for a non-empfy, *x’ is redundant, becaudga*x’) = L((c-y€)*?).10

Example 4.3. The language from Example 3.2z -¢ «). Similarly, for a UB-expressiom = z -
y*) g x over ({z,y},0), L(a) consists of all words oveE having the same first and last symbols.
Thus,L(y* v} gz -g y*v} gz -g y*{v}) is the language from Example 3.5.

Example 4.4. Consider a subclass of UB-expressions, cali&DAexpressions, that is defined below.

e (), ¢, and UB-expressions of the for(d -y (1 -g x2)), whered € © andzy,z9 € X are FSDA-
expressions.

e If a; anday, are FSDA-expressions, then so &€ + az), (a1 -y az), and(a;*").

It easily follows from Example 3.3 and the constructions éct®ns 5 and 6 that FSDA languages are
defined by FSDA-expressions and vice versa, each FSDA esipregdefines an FSDA language.

Theorem 4.1. A language is defined by a UB-expression if and only if it isegated by an FSUBA.

The proof of the “if” part of Theorem 4.1 is based on a tighatelinship between FSUBA and the
ordinary finite automata. Itis presented in the next secfldre proof of the “only if” part of the theorem
is based on the relevant closure properties of FSUBA-lagggiand is quite standard. For the sake of
completeness, we present it in Section 6.

We conclude this section with one more closure property dadBS-languages that is an immediate
corollary to Theorem 4.1.

Corollary 4.1. FSUBA languages are closed under reversing.

Proof:
It can be easily verified that, for a UB-expression(L(a))® = L(a®), wherea! is defined by the
following induction.

o If a€{l,e} UXUO,thenaltisa.
o (a1 + ag)ftis (aft + of).
. (O[l U O[Q)R is (O(%2 U O(R).

o ((a)>)Ris (aff)*x,
O

Remark 4.1. Using an alternative equivalent model of computation thairnilar to M-automata intro-
duced in [8], one can show that FSUBA languages are alsoclasger intersectiof?

190f courseg is redundant as well (but, still, very useful), becalig@*) = {¢}.

it should be pointed out that FMA languages are not close@urabersing, see [8, Example 8]. Therefore, it is unlikélgtt
there is a kind of regular expressions for FMA languages.

121t follows from Example 3.2 that FSUBA languages are notetbsnder complementation.

M. Kaminski and T. Tan/Regular Expressions for Languages Ioinite Alphabets 311

5. Proof of the “if” part of Theorem 4.1

The proof of the “if part” of Theorem 4.1 is based on a tighatieinship between FSUBA and ordinary
FA. We shall use the following model of FA.

Definition 5.1. ([10]) A (non-deterministic) finite state automaton overratéi alphabet.’ is a system
M = (Q,qo, F,A), where

¢ () is a finite set of states.

e ¢y € Q is the initial state.

e [’ C (isthe set of final states.

e Ais afinite subset of) x ¥'* x Q called thetransition relation

A word w over alphabel’ is accepted by, if there is a partitionw = wy - - - w,, of w, w; € X'*,
and a sequence of statgs s1, . . . , s, such that

® 50 = 4o,
e s, € F,and
e andforeach =0,1,...,n —1, (Si,w¢+1,31+1) € A.

We shall also need the following modification of [17, Lemmdse Remark 5.1 below).

Lemma5.1. Let A = (3,Q, qo, F,u, O, u) be anr-register FSUBA, wher¢u| = {61,6,...,6,},
and® = {0py,1,0p9,...,0,}. Then the languagé (A) is accepted by an FSUBA' of the form
(2, Q. q0, F',#76102 - - - 0,,{601,02,....6,}, ') such that for each transitiofy, k, S,¢') € ', S C
{1,2,...,r}.13

The proof of Lemma 5.1 is presented in Section 7.

Remark 5.1. The only difference between Lemma 5.1 and [17, Lemma 2] isithihe latter
1. some of thé,,,s may appear in two or more registers of the initial assigrijasmd
2. the indices of the registers which may be reset do not sadssbelong to{1,2,...,r}.

Let L be an FSUBA language. By Lemma 5.1, we may assumelthataccepted by an FSUBA
A=(3,Q,q,F #6102---6,,{01,64,...,6,}, 1) such that for each transitidf, k, S, q') € u, S C

{1,2,...,r}.
Let X = {z1,...,z,} and consider a finite state automathfi® = (Q, qo, F, A) overX UO U2¥,
where transition relation\ is defined as follows. For every transitiop &, S, ¢') € u, A contains:

e (¢,01_,X',¢"),if kE>r, and
° (q7$leaql)! if k S T,

whereX' = {z; : i € S}.

13That is, only the first registers ofA’ may be reset.

312 M. Kaminski and T. Tan/Regular Expressions for Languages Infinite Alphabets

Remark 5.2. Note that the diagrams oA and M4 differ only in the transition labels which can be
recovered from each other in a straightforward manner.

The proof of the “if” part of Theorem 4.1 is based on the faett thet of the sequences of labels of
the accepting paths dfZ4 is regular. Namely, the “if” part of Theorem 4.1 immediatéhlows from
Theorem 5.1 below.

Theorem 5.1. Let 3 be a regular expression ov&rU © U 2¥ such thatl(3) = L(M#) and leta be a
UB-expression that results frofin replacing each occurrence &f C {z1,zo, ..., z,} with (e-x €),
each occurrence ofwith -y, and each occurrence bfwith *.14 Then,L(a) = L(A).

Proof:
It follows from Example 4.1 thaltZ.(a)] = [L(B3)]. Therefore, sincd.(3) = L(M*), the proof will be
completed if we show that(A) consists of all instances of the elementL.ofM4).

Letp = eq,...,e, be a path of edges in the diagramA4f One can think op as the diagram of an
FSUBA, also denoted by. ThenL(p) consists of all words of length overX which “drive A through
p from its first to its last vertex (state).”

Let P denote the set of all pathsstarting from the initial state and ending at a final stateerTh

pEP

On the other hand, by Remark 5z has the corresponding path M“, also denoted by, that
differs from it only in the transition labels. These labedsni a word overX U © U 2% that we shall
denote byw,. Therefore,

L(M#A) ={w, :p € P}.

Consequently the equality(A) = [L(M*)] will follow if we prove that for each patip

i.e., L(p) consists of all instances @#,.

The proof is by induction on the lengthof p. The case ofy = 0 is immediate because the only
instance ot ise.

For the induction step, we assume that equdl{ty,) = L(p) holds for all pathg of lengthn and
shall show that it holds for all paths of lengthn + 1.

Let p be a path of lengtm andp’ = p, (¢,k,S,¢') be a path of lengtm + 1. Letw, =
WpWn 41X 41

If k > r, then, by the definition oM 4, w, 1 = 6;_,. Therefore,L(p') = (L(p)){6r_.} and, by
the definition of an instance of a woré(w,/) = (I(w,)){0x—,}. Since, by the induction hypothesis,
I(w,) = L(p), I(w,) = L(p') follows.

If k < r, then, by the definition oM %, w1 = z}.

Let 7 be the greatest integer less than+- 1 such thatw; is x;, if such integer exists, and kg
otherwise. That is; is the last time registek appears imp. Also, leti’ be the greatest integer less than

14¢ct. Example 4.2.

M. Kaminski and T. Tan/Regular Expressions for Languages Ioinite Alphabets 313

n + 1 such thatr;, € wy, if such integer exists, and I9e otherwise. That ig/ is the last time registek
is reset inp.

We shall distinguish between the cases' of 7 andi’ < 1.

Assume first that’ > i. ThenI(w,) = (I(w,))(X\ ©). Similarly, thekth register of FSUBAY' is
reset at the’th move and not updated until its last move. Therefér@’) = (L(p))(X \ ©). Since, by
the induction hypothesid(w,) = L(p), the desired equality(w,) = L(p') follows.

Now assume that < i. By the definition of an instance of a word, the symbol asgigoer, in the
ith position must be assigned to it again in ther 1)th position. That isw;ws - - - Wy, Wpt1 € I(w,) if
and only ifuyws - - - w, € I(w,) andw,11 = w;. Similarly, thekth register of FSUBAY' is used in the
ith transition and is not reset till the end of the computatibhus, a word is accepted by FSUBA if
and only if it is accepted by and the symbol that appears in ttle position of the word also appears in
its (n + 1)th position. Since, by the induction hypothediw,) = L(p), the equality/ (w,/) = L(p')
follows in the latter case as well.

This completes the proof of the induction hypothesis andtiteerem. O

6. Proof of the “only if” part of Theorem 4.1

The proof is quite standard: it is based on the relevant oéogroperties of FSUBA languagés.

Let o be a UB-expressions ovéK, ©), whereX = {z,z9,...,z,} and® = {61,60,,...,60,}. We
shall prove by induction on the length efthat L(«) is accepted by an FSUBA whose initial assignment
wis #76, - - - 6, and whose last registers may not be resétcf. Lemma 5.1.

The basis is, actually, Example 3.1 and for the inductiop ste start with the case in whial is
of the form(a; + «a2). By the induction hypothesis, there are FSURBA = (X, Q1, 41,0, F1, 4,0, 111)
and Ay, = (X, Q2,q2,0,F,u,0, us) such thatL(cy) = L(A;) and L(cay) = L(Az). Renaming
the automaton states, if necessary, we may assumélthand (), are disjoint. Consider an FSUBA
A= (X,Q,q0,F,u, 0, 1), whereg is a new initial state stat€) = @, U Q2 U {qo},

P { F U F,, if gio¢ F1 and qo € F>
FiUF,U{q}, otherwise ’

and
po=p1UpaU{(qo, k,8,9) : (q1,0,k,8,q) € p1 or (g2,0,k,,q) € pz}.
That is, depending on the first mova,acts either liked; or A,. Thus,
L(a) = L(a1 + a9) = L(a) U L(ag) = L(A;) UL(Ag) = L(A).
Let « be of the form(a; -y a2). By the induction hypothesis, there are FSUB# and A,

such thatL(Oq) = L(Al) and L(O[Q) = L(AQ) Let A = (Z,Ql,ql,o,Fl,u,@,,ul) and A, =
(X2, Q2,920, F2,u, 0, ue) Renaming the automaton states, if necessary, we may asbabgg tand Q-

591 [17] the author deals with the inclusion problem only amesinot address the closure properties of FSUBA languages at
all.
¥That is, for each transitiofy, k, S, ¢') of the automatonS C {1,2,...,r}.

314 M. Kaminski and T. Tan/Regular Expressions for Languages Infinite Alphabets

are disjoint. Consider an FSUBA = (X, Q1 U Q2,q1,0, F2,u, O, 1), where

peoo= p1 U pU
{(q, k. {i:2; € X'}, q20) : forsomeS C {1,2,...,r}
and Somell € F17 (qakasa ql) € /Jl}

That is, instead of entering a final stateAf, A may enter the initial state o, and reset the registers
corresponding to the elements®f. Thus,

L(a) = L(Oq X/ 012) = L(A)

The case in whicl is of the form(a;*"), X’ C X, is similar to the above and is omitted.

7. Proof of Lemmab5.1

The proof basically follows the proof of [17, Lemma 2]. Theadlying behind the construction of’
is quite standard. We replace éJ},s in the registers afA with #, add toA / new registers containing
0.,s,m =1,2,...,¢, and remember the registers Afcontainingd,,s by a state ofd’. That is, FSUBA
A'=(2,Q,qy, F', #0105 --04,{61,0,,...,0,}, 1) is defined as follows.

° QI = Q X {#701702a"'70€a*}r'
The intended meaning of components - - - a, € {#,01,62,...,0,,%}"in(q,a1a9---a,) € Q'
is that it corresponds to the register componeni; - - - w, of a configuration(q, wyw, - - - w,) of
A in the following sense.

o if w; 0:,05,...,0
aJ:{ Wy, I wje{#a 1,92,) E} 7 j:1,27---,7'-

x, otherwise

Note that inA’ only the(r + m)th register containg,,,, m = 1,2, ..., 4.
e g, = (qo,u). That is, the second componentgfis a = a;as - - - a,, where

if u; =
ajz{#’ UER 19

O, 1 uj=0p,

o ' =Fx {#,01,02,...,0g,*}r.
e 1/ consists of all transition§(q, ayas - - - a,), k', S", (¢', a'd, - - - al)) such that

- S C{L,2,...,r},
— forallj € ', a; = #,
— forallj ¢ S"U{K'}, a; = a;,

and conditions 1,2 and 3 below are satisfied.

