# Theory of Computer Games, NTU Homework #1

Due date: 14:20 (UTC+8), October 26, 2017

# Homework Description

- In this homework, you are asked to
  - Implement a solver of Nonogram
  - Compare the performance of different search algorithms

# Nonogram



| 1                | 1              |
|------------------|----------------|
| 1 2 2            | 2 2 1          |
| 3 2 1 6 1 1 7    | 1 1 6 1 2 3    |
| 5 5 9 11 2 3 3 1 | 3 3 2 11 9 5 5 |
| 5 3 2 1 1 3 3 3  | 3 3 1 1 2 3 5  |
|                  |                |
| 5 5              |                |
| 3 5 3            |                |
| 2 9 2            |                |
| 1 2 1 2 1        |                |
| 1 11 1           |                |
| 4 1 4            |                |
| 4 1 4            |                |
| 13               |                |
| 6 6              |                |
| 13               |                |
| 1 2 2 1          |                |
| 1 11 1           |                |
| 2 9 2            |                |
|                  |                |
| 3 5 3            |                |

- For each column and row, there is a hint
- For example, 5 5 means
  - There are 2 connected blocks strings
  - Each one has 5 connected blocks

#### Random Problem Generator

- Random problem generator from TCGA 2016
  - http://aigames.nctu.edu.tw/~hsuehch/nonogram/ tcga2016/boardgen.py
- Usage:
  - ./boardgen.py n num P1 P2 SEED
  - ./boardgen.py 25 1000 0.5 0.35 12345
    - n: size of board is n by n
    - num: number of test case
    - p1: max probability a cell is black
    - p2: min probability a cell is black
    - SEED: random seed

## Input



• Read from standard input.

```
$1 // Problem Number
5 5 // Hint of first column, from
up to down
5 5 // Hint of last column
5 5 // Hint of first row, from left
to right
5 5 // Hint of last row
$2 // Problem Number
```

## Output

```
$1
1111110000111111
111001111100111
:
111001111100111
111111100001111
```

- Write to standard output.
- For each case, output \$(Problem Number) in the first line. Then output n lines, each line contains n elements separated by space or tab.
  - 1: block
  - 0: non-block
- For example, see output file of boardgen.py.

#### Standard Test Board

- Your program should at least pass the following test data
  - boardgen.py 5 10 0.5 0.3 514514999
  - boardgen.py 10 10 0.5 0.3 514514999
  - boardgen.py 15 10 0.5 0.3 514514999
  - The time limit is 60 seconds for each input file.
- Notification
  - The input file do not indicate the board size
  - You can caculate it from the number of lines of the input file.

# Solution Package

- Submit page: http://w.csie.org/~tcg/2017/
- Package structure:
  - Your ID [R05xxxxxx/B02xxxxxx/...]
    - code // A folder contains all your codes
    - report.pdf // Your report
- Compress your folder into a "zip" file
- Due to server limitation, the file size is restricted to 2M bytes
- If your program has a pattern database and the size is greater than 2Mb, you can simply upload the code that generates the pattern database.

## What Should Be Inclued in Your Reprot?

#### About your code

- You can use any programming language.
- How to compile and run your program.
- Must be compiled and run under linux or windows 10.
- If TA has difficulty in compiling your code, he may ask you to demonstrate the process.
- What algorithm and heuristic you implement

#### Experiment

- The comparison between different algorithms.
- Must include running time.

#### Discussion

- The game complexity analysis
- The factors affect the performance of each algorithm
- The factors affect the difficulty of Nonogram
- Other observation or discussion



#### References

- Nonogram's wikipedia page
  - https://zh.wikipedia.org/wiki/Nonogram
- TCGA 2016 Nonogram Tournament
  - http: //aigames.nctu.edu.tw/~hsuehch/nonogram/tcga2016/
- An on-line nonogram playing site
  - http://www.puzzle-nonograms.com/