
HW1
Puzzles



Index

● Index (2)
● Chinese dark chess (3)

○ Puzzle rules & goal (4)

● Programming
○ Baselines (7)
○ Wakasagi (8)
○ Grading criteria (17)
○ The judge (19)
○ Rules (20)

● Report (22)
● Logistics (26)

2



Chinese Dark Chess

● All assignments of this course will be based on the popular park-bench 

pastime.

● Chinese Chess with extra quirks
○ Stochastic: pieces are randomly distributed face down

○ Simpler movement rules

○ Played on half a board: 4x8 squares

● For HW1, we will play a slightly different

version of the game

3



Chinese Dark Chess Rules
● Movements

○ All pieces move one square in any of 4 directions

○ Except the cannon

● Ranks
○ There is a hierarchy of pieces, only certain pieces can capture others

○ General (將) > Advisors (士) > Elephant (象) > Chariot (車) >

Horse (馬) > Cannon (包) > Soldier (卒)

■ Cannons can capture anyone

■ Soldiers can capture Generals, and not vice versa

○ You don’t really need to remember this, the code provided will take care of it for you

4



Chinese Chess Puzzles

You will solve one-player puzzles of Chinese Dark Chess

● Fullbright: no hidden pieces

● Ramming speed: chariots (車) can move any distance

● Ducks(🦆): new special pieces that just sits there
○ Cannot be captured or moved

○ Ducks will always be on the Black side (in the code)

● Cold weaponry: cannons (炮) have been banned
○ Because they are too hard to deal with

5

Your ducks may vary



Your goal

End the puzzle by winning:

● Move your pieces to capture all your opponent’s pieces

⭐ Achieve victory in the fewest moves possible.

● You can also win by reducing your opponent’s number of legal moves to zero (i.e by blocking).

But we will just ignore that for now.

● A solution is guaranteed to exist.

6



Programming - Baselines

● Baseline 1 - 25%

● Baseline 2 - 30%

● Baseline 3 - 25%

● SuperHard Bonus - 10%

The private test cases should be no harder than the hardest public ones.

*to the extent (not far) that we can ensure such claims

7



Programming - Wakasagi

● Your code will play the chess game through

the trusty referee program Wakasagihime.

● The main file you’ll be editing is “solver.cpp”

This slide will go through the basic usage of the engine,

for a more detailed guide, check out the documentation here.

8

https://docs.google.com/document/d/1AcbayzQvl0wyp6yl5XzhtDRPyOxINTpjR-1ghtxHQso/edit?usp=sharing


Wakasagi - compilation note

● Only gcc is supported
○ We use intrinsics here

● Feel free to ask if something doesn’t work

9



Wakasagi - Input & Output format

● Wakasagi can take a FEN-like string as input
○ “8/2P3c1/8/8 b”

○ 4 ranks, separated by a slash ‘/’, space, then the side to play (always ‘b’ in HW1)

○ The first part is rank 1, which is displayed at the bottom

● Output
○ Time taken (in seconds)

○ Number of steps

○ All moves, in order

10

SQ_A1 = 0, SQ_H4 = 31



Wakasagi - Data Structures

● Piece
Contains a Color and a PieceType.

● Square
Enum 0~31. Can be acquired from Boards.

● Board & BoardView
32-bit bitboards acquired from Positions and can yield Squares via BoardView.

● Position
Contains Boards for each PieceType and Color, along with other information about a position.

● MoveList & Move
A list of Moves generated from a Position.

11



Wakasagi - Data Structures

12



Wakasagi - Position

● Use the pieces() function to get the Board for some pieces
○ pos.pieces(Red)

○ pos.pieces(Black, Chariot)

● peek_piece_at(Square) to get full info on a piece at a Square

● do_move(Move &) to apply a move

● winner() to check for game endings
○ Check (pos.winner() == Black)

13



Wakasagi - Board

● 32-bit integers
○ One bit for each square

○ Bit high (1): this square is occupied by something

● BoardView provides an iterator of set bits (occupied Squares)
○ for (Square sq: BoardView(board)) { /* iterate Squares */ }

○ You can also use the BoardView::to_vector() function for a mutable vector of Squares

● You can also modify Boards directly with bit operations
○ Use ~ to invert a Board (probably the most useful one)

○ See lib/chess.h.

14



Wakasagi - Moves

● Generate all legal moves for black!
○ MoveList<All, Black> moves(pos)

○ MoveList moves(pos) works just fine, too

○ Or only the horse moves: MoveList moves(pos, Horse)

● MoveList holds all the Moves
○ for (Move mv: moves) { pos.do_move(mv) } // Iterate like this!