M. Kaminski and T. Tan/Regular Expressions for Languages Ioinite Alphabets 315

1. Ifk' €{1,2,...,r},then(q, k', 5", ¢') € p, apr € {*,#}, and

, . ifKgS
Qpr = .
#, if keds

2. fK = r+m,m = 1,2,..., ¢ then for somek € {1,2,...,7}, (¢,k,5,¢) € u,
ay, € {#,6m},"® and
, O, if kS
ak =) y
#, otherwise

K =r+mm=~0+1,¢+2,...,¢ then forsomé € {1,2,...,7}, (¢, k,5",q¢) € p,
a, = 0,,, and

a

,_{ O, if k&S
-

#. otherwise ’

see the intuition of thé,,,s in the definition ofy’.

Leto = 01090, € X*. We shall prove by induction on that there is a rue = cg,c1,...,¢,
of Aono, ¢; = (¢;,w;), 7 = 0,1,...,n, if and only if there is a rue’ = ¢}, d},...,c, of A’ ono,
¢ = ((¢i,ai),vi0102---6p), a; = a;pai2- - aiy € {#,01,02,...,00,+}" andv; = v;1v;2- v, €

(X\{61,602,...,6,})",i=0,1,...,n,such that forali = 0,1, ...,n, conditions 1,2, and 3 below are
satisfied.

1.
aij:{ Wi, 5, if wijjg{#,el,og,...,og} 7 j=1,2,...,r.
’ *, otherwise
2.
Uij:{ w,-,j, If ’wi’jg{el,og,...,og} 7 j=1,2,...,r.
’ #, otherwise

3. Letk andk’ be the transition registers between configuratigns andc; and configurations]
andc}, respectively; = 1,2,...,n. Then
W r+m, if 0,=0,, m=1,2,....¢
k, otherwise '
The lemma will follow from the above equivalence and the dfin of F' = F'x {x,601,04,...,0,, #}".
Basis n = 0 implies thatc = ¢y = (qo, u) andc’ = 06 = (q('), #0105 - - - 03) = ((q(], u), #6,05 - - eg)

are runs ofA and A’ ono (= ¢), respectively. Then conditions 1 and 2 follow from the déifimi of the
initial assignment ofd’, and condition 3 is satisfied, because there are no tramsitio the empty word.

Y"Recall thafu] = {61, 62,...,6,}and® = {6y 11,04 1, ...,0,}, see the statement of Lemma 5.1.
8That is, thekth register ofA either containg,, or is empty.

316 M. Kaminski and T. Tan/Regular Expressions for Languages Infinite Alphabets

Induction step Assume that the induction hypothesis is true for all worfleigthn and prove it for a
wordo = 0109 - - - 0,041 € L. We start with the proof of the “only if” direction.

Letc = co,c1,-.-,CnsCni1, Wheree; = (g, w;), 7 = 0,1,...,n, be a run ofA on o and let
(qn, k, S, gn+1) be the transition ofA on o, between configurations, and¢,+;. By the induction
hypothesis, there is a ruft = ¢, c},...,c, of A’ oncio9---0p, ¢t = ((¢i,a@i),vi), i = 0,1,...,n,
such that foralf = 0,1, ..., n, conditions 1,2, and 3 above are satisfied. Let

;o f i€ {#,01,05,....,0 .
an+17j _ w’n+17] wn+1,J {# 1 2 f} ,] — 17 27 . 7,,,,7 (1)
*, otherwise
Q;H»l = (n+1,@n11),
o df ; 01,05,....,0 .
by = 4 U Wt ¢ {61, 0, o} =12 ...n @
#, otherwise

and let
. r+m, if opy1=0mn, m=1,2,....¢
k, otherwise
Recall thatt is the transition register between configuratiopgndc,, 1 .

The proof will be completed if we show thég),, vy,), ont1 (€41, Vns1)) is in p'“ and thatk’ is
the transition register between configuratiefisandc;,, ;. We shall distinguish between the cases of

On+1 Q {91,02, . ,Og}, On41 € {01, 0o, .. ,9@/}, and0n+1 S {ngrl,@gurQ, . ,Og}.
Let opi1 & {61,09,...,04}. Thenk’ = k € {1,2,...,r}. First we show that the transition

((QTHG'TL)? k7 S7 (QTL+17 an+1)) iS in ,ul:
e By definition, (g,., k, S, gn+1) € p.

e Sinceo,, 1 & {01,02,....0,}, wy & {01,02,...,0,} either. Thus, by the induction hypothesis,
Qp k € {*7 #}

e Since(gy, k, S, gn+1) is the transition between configurations andc,, 1, wp41x € {Ont1, #}-
Thus, by (D)ani 1k € {*,#}.

e If j €5, thenw,,; = #. Consequently, by (1)i,41,; = #.
o If j & SU{k}, thenw,; = wy, ;, and, by (1) and the induction hypothesisg, 1 ; = a, ;.

That is, condition 1 of the definition ¢f is satisfied.
We continue to prove thd{(q,, a,), k, S, (¢n+1, an+1)) is a transition ofA’ ono,,.; between con-
figurationsc;, andc], , ;.

e Since eitherw, , = # (@ndo,11 & {61,62,...,0,}) Or wy, ;, = o,41, by condition 2 of the
induction hypothesis, either, , = # orv, ; = o,11.

o If k Q S, then’wn+17k = On+1, and, by (2);Un+1,k = On+1-

o Letj € S. Thenwyi1,; = # and, by (21,5 = #.

M. Kaminski and T. Tan/Regular Expressions for Languages Ioinite Alphabets 317

o Letj ¢ SU{k}. Thenw, 1 ; = wy,; and, by (2) and the induction hypothesig, 1 ; = vy ;.

Thus,((gn, an), k', S, (qnt1. an41)) is a transition ofA’ ono,, 1, between configurationg, andc/,_ ;.

The treatment of the cases @f;, € {61,6,,....0¢} ando, 11 € {0p11,0p19,...,0,} (Which
correspond to conditions 2 and 3 of the definitionu6fis similar to the above and is omitted.

For the proof of the “if” direction let’ = ¢j,d},...,cn. ¢}, ,, be arun ofA’ on o, wherec;, =
((g;,ai),vi), i = 0,1,...,n, and let((¢,an), k', S, (gn+1,an+1) be the transition ofd’ on o,
between configurationg, andc], ;. By the induction hypothesis, there is a ran= co,c1,.. ., cp,
¢i = (gi,w;), 1 =0,1,...,n, of Aoneo such that for alk = 0,1,...,n, conditions 1,2 and 3 of the
induction hypothesis are satisfied. Let

Wn41,j = { Uty 1 anﬂfj - , =12, (3)
any1,, otherwise
The proof will be completed if we show thétg,,, w,,), on+1, (g1, Wnt1)) IS in p€. Like in the
case of the “only if” direction, we shall distinguish betweée cases of,, 1 & {61,602, ...,0¢},0n41 €
{01,0,,...,0p},ando, 1 € {0p41,0p49,....0,}. These cases are treated similarly each to other, and
we shall consider only the case®f; € {0;,6s,...,0p}.

So, letop 11 = O, € {61,062, ...,0p}. Thenk' = r + m and, by the definition of.’, for somek =
1,2,...,7 (qn, k, S, gns1) € p. We contend thag,,, &, S', g,+1) is a transition ofd’ ono,, .1 (= 6,,,)
between configurationgy,, w,) and (g, 11, Wn4+1)-

e By the definition ofy/, a,, , € {#,6}. Thus, by condition 1 of the induction hypothesis, ;, €
{#.0}.

o If k¢S5, thenay 1 = 6,,. Thus, by condition 2 of the induction hypothesis, 1 i = 60.,.

o Letj € S Thena,1; = # and, by (3)wn11,; = #-

o Letj ¢ S"U{k}. Thena,y1; = an; andv,11; = v, ;. Therefore, by condition 2 of the
induction hypothesis and (3)y,11,; = wp, ;-

That is, (¢n, k, S’, qn+1) is indeed a transition oA’ on 0,1, between configurationég,, w,) and
(gn+1, wn+1), which completes the proof.

