

77

C h a p t e r

3

Fundamental
Data Types

�

To recognize the limitations of the

int

 and

double

 types and the overflow and
roundoff errors that can result

�

To write arithmetic expressions in Java

�

To use the

String

 type to define and manipulate character strings

�

To learn about the

char

 data type

�

To learn how to read program input

�

To understand the copy behavior of primitive types and object references

C H A P T E R G O A L S

To understand integer and floating-point numbers

T

his chapter teaches how to manipulate numbers and character strings in
Java. The goal of this chapter is to gain a firm understanding of the fundamental
Java data types.

78

CHAPTER 3

Fundamental Data Types78

In this chapter, we will use a

Purse

 class to demonstrate several important concepts. We
won’t yet reveal the implementation of the purse, but here is the public interface:

public class Purse
{
 /**

Constructs an empty purse.

 */
 public Purse()
 {
 //

implementation

 }

 /**

Add nickels to the purse.

 @param

count the number of nickels to add

 */
 public void addNickels(int count)
 {
 //

implementation

 }

 /**

Add dimes to the purse.

 @param

count the number of dimes to add

3.1 Number Types

3.1 Number Types

78

Quality Tip 3.1: Choose Descriptive Variable
Names

80

Advanced Topic 3.1: Numeric Ranges and
Precisions

81

Advanced Topic 3.2: Other Number Types

82

Random Fact 3.1: The Pentium Floating-Point
Bug

83

3.2 Assignment

84

Advanced Topic 3.3: Combining Assignment
and Arithmetic

86

Productivity Hint 3.1: Avoid Unstable Layout

87

3.3 Constants

88

Syntax 3.1: Constant Definition

90

Quality Tip 3.2: Do Not Use Magic Numbers

92

3.4 Arithmetic and Mathematical Functions

92

Common Error 3.1: Integer Division

94

Common Error 3.2: Unbalanced
Parentheses

96

Productivity Hint 3.2: On-Line Help

96

Quality Tip 3.3: White Space

97

Quality Tip 3.4: Factor Out Common Code

98

3.5 Calling Static Methods

98

Syntax 3.2: Static Method Call

99

3.6 Type Conversion

100

Syntax 3.3: Cast

101

HOWTO 3.1: Carrying Out Computations

101

Common Error 3.3: Roundoff Errors

104

Advanced Topic 3.4: Binary Numbers

105

3.7 Strings

107

Advanced Topic 3.5: Formatting Numbers

109

3.8 Reading Input

110

Productivity Hint 3.3: Reading Exception
Reports

112

Advanced Topic 3.6: Reading Console
 Input

113

3.9 Characters

116

Random Fact 3.2: International Alphabets

116

3.10 Comparing Primitive Types and
Objects

119

C H A P T E R C O N T E N T S

3.1

Number Types 79

 */
 public void addDimes(int count)
 {
 //

implementation

 }

 /**

Add quarters to the purse.

 @param

count the number of quarters to add

 */
 public void addQuarters(int count)
 {
 //

implementation

 }

 /**

Get the total value of the coins in the purse.

 @return

the sum of all coin values

 */
 public double getTotal()
 {
 //

implementation

 }

 //

private instance variables

}

Read through the public interface and ask yourself whether you can figure out how to use

Purse

objects. You should find this straightforward. There is a constructor to make a new, empty purse:

Purse myPurse = new Purse();

You can add nickels, dimes, and quarters. (For simplicity, we don’t bother with pennies,
half dollars, or dollar coins.)

myPurse.addNickels(3);
myPurse.addDimes(1);
myPurse.addQuarters(2);

Now you can ask the purse object about the total value of the coins in the purse:

double totalValue = myPurse.getTotal(); //

returns 0.75

If you look closely at the methods to add coins, you will see an
unfamiliar data type. The

count

 parameter has type

int

, which
denotes an

integer

 type. An integer is a number without a fractional
part. For example, 3 is an integer, but 0.05 is not. The number zero
and negative numbers are integers. Thus, the

int

 type is more restric-
tive than the

double

 type that you saw in Chapter 2.
Why have both integer and floating-point number types? Your calculator doesn’t

have a separate integer type. It uses floating-point numbers for all calculations. Why
don’t we just use the

double

 type for the coin counts?

