Theory of Computer Games (Fall 2018)
Homework #2

National Taiwan University

Due Date: 14:20 (UTC+8), December 27, 2018

Theory of Computer Games (Fall 2018)Homework #2



Homework Description

In this homework, you are required to

@ Implement an agent of Einstein Wiirfelt Nicht! (Kari)
using Monte-Carlo Tree Search.

© Beat the random Al and the greedy Al.

Theory of Computer Games (Fall 2018)Homework #2



Rules

Basics

@ The game is played on a 5 x 5 board. Initially there are 6 red
cubes and 6 blue cubes on the board.

¥

@ Each cube has a number between 1 and 6, and there are no
two cubes of the same color sharing the same number.

© The 12 numbers are determined randomly, but are guaranteed
to be centrosymmetric.

@ In each turn the first player chooses a red cube to move, and
subsequently (if the game is not over) the second player
chooses a blue cube to move.

Theory of Computer Games (Fall 2018)Homework #2




Rules

Moves

@ Inturn 1,3,5,7,..., a player is restricted to choose cube
1,3,5 to move; in turn 2,4,6,8, ..., a player is restricted to
choose cube 2,4,6 to move.

@ The first player can only move a cube to the east adjacent
square, the south adjacent square, or the southeast adjacent
square. The second player can only move a cube to the west
adjacent square, the north adjacent square, or the northwest
adjacent square.

© If there is another cube in the adjacent square, that cube is
captured. A player is not allowed to capture a cube of
himself.

@ If there is no movable cube, a player should pass in that turn.
A player is not allowed pass if there is a movable cube.

Theory of Computer Games (Fall 2018)Homework #2



Rules

Game Over

The game is over when
@ a red cube reaches the southeast corner (first player wins), or

@ a blue cube reaches the northwest corner (second player
wins), or

© the last red cube is captured (second player wins), or
Q the last blue cube is captured (first player wins).
This game always yields exactly one winner.

Theory of Computer Games (Fall 2018)Homework #2



Protocol

Execution Files

@ Under directory einstein_kari, use make to build the
execution files game, greedy, and random.

e Execution file game supports Al-Al mode, Al-human (1P)
mode, and human-human (2P) mode.

sage: game [-n np agents...] [-r round] [-s seed] [-g] [-| logfile]

: number of human players (0-2), 2 by default
: the (2-np) Als

© number of rounds, 8/cc when np=0/np#0 by default, and can only be specified if np=0|
: random seed for the random part, std::random_device{} () by default
: enable the GUI: can only be specified if np=0
logfile: the file to record the game

@ To begin with, use
$ ./game -n 1 greedy
to start the game with the agent greedy.

Theory of Computer Games (Fall 2018)Homework #2



Protocol

game-Agent Communication

@ An agent receives the last move of the opponent from game
and sends its move accordingly back.

@ We've handled most parts of the communication. All you
have to do is receive messages by simply reading from stdin
and send messages by simply writing to stdout.

@ Read everything character-by-character; if you expect a
message of length k to be received, read one character k times
instead of directly reading a string.

@ Remember to flush every time after writing a message to
stdout.

Theory of Computer Games (Fall 2018)Homework #2



Protocol

Frame of an Agent

1: while true do
2 receive Ry

3 if R = “end of game” then

4 break

5 end if

6 receive Ro

7 B <« the initial board given Ro

8 while true do

9 if R1 = “second player” or this is not the first turn then
10 receive R3

11: if R3 = “win"” or “lose” then

12: break

13: end if

14 do the opponent’s move R3 on B

15 end if

16 choose a move M

17 do the move M on B

18 send M

19 end while

20: end while

Theory of Computer Games (Fall 2018)Homework #2



Protocol

Formats of Received / Sent Messages

© Ri: asingle character.

e ‘e’ end of game

e 'f’: you are the first player in this round

e 's': you are the second player in this round
Q@ Ry:=Ry[1:6]: a permutation of "123456".

e number of (1,1),(5,5) = Re[1]
e number of (1,2), (5,4) = Ry[2]
e number of (1,3), (5,3) = Ra[3]
e number of (2,1),(4,5) = Ra[4]
o number of (2,2),(4,4) = Ry[5]
e number of (3,1),(3,5) = Ry[6]
@ Rs: can be “ww"” (win), “ll" (lose), “00" (pass), or nd

(otherwise), where
e n = number of cube to be moved
o d = direction: 1 (horizontal), 2 (vertical), 3 (diagonal)

©Q M: a 2-sized string, can be “00" (pass) or nd (otherwise) only.



Protocol

@ You can assume that every move your agent receives is valid.

@ Your agent should send a valid move within 10 seconds. If
game receives an invalid move, or doesn't receive a move
within the time limit, your agent will be killed, and your
opponent wins immediately.

Theory of Computer Games (Fall 2018)Homework #2



Requirements

@ You're required to implement the following algorithms:

e UCB score and UCT
e Progressive Pruning or RAVE

@ Your execution file should be named with your student ID,
with all alphabets in lower case, e.g., 107902000, not
B07902000.

e If your programming language is python3, add
#!/usr/bin/env python3 in the first line and remove .py
from the filename.

@ Your agent can use at most 1 thread.

@ Your agent will be tested by

$ ./game -n O [your_id] [our_agent] -r 3

Theory of Computer Games (Fall 2018)Homework #2



Requirements

@ Your report should contain the following:

o How to compile your code into an agent (if your code must be
compiled). Don't upload the compiled executable file!
e What algorithms and heuristics you've implemented.

@ Your report should be named report.pdf.

Theory of Computer Games (Fall 2018)Homework #2



Requirements

Directory Hierarchy

o [your_id] // e.g. b07902000

e source // the directory contains your code
e report.pdf

@ Compress your folder into a zip file.

Theory of Computer Games (Fall 2018)Homework #2



Requirements

Grading Policy

o Basics:
o Beat the agent random.
o Beat the agent greedy.
e report.pdf

e Bonus:

o Beat the agent hidden.
e Ranked high in class.

Theory of Computer Games (Fall 2018)Homework #2



	Rules
	Protocol
	Requirements