○ Implements standard iterator - pretty handy

● To output the moves for your final answer, simply stream it to stdout
○ info << move;

15



Wakasagi - useful things

● Check if a piece type A can capture piece type B
○ Just use the greater than ‘>’ operator on the PieceTypes

(it’s called “greater than,” but actually equal ranks returns true as well)

● distance<Square/File/Rank>(a, b)
○ Manhattan distance, doesn’t take into account blocking pieces

● You can run <algorithms> on a MoveList
○ Make a custom comparator and use std::sort()

16



Grading criteria - timing

“The clock is the 33rd chess piece.”

● The time limit is 10 seconds for each test case

● You must output the time (in seconds) taken to calculate your answer

● The validator will also time your code
○ No points will be awarded if your timing is off by more than 0.1s

○ Correct timing grants a minimum of 0.5 points, even if you fail to deliver an answer

*we time your program until it exits

● Remember to set a timeout
○ And leave some margin!

17



Grading criteria - suboptimal answer

We don’t need to be perfect, just enough to best your opponent.

● One extra step above optimal: 0.5% penalty

● Two or more extra steps above optimal: 0 points
○ But you can still get the 0.5% from the time

18



Using the Judge

● Usage: python validator/eiki.py
○ Add `--refresh` to recompile your updated code (it takes a while)

Judges your outputs Judges your pitches Judges you
19



Program rules

● Your code should run on the CSIE workstations.
● You get one (1) thread. No parallelism, forking, threading.
● No pragmas or any other similar gcc witchery.

○ We reserve the right to witch hunt.

● Memory limit: 10MiB (virtual address space)

● We will not compile your code if there is any warnings.
● Do not edit:

○ lib/*
○ makefile (note: put additional sources in sources.mk instead)
○ wakasagihime.cpp

20



Small tips

● No advanced data structures is needed or even recommended

● Please don’t use a self-balancing tree, it’s not worth it
○ But we won’t stop you if you insist…

● Just try to come up with a better heuristic, it’ll make all the difference

21



Written part - CTF

● This small capture-the-flag activity will give you a reason to learn to use a 

debugger & profiler.

● We recommend you do this part before tackling the programming part.
○ It takes like 5 minutes to complete

22



Debugger & profiler

● Debugger: gdb (compile with -g)

○ Print / examine a variable or memory address: p / x

○ Set a breakpoint at a line or a function: break (b)
■ Pauses when execution reaches that point

○ Set a watchpoint at a variable or memory address: watch
■ Pauses when the variable or memory content is changed

● Profiler: gprof (compile with -pg)

○ See how many times a function is run and how long it took

○ Run the program once to generate a profile, which you can check with gprof

23



CTF instructions

● You should not modify the code, simply use gdb and gprof to find the answers.

● Provide screenshots of gdb and gprof

● twin_prime.c
○ How many times is the function “is_prime()” executed? (gprof)

○ What is the 42nd pair of twin primes? (gdb)

○ How many pairs of positive twin primes below 23614847 are there? (gdb)

○ (Bonus) Prove or disprove that there are infinitely many twin primes.

24



Written part - Report

Your report should contain the following:

● Algorithm (10%)
○ What algorithm did you implement and how does it work?

● Heuristic (10%)
○ What is your heuristic and how does it work? (5%)

○ A proof that your heuristic is admissible. (5%)

25



Early Bird Bonus

● Submit your program before the early bird deadline for a flat 5% bonus
○ Only the programming part!

● You will receive your grades at the early bird deadline

● You can still make changes and submit after the early bird deadline
○ New submissions after the early bird deadline are not eligible for the 5% bonus

○ Your grade will be the higher of the early/regular submissions

● Total grade will not exceed 100%.
○ Extra points do not carry over to the next assignment.

26



Late policy

● Your submission time is server-sided, do not submit at the last second

● Each late day incurs a 0.9x penalty
○ Rounded up to the nearest day

○ 1 second of delay counts as a full day

● Maximum of 7 days of delay accepted

27



Submission

● Submit a zip file containing
○ report.pdf

○ code/

■ solver.h and solver.cpp

■ sources.mk

■ Any other source or header file you may need

● All code files will be placed in the same directory

● Submission link
○ www.csie.ntu.edu.tw/~tcg/2025/hw1

○ We will send your password (used for submissions) to your student ID email

28