The int type denotes
integers: numbers without
fractional parts.

80

CHAPTER 3

Fundamental Data Types80

There are two reasons for having a separate integer type: one philosophical and one prag-
matic. In terms of philosophy, when we think about real purses and modern American coins,
we recognize that there can be only a whole number of nickels, say, in a purse. If we were to
saw a nickel in half, the halves would be worthless, and dropping one of them into a purse
would not increase the amount of money in the purse. By specifying that the number of
nickels is an integer, we make that observation into an explicit assumption in our model. The
program would have worked just as well with floating-point numbers to count the coins, but
it is generally a good idea to choose programming solutions that document one’s intentions.
Pragmatically speaking, integers are more efficient than floating-point numbers. They take
less storage space, are processed faster on some platforms, and don’t cause rounding errors.

Now let’s start implementing the

Purse class. Any Purse object can be described by
the number of nickels, dimes, and quarters that the purse currently contains. Thus, we
use three instance variables to represent the state of a Purse object:

public class Purse
{
 . . .
 private int nickels;
 private int dimes;
 private int quarters;
}

Now we can implement the getTotal method simply:

public double getTotal()
{
 return nickels * 0.05 + dimes * 0.1 + quarters * 0.25;
}

In Java, multiplication is denoted by an asterisk *, not a raised dot · or a cross , because
there are no keys for these symbols on most keyboards. For example, d · 10 is written as
d * 10. Do not write commas or spaces in numbers in Java. For example, 10,150.75
must be entered as 10150.75. To write numbers in exponential notation in Java, use E n
instead of “ 10n”. For example, 5.0 10–3 is written as 5.0E-3.

The getTotal method computes the value of the expression
nickels * 0.05 + dimes * 0.1 + quarters * 0.25

That value is a floating-point number, because multiplying an integer (such as nickels)
by a floating-point number (such as 0.05) yields a floating-point number. The return
statement returns the computed value as the method result, and the method exits.

Choose Descriptive Variable Names

In algebra, variable names are usually just one letter long, such as p or A, maybe with a
subscript such as p1. You might be tempted to save yourself a lot of typing by using
shorter variable names in your Java programs as well:

�

� �

3.1Quality Tip�

�

�

3.1 Number Types 81

public class Purse
{
 . . .
 private int n;
 private int d;
 private int q;
}

Compare this with the previous one, though. Which one is easier to read? There is no
comparison. Just reading nickels is a lot less trouble than reading n and then figuring
out that it must mean “nickels”.

In practical programming, descriptive variable names are particularly important when
programs are written by more than one person. It may be obvious to you that n must
stand for nickels, but is it obvious to the person who needs to update your code years
later, long after you were promoted (or laid off)? For that matter, will you remember
yourself what n means when you look at the code six months from now?

Of course, you could use comments:
public class Purse
{
 . . .
 private int n; // nickels
 private int d; // dimes
 private int q; // quarters
}

That makes the definitions pretty clear. But in the getTotal method, you’d still have a rather
cryptic computation n * 0.05 + d * 0.1 + q * 0.25. Descriptive variable names are a
better choice, because they make your code easy to read without requiring comments.

Numeric Ranges and Precisions

Unfortunately, int and double values do suffer from one problem: They cannot represent arbi-
trarily large integer or floating-point numbers. Integers have a range of 2,147,483,648 (about

