HW1

Puzzles

Index

e Index (2)
e Chinese dark chess (3)
o Puzzle rules & goal (4)
e Programming
o Baselines (7)
o Wakasagi (8)
o Grading criteria (17)
o Thejudge (19)
o Rules (20)
e Report (22)
e Logistics (26)

Chinese Dark Chess

e All assignments of this course will be based on the popular park-bench
pastime.

e Chinese Chess with extra quirks

o Stochastic: pieces are randomly distributed face down

o Simpler movement rules U
o Played on half a board: 4x8 squares | | {2 | | | | | Es
et e e e e e e
e For HW1, we will play a slightly different '____l____l____i_f_l____l____l_f_
version of the game l_lk_@__l____l__i__i_??_lj%__l____l____
I I I | I I
e e e e

+ — + — + — + — 4+

et st e ettt Rttt
Chinese Dark Chess Rules L I T N O £
B e e e Fom— o ———
I I I HENM I | &
e Movements U NS N 0y S D S
. . L | 42 | [= et |
o All pieces move one square in any of 4 directions = 4+ - 4444 po oy
o Except the cannon | | | ST l I
et T e e e
e Ranks
o There is a hierarchy of pieces, only certain pieces can capture others
o General (#) > Advisors (£) > Elephant (&) > Chariot (E) >
Horse () > Cannon (&) > Soldier (2£)
m Cannons can capture anyone
m Soldiers can capture Generals, and not vice versa
o You don’t really need to remember this, the code provided will take care of it for you

+ — + — + — + — 4+

Chinese Chess Puzzles

You will solve one-player puzzles of Chinese Dark Chess

e Fullbright: no hidden pieces
e Ramming speed: chariots (E) can move any distance

e Ducks(™): new special pieces that just sits there

o Cannot be captured or moved

o Ducks will always be on the Black side (in the code)
e Cold weaponry: cannons (f1) have been banned

o Because they are too hard to deal with

Your ducks may vary

| = | © | ® |

| = | & | = |

| = | » | = |

mmm e m—m i ——— -

et e s o

e s o

et e e o

5

Your goal

End the puzzle by winning:

e Move your pieces to capture all your opponent’s pieces

W Achieve victory in the fewest moves possible.

e You can also win by reducing your opponent’s number of legal moves to zero (i.e by blocking).
But we will just ignore that for now.

e A solution is guaranteed to exist.

Programming - Baselines

e Baselinel - 25%
e Baseline 2 - 30%
e Baseline 3 - 25%
e SuperHard Bonus - 10%

The private test cases should be no harder than the hardest public ones.

*to the extent (not far) that we can ensure such claims

Programming - Wakasagi

e Your code will play the chess game through
the trusty referee program Wakasagihime.

e The main file you'll be editing is “solver.cpp”

This slide will go through the basic usage of the engine,

for a more detailed guide, check out the documentation

https://docs.google.com/document/d/1AcbayzQvl0wyp6yl5XzhtDRPyOxINTpjR-1ghtxHQso/edit?usp=sharing

Wakasagi - compilation note

e Only gccis supported
o We use intrinsics here

e [eel free to ask if something doesn’t work

Wakasagi - Input & Output format

e \Wakasagi can take a FEN-Llike string as input

o “8/2P3c1/8/8 b”
o 4 ranks, separated by a slash 7, space, then the side to play (always ‘b’ in HW1)
o The first partis rank 1, which is displayed at the bottom

o= ————
e Output I I I I I I
o Time taken (in seconds) T""T""T""T""T""T""
o Number of steps SR s e
I I | % | I I
o All moves, in order e
I I I I I I
et e A e e

a b c d e iF

SQ-A1=0,5Q_ H4=31 _ 5.k to play

+ — + — + — + — +

+ — + — + — + — +

10

Wakasagi - Data Structures

e Piece
Contains a Color and a PieceType.
e Square
Enum 0~31. Can be acquired from Boards.
e Board & BoardView
32-bit bitboards acquired from Positions and can yield Squares via BoardView.
e Position
Contains Boards for each PieceType and Color, along with other information about a position.
e Movelist & Move

A list of Moves generated from a Position.

11

Wakasagi - Data Structures

tek_PR& «""()
““"“‘"} (Position) :
omw(\\

pecs0 | \
JECD)

\l/ BoardView

{5

12

Wakasagi - Position

e Use the pieces() function to get the Board for some pieces
o pos.pieces(Red)

o pos.pieces(Black, Chariot)

e peek_piece_at(Square) to get full info on a piece at a Square
e do_move(Move &) to apply a move

e winner() to check for game endings

o Check (pos.winner() == Black)

Wakasagi - Board

e 32-bitintegers
o One bit for each square
o Bit high (1): this square is occupied by something
e BoardView provides an iterator of set bits (occupied Squares)

o for (Square sq: BoardView(board)) { /* iterate Squares * }

o You can also use the BoardView::to_vector() function for a mutable vector of Squares
e You can also modify Boards directly with bit operations

o Use ~ to invert a Board (probably the most useful one)

o See lib/chess.h.