8. Concluding remarks

We conclude the paper with a discussion of the complexityntdriranslations between FSUBA and
UB-expressions.

It follows from [1, Theorem 5.5, p. 198] that the complexitiytiee construction of a UB-expression
from an FSUBA given by Lemma 5.1 is cubic in the number of th&)B& states, whereas the complex-
ity of the construction of an FSUBA from a UB-expression ieekr in the UB-expression length, cf. [1,
Theorem 9.2, p. 322]. That is, the complexity of these caoetitins is the same as of the corresponding
classical ones.

However, in order to construct a UB-expression from a gerfe€eJBA, we first convert it into a
FSUBA given by Lemma 5.1, which makes the complexity exptinkin the number of the FSUBA
registers.

318

M. Kaminski and T. Tan/Regular Expressions for Languages Infinite Alphabets

References

[1] Aho, A., Hopcroft, J., Ulliman, J..The Design and Analysis of Computer Algorithmaddison-Wesley,

Reading, MA, USA, 1981.

[2] Autebert, J.-M., Beauquir, J., Boasson, L.: LangagesAlphabets Infinis,Discrete Applied Mathematics

2, 1980, 1-20.

[3] Autebert, J.-M., Beauquir, J., Boasson, L.. Formes dgdges et de grammarie#\cta Informatica 17,

[4]

[5]

[6]

[7]

(8]
9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

1982, 193-213.

Bielecki, M., Hidders, J., Paredaens, J., Tyszkiewitz,den Bussch, J. V.. Navigating with a browser,
Proceedings of the 29th International Colloquium on Auttandanguages and Programming — ICALP
2002(P. Widmayer, F. Triguero, R. Morales, M. Hennessy, S. Higez, R. Conejo, Eds.), Springer, Berlin,
2002, 764—775, Lecture Notes in Computer Science 2380.

Bolling, B., Leucker, M., Noll, T.: Regular MSA LanguagesTechnical report, Department of Computer
Science, Aachen University of Technology, 2001.

Itd, J.: Automates a pile sur des alphabets infiltspceedings of the Symposium of Theoretical Aspects of
Computer Scien¢&pringer-Verlag, Berlin, 1984, 260—273, Lecture Note€amputer Science 166.

Kaminski, M., Francez, N.: Finite-Memory Automat&roceedings of the 31th Annual IEEE Symposium on
Foundations of Computer SciendEEE Computer Society Press, Los Alamitos, CA, 1990, 688-6

Kaminski, M., Francez, N.: Finite-memory automatdeoretical Computer Science 238 1994, 329-363.

Kleene, S.: Representation of Events by Nerve Nets aniid=Automata, in‘Automata Studie€C. Shannon,
J. McCarthy, Eds.), Princeton University Press, Princ&tdnUSA, 1956, 3—42.

Lewis, H., Papadimitriou, C Elements of the Theory of Computatidtrentice-Hall, Inc., Englewood Cliffs,
NJ, USA, 1981.

Neven, F., Schwentick, T., Vianu, V.: Towards Regul@nguages over Infinite Alphabet$roceedings
of the 26th International Symposium on Mathematical Fotiiodia of Computer Sciendd. Sgall, A. Pultr,
P. Kolman, Eds.), Springer, Berlin, 2001, 560-572, LecNwé&es in Computer Science 2136.

Neven, F., Schwentick, T., Vianu, V.: Finite State Mangs for Strings over Infinite Alphabet8CM Trans-
actions on Computational Logi®, 2004, 403—-435.

Otto, F.: Classes of regular and context-free langaayer countably infinite alphabet&iscrete Applied
Mathematics12, 1985, 41-56.

Rabin, M., Scott, D.: Finite Automata and Their Decisieroblems)BM Journal of Research and Develop-
ment 3, 1959, 114-125.

Sakamoto, H., lkeda, D.: Intractability of decisioroptems for finite-memory automataheoretical Com-
puter Science A231, 2000, 297-308.

Shemesh, Y., Francez, N.: Finite-State Unificationdknata and Relational Languagesformation and
Computation114, 1994, 192-213.

Tal, A.: Decidability of Inclusion for Unification Based Automat®l.Sc. thesis, Department of Computer
Science, Technion — Israel Institute of Technology, 1999.