2 billion) to 2,147,483,647 (about 2 billion). See Advanced Topic 3.4 for an explanation of
these values. If you need to refer to these boundaries in your program, use the constants Integer.
MIN_VALUE and Integer.MAX_VALUE, which are defined in a class called Integer. If you
want to represent the world population, you can’t use an int. Double-precision floating-point
numbers are somewhat less limited; they can go up to more than 10300. However, double
floating-point numbers suffer from a different problem: precision. They store only about 15 sig-
nificant digits. Suppose your customers might find the price of three hundred trillion dollars
($300,000,000,000,000) for your product a bit excessive, so you want to reduce it by five cents to
a more reasonable-looking $299,999,999,999,999.95. Try running the following program:

class AdvancedTopic3_1
{

�

�

�

�

�

�

�

�

�

3.1Advanced Topic�

�
� �

�

�

�

�

�

82 CHAPTER 3 Fundamental Data Types82

 public static void main(String[] args)
 {
 double originalPrice = 3E14;
 double discountedPrice = originalPrice - 0.05;
 double discount = originalPrice - discountedPrice;
 // should be 0.05;
 System.out.println(discount);
 // prints 0.0625;
 }
}

The program prints out 0.0625, not 0.05. It is off by more than a penny!
For most of the programming projects in this book, the limited range and precision

of int and double are acceptable. Just bear in mind that overflows or loss of precision
can occur.

Other Number Types

If int and double are not sufficient for your computational needs, there are other
data types to which you can turn. When the range of integers is not sufficient,
the simplest remedy is to use the long type. Long integers have a range from

9,223,372,036,854,775,808 to 9,223,372,036,854,775,807.
To specify a long integer constant, you need to append the letter L after the number

value. For example,

long price = 300000000000000L;

There is also an integer type short with shorter-than-normal integers, having a range of
32,768 to 32,767. Finally, there is a type byte with a range of 128 to 127.

The double type can represent about 15 decimal digits. There is a second floating-
point type, called float, whose values take half the storage space. Computations involv-
ing float execute a bit faster than those involving double, but the precision of float
values—about 7 decimal digits—is insufficient for many programs. However, some
graphics routines require you to use float values.

By the way, the name “floating-point” comes from the fact that the numbers are
represented in the computer as a sequence of the significant digits and an indication of
the position of the decimal point. For example, the numbers 250, 2.5, 0.25, and 0.025
all have the same decimal digits: 25. When a floating-point number is multiplied or
divided by 10, only the position of the decimal point changes; it “floats”. This repre-
sentation corresponds to numbers written in “exponential” or “scientific” notation, such
as 2.5 102. (Actually, internally the numbers are represented in base 2, as binary
numbers, but the principle is the same. See Advanced Topic 3.4 for more information
on binary numbers.) Sometimes float values are called “single-precision”, and of
course double values are “double-precision” floating-point numbers.

�

�

�

�

�

3.2Advanced Topic�

� �

� �

�

�

�

�

�

�

�

�

�

�

3.1 Number Types 83

If you want to compute with really large numbers, you can use big number objects.
Big number objects are objects of the BigInteger and BigDecimal classes in the
java.math package. Unlike the number types such as int or double, big number
objects have essentially no limits on their size and precision. However, computations
with big number objects are much slower than those that involve number types. Per-
haps more importantly, you can’t use the familiar arithmetic operators (+ - * /) with
them. Instead, you have to use methods called add, subtract, multiply, and
divide. Here is an example of how to create two big numbers and how to multiply
them.

BigInteger a = new BigInteger("123456789");
BigInteger b = new BigInteger("987654321");
BigInteger c = a.multiply(b);
System.out.println(c); // prints 121932631112635269

The Pentium Floating-Point Bug

In 1994, Intel Corporation released what was then its most powerful processor, the first of
the Pentium series. Unlike previous generations of Intel’s processors, the Pentium had a very
fast floating-point unit. Intel’s goal was to compete aggressively with the makers of higher-
end processors for engineering workstations. The Pentium was an immediate huge success.