14

Wakasagi - Moves

e Generate all legal moves for black!

o MovelList<All, Black> moves(pos)
o Movelist moves(pos) works just fine, too

o Oronly the horse moves: MovelList moves(pos, Horse)
e Movelist holds all the Moves

o for (Move mv: moves) { pos.do_move(mv) } // Iterate like this!

o Implements standard iterator - pretty handy
e To output the moves for your final answer, simply stream it to stdout

o info << move;

15

Wakasagi - useful things

e Check if a piece type A can capture piece type B

o Just use the greater than ‘>’ operator on the PieceTypes

(it's called “greater than,” but actually equal ranks returns true as well)
e distance<Square/File/Rank>(a, b)
o Manhattan distance, doesn’t take into account blocking pieces
e You can run <algorithms> on a Movelist

o Make a custom comparator and use std::sort()

16

Grading criteria - timing
“The clock is the 33rd chess piece.”

e Thetime limitis 10 seconds for each test case

e You must output the time (in seconds) taken to calculate your answer
e The validator will also time your code

o No points will be awarded if your timing is off by more than 0.1s

o Correct timing grants a minimum of 0.5 points, even if you fail to deliver an answer

*we time your program until it exits
e Remember to set a timeout

o And leave some margin!

17

Grading criteria - suboptimal answer

We don’t need to be perfect, just enough to best your opponent.

e One extra step above optimal: 0.5% penalty

e Two or more extra steps above optimal: O points

o But you can still get the 0.5% from the time

18

Using the Judge

e Usage: python validator/eiki.py

o Add '--refresh’ to recompile your updated code (it takes a while)

validator >>)> python eiki.py
===——ludsementi=—=—=
1-0 - Timed @ 0.00s
v Well done!
1-2 - Timed @ 0.00s
Y Well done!
1-3 - Timed @ 0.01s

FAIL - Mistimed (Claimed 10.0s)
2-2 - Timed @ 1.90s

FAIL - Mistimed (Claimed 1900.0s)
2-3 - Timed @ 5.62s

FAIL - Mistimgd (Claimed 5615.0s)

Judges your outputs

Judges your pitches

Judges you

19

Program rules

e Your code should run on the CSIE workstations.

e You get one (1) thread. No parallelism, forking, threading.

e No pragmas or any other similar gcc witchery.

o We reserve the right to witch hunt.
e Memory limit: 10MiB (virtual address space)
e We will not compile your code if there is any warnings.
e Do not edit:

o Llib/*

o makefile (note: put additional sources in sources.mk instead)

o wakasagihime.cpp

20

Small tips

e No advanced data structures is needed or even recommended

e Please don’t use a self-balancing tree, it’s not worth it
o Butwe won't stop you if you insist...

e Justtry to come up with a better heuristic, it’ll make all the difference

21

Written part - CTF

e This small capture-the-flag activity will give you a reason to learn to use a
debugger & profiler.

e We recommend you do this part before tackling the programming part.

o It takes like 5 minutes to complete

22

Debugger & profiler

e Debugger: gdb (compile with -g)
o Print/examine a variable or memory address: p / x

o Set a breakpoint at a line or a function: break (b)
m Pauses when execution reaches that point

o Set a watchpoint at a variable or memory address: watch
m Pauses when the variable or memory content is changed

e Profiler: gprof (compile with -pg)
o See how many times a function is run and how long it took

o Run the program once to generate a profile, which you can check with gprof

23

CTF instructions

e You should not modify the code, simply use gdb and gprof to find the answers.
e Provide screenshots of gdb and gprof

e twin_prime.c
o How many times is the function “is_prime()” executed? (gprof)
o Whatis the 42nd pair of twin primes? (gdb)
o How many pairs of positive twin primes below 23614847 are there? (gdb)

o (Bonus) Prove or disprove that there are infinitely many twin primes.

Written part - Report

Your report should contain the following:

e Algorithm (10%)

o What algorithm did you implement and how does it work?
e Heuristic (10%)

o Whatis your heuristic and how does it work? (5%)

o A proof that your heuristic is admissible. (5%)

25

Early Bird Bonus

e Submit your program before the early bird deadline for a flat 5% bonus
o Only the programming part!
e You will receive your grades at the early bird deadline

e You can still make changes and submit after the early bird deadline

o New submissions after the early bird deadline are not eligible for the 5% bonus

o Your grade will be the higher of the early/regular submissions
e Total grade will not exceed 100%.

o Extra points do not carry over to the next assignment.

26

Late policy

e Your submission time is server-sided, do not submit at the last second

e Each late day incurs a 0.9x penalty

o Rounded up to the nearest day

o 1 second of delay counts as a full day

e Maximum of 7 days of delay accepted

27

Submission

e Submit a zip file containing
o report.pdf
o code/
m solver.h and solver.cpp
m sources.mk

m Any other source or header file you may need
e All code files will be placed in the same directory

e Submission link

o www.csie.ntu.edu.tw/~tcg/2025/hw1l

o We will send your password (used for submissions) to your student ID email

28