In the summer of 1994, Dr. Thomas Nicely of Lynchburg College in Virginia ran an
extensive set of computations to analyze the sums of reciprocals of certain sequences of
prime numbers. The results were not always what his theory predicted, even after he
took into account the inevitable roundoff errors. Then Dr. Nicely noted that the same
program did produce the correct results when run on the slower 486 processor, which
preceded the Pentium in Intel’s lineup. This should not have happened. The optimal
roundoff behavior of floating-point calculations has been standardized by the Institute of
Electrical and Electronics Engineers (IEEE), and Intel claimed to adhere to the IEEE
standard in both the 486 and the Pentium processors. Upon further checking, Dr. Nicely
discovered that indeed there was a very small set of numbers for which the product of
two numbers was computed differently on the two processors. For example,

4,195,835 ((4,195,835 / 3,145,727) 3,145,727)

is mathematically equal to 0, and it did compute as 0 on a 486 processor. On a Pentium
processor, however, the result was 256.

As it turned out, Intel had independently discovered the bug in its testing and had
started to produce chips that fixed it. (Subsequent versions of the Pentium, such as the
Pentium III and IV, are free of the problem.) The bug was caused by an error in a table
that was used to speed up the floating-point multiplication algorithm of the processor.
Intel determined that the problem was exceedingly rare. They claimed that under normal
use a typical consumer would only notice the problem once every 27,000 years. Unfortu-
nately for Intel, Dr. Nicely had not been a normal user.

�

�

�

�

�

3.1Random Fact�

�

�

�

�

�

�

�

�

�

� �

84 CHAPTER 3 Fundamental Data Types84

Now Intel had a real problem on its hands. It figured that replacing all the Pen-
tium processors that it had already sold would cost it a great deal of money. Intel
already had more orders for the chip than it could produce, and it would be partic-
ularly galling to have to give out the scarce chips as free replacements instead of
selling them. Intel’s management decided to punt on the issue and initially offered
to replace the processors only for those customers who could prove that their work
required absolute precision in mathematical calculations. Naturally, that did not go
over well with the hundreds of thousands of customers who had paid retail prices
of $700 and more for a Pentium chip and did not want to live with the nagging
feeling that perhaps, one day, their income tax program would produce a faulty
return.

Ultimately, Intel had to cave in to public demand and replaced all defective chips, at a
cost of about 475 million dollars.

What do you think? Intel claims that the probability of the bug occurring in any cal-
culation is extremely small—smaller than many chances you take every day, such as driv-
ing to work in an automobile. Indeed, many users had used their Pentium computers for
many months without reporting any ill effects, and the computations that Professor
Nicely was doing are hardly examples of typical user needs. As a result of its public rela-
tions blunder, Intel ended up paying a large amount of money. Undoubtedly, some of
that money was added to chip prices and thus actually paid by Intel’s customers. Also, a
large number of processors, whose manufacture consumed energy and caused some envi-
ronmental impact, were destroyed without benefiting anyone. Could Intel have been jus-
tified in wanting to replace only the processors of those users who could reasonably be
expected to suffer an impact from the problem?

Suppose that, instead of stonewalling, Intel had offered you the choice of a free
replacement processor or a $200 rebate. What would you have done? Would you have
replaced your faulty chip, or would you have taken your chance and pocketed the
money?

Here is the constructor of the Purse class:

public Purse()
{
 nickels = 0;
 dimes = 0;
 quarters = 0;
}

The = operator is called the assignment operator. On the left, you need a variable name.
The right-hand side can be a single value or an expression. The assignment operator sets
the variable to the given value. So far, that’s straightforward. But now let’s look at a more
interesting use of the assignment operator, in the addNickels method.

�

�

�

�

�

�

�

�

�

�

3.2 Assignment

3.2 Assignment 85

public void addNickels(int count)
{
 nickels = nickels + count;
}

It means, “Compute the value of the expression nickels + count, and place the result
again into the variable nickels.” (See Figure 1.)

The = sign doesn’t mean that the left-hand side is equal to the right-hand side but that the
right-hand-side value is copied into the left-hand-side variable. You should not confuse this
assignment operation with the = used in algebra to denote equality. The assignment operator is
an instruction to do something, namely place a value into a variable. The mathematical equal-
ity states the fact that two values are equal. For example, in Java it is perfectly legal to write

nickels = nickels + 1;

It means to look up the value stored in the variable nickels, to add 1 to it, and to
stuff the sum back into nickels. (See Figure 2.) The net effect of executing this

Figure 1

Assignment

Figure 2

Incrementing a Variable

count =

nickels =

nickels + count

nickels =

nickels + 1

86 CHAPTER 3 Fundamental Data Types86

statement is to increment nickels by 1. Of course, in mathematics
it would make no sense to write that n = n + 1; no integer can equal
itself plus 1.

The concepts of assignment and equality have no relationship
with each other, and it is a bit unfortunate that the Java language
(following C and C++) uses = to denote assignment. Other pro-
gramming languages use a symbol such as <- or :=, which avoids
the confusion.

Consider once more the statement nickels = nickels + 1.
This statement increments the nickels variable. For example, if
nickels was 3 before execution of the statement, it is set to 4 after-
wards. This increment operation is so common when writing pro-
grams that there is a special shorthand for it, namely

nickels++;

This statement has exactly the same effect—namely, to add 1 to nickels—but it is
easier to type. As you might have guessed, there is also a decrement operator --. The
statement

nickels--;

subtracts 1 from nickels.

Combining Assignment and Arithmetic

In Java you can combine arithmetic and assignment. For example, the instruction

nickels += count;

is a shortcut for

nickels = nickels + count;

Similarly,

nickels *= 2;

is another way of writing

nickels = nickels * 2;

Many programmers find this a convenient shortcut. If you like it, go ahead and use it in
your own code. For simplicity, we won’t use it in this book, though.

3.3Advanced Topic�

�

�

�

�

�

Assignment to a variable
is not the same as
mathematical equality.

The ++ and -- operators
increment and decrement
a variable.

3.2 Assignment 87

Avoid Unstable Layout

You should arrange program code and comments so that the program is easy to read. For
example, you should not cram all statements on a single line, and you should make sure
that braces { } line up.

However, you should be careful when you embark on beautification efforts. Some
programmers like to line up the = signs in a series of assignments, like this:

nickels = 0;
dimes = 0;
quarters = 0;

This looks very neat, but the layout is not stable. Suppose you add a line like the one at
the bottom of this:

nickels = 0;
dimes = 0;
quarters = 0;
halfDollars = 0;

Oops, now the = signs no longer line up, and you have the extra work of lining them up
again.

Here is another example. Suppose you have a comment that goes over multiple lines:

// In this test class, we compute the value of a set of coins.
// We add a number of nickels, dimes, and quarters
// to a purse. We then get and display the total value.

When the program is extended to work for half-dollar coins as well, you must modify
the comment to reflect that change.

// In this test class, we compute the value of a set of coins.
// We add a number of nickels, dimes, quarters, and
half-dollars // to a purse. We then get and display the total
value.

Now you need to rearrange the // to fix up the comment. This scheme is a disincentive to
keep comments up to date. Don’t do it. Instead, for comments that are longer than one line,
use the /*...*/ style for comments, and block off the entire comment like this:

/*
 In this test class, we compute the value of a set of coins.
 We add a number of nickels, dimes, and quarters
 to a purse. We then get and display the total value.
*/

You may not care about these issues. Perhaps you plan to beautify your program just
before it is finished, when you are about to turn in your homework. That is not a

3.1Productivity Hint�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

88 CHAPTER 3 Fundamental Data Types88

particularly useful approach. In practice, programs are never finished. They are con-
tinuously improved and updated. It is better to develop the habit of laying out your
programs well from the start and keeping them legible at all times. As a conse-
quence, you should avoid layout schemes that are hard to maintain.

Consider once again the getTotal method, paying attention to whether it is easy to
understand the code.

public double getTotal()
{
 return nickels * 0.05 + dimes * 0.1 + quarters * 0.25;
}

Most of the code is self-documenting. However, the three numeric quantities, 0.05, 0.1,
and 0.25, are included in the arithmetic expression without any explanation. Of course,
in this case, you know that the value of a nickel is five cents, which explains the 0.05, and
so on. However, the next person who needs to maintain this code may live in another
country and may not know that a nickel is worth five cents.

Thus, it is a good idea to use symbolic names for all values, even those that appear
obvious. Here is a clearer version of the computation of the total:

double nickelValue = 0.05;
double dimeValue = 0.1;
double quarterValue = 0.25;
return nickels * nickelValue
 + dimes * dimeValue
 + quarters * quarterValue;

There is another improvement we can make. There is a difference
between the nickels and nickelValue variables. The nickels
variable can truly vary over the life of the program, as more coins are
added to the purse. But nickelValue is always 0.05. It is a constant.
In Java, constants are identified with the keyword final. A variable
tagged as final can never change after it has been set. If you try to
change the value of a final variable, the compiler will report an error
and your program will not compile.

Many programmers use all-uppercase names for constants (final
variables), such as NICKEL_VALUE. That way, it is easy to distinguish
between variables (with mostly lowercase letters) and constants. We will

follow this convention in this book. However, this rule is a matter of good style, not a
requirement of the Java language. The compiler will not complain if you give a final vari-
able a name with lowercase letters.

�

�

3.3 Constants

A final variable is a
constant. Once its value has
been set, it cannot be changed.

Use named constants to
make your programs easier
to read and maintain.

3.3 Constants 89

Here is the improved version of the getTotal method:

public double getTotal()
{
 final double NICKEL_VALUE = 0.05;
 final double DIME_VALUE = 0.1;
 final double QUARTER_VALUE = 0.25;
 return nickels * NICKEL_VALUE
 + dimes * DIME_VALUE
 + quarters * QUARTER_VALUE;
}

In this example, the constants are needed only inside one method of the class. Fre-
quently, a constant value is needed in several methods. Then you need to declare it
together with the instance variables of the class and tag it as static final. The mean-
ing of the keyword static will be explained in Chapter 6.

public class Purse
{
 // methods
 . . .

 // constants
 private static final double NICKEL_VALUE = 0.05;
 private static final double DIME_VALUE = 0.1;
 private static final double QUARTER_VALUE = 0.25;

 // instance variables
 private int nickels;
 private int dimes;
 private int quarters;
}

Here we defined the constants to be private because we didn’t think they were of
interest to users of the Purse class. However, it is also possible to declare constants as
public:

 public static final double NICKEL_VALUE = 0.05;

Then methods of other classes can access the constant as Purse.NICKEL_VALUE.
The Math class from the standard library defines a couple of useful constants:

public class Math
{
 . . .
 public static final double E = 2.7182818284590452354;
 public static final double PI = 3.14159265358979323846;
}

You can refer to these constants as Math.PI and Math.E in any of your methods. For
example,

double circumference = Math.PI * diameter;

90 CHAPTER 3 Fundamental Data Types90

File Purse.java
1 /**
2 A purse computes the total value of a collection of coins.
3 */
4 public class Purse
5 {
6 /**
7 Constructs an empty purse.
8 */
9 public Purse()

10 {
11 nickels = 0;
12 dimes = 0;
13 quarters = 0;
14 }
15
16 /**
17 Add nickels to the purse.
18 @param count the number of nickels to add
19 */
20 public void addNickels(int count)
21 {
22 nickels = nickels + count;
23 }
24 /**
25 Add dimes to the purse.
26 @param count the number of dimes to add

Syntax 3.1 : Constant Definition
In a method:

final typeName variableName expression;

In a class:

accessSpecifier static final typeName variableName = expression;

Example:

final double NICKEL_VALUE = 0.05;
public static final double LITERS_PER_GALLON = 3.785;

Purpose:

To define a constant of a particular type

�

3.3 Constants 91

27 */
28 public void addDimes(int count)
29 {
30 dimes = dimes + count;
31 }
32
33 /**
34 Add quarters to the purse.
35 @param count the number of quarters to add
36 */
37 public void addQuarters(int count)
38 {
39 quarters = quarters + count;
40 }
41
42 /**
43 Get the total value of the coins in the purse.
44 @return the sum of all coin values
45 */
46 public double getTotal()
47 {
48 return nickels * NICKEL_VALUE
49 + dimes * DIME_VALUE + quarters * QUARTER_VALUE;
50 }
51
52 private static final double NICKEL_VALUE = 0.05;
53 private static final double DIME_VALUE = 0.1;
54 private static final double QUARTER_VALUE = 0.25;
55
56 private int nickels;
57 private int dimes;
58 private int quarters;
59 }

File PurseTest.java
1 /**
2 This program tests the Purse class.
3 */
4 public class PurseTest
5 {
6 public static void main(String[] args)
7 {
8 Purse myPurse = new Purse();
9

10 myPurse.addNickels(3);
11 myPurse.addDimes(1);
12 myPurse.addQuarters(2);
13 double totalValue = myPurse.getTotal();

92 CHAPTER 3 Fundamental Data Types92

14 System.out.print("The total is ");
15 System.out.println(totalValue);
16 }
17 }

Do Not Use Magic Numbers

A magic number is a numeric constant that appears in your code without explanation. For
example, consider the following scary example that actually occurs in the Java library source:

h = 31 * h + ch;

Why 31? The number of days in January? One less than the number of bits in an integer?
Actually, this code computes a “hash code” from a string—a number that is derived from
the characters in such a way that different strings are likely to yield different hash codes.
The value 31 turns out to scramble the character values nicely.

You should use a named constant instead:

final int HASH_MULTIPLIER = 31;
h = HASH_MULTIPLIER * h + ch;

You should never use magic numbers in your code. Any number that is not completely self-
explanatory should be declared as a named constant. Even the most reasonable cosmic con-
stant is going to change one day. You think there are 365 days in a year? Your customers on
Mars are going to be pretty unhappy about your silly prejudice. Make a constant

final int DAYS_PER_YEAR = 365;

By the way, the device
final int THREE_HUNDRED_AND_SIXTY_FIVE = 365;

is counterproductive and frowned upon.

You already saw how to add, subtract, and multiply values. Division is indicated with a /,
not a fraction bar. For example,

becomes
(a + b) / 2

Parentheses are used just as in algebra: to indicate in which order the subexpressions
should be computed. For example, in the expression (a + b) / 2, the sum a + b is
computed first, and then the sum is divided by 2. In contrast, in the expression

a + b / 2

3.2Quality Tip�

�

�

�

�

�

�

�

�

3.4 Arithmetic and Mathematical Functions

a b�
2

3.4 Arithmetic and Mathematical Functions 93

only b is divided by 2, and then the sum of a and b / 2 is formed. Just as in regular alge-
braic notation, multiplication and division bind more strongly than
addition and subtraction. For example, in the expression a + b / 2,
the / is carried out first, even though the + operation occurs further to
the left.

Division works as you would expect, as long as at least one of the
numbers involved is a floating-point number. That is,

7.0 / 4.0
7 / 4.0
7.0 / 4

all yield 1.75. However, if both numbers are integers, then the result of the division is
always an integer, with the remainder discarded. That is,

7 / 4

evaluates to 1, because 7 divided by 4 is 1 with a remainder of 3 (which is discarded).
This can be a source of subtle programming errors—see Common Error 3.1.

If you are interested only in the remainder of an integer division, use the % operator:

7 % 4

is 3, the remainder of the integer division of 7 by 4. The % symbol has no
analog in algebra. It was chosen because it looks similar to /, and the
remainder operation is related to division.

Here is a typical use for the integer / and % operations. Suppose you
want to know the value of the coins in a purse in dollars and cents. You can compute the value
as an integer, denominated in cents, and then compute the whole dollar amount and the
remaining change:

final int PENNIES_PER_NICKEL = 5;
final int PENNIES_PER_DIME = 10;
final int PENNIES_PER_QUARTER = 25;
final int PENNIES_PER_DOLLAR = 100;

// compute total value in pennies

int total = nickels * PENNIES_PER_NICKEL
 + dimes * PENNIES_PER_DIME
 + quarters * PENNIES_PER_QUARTER;

// use integer division to convert to dollars, cents

int dollars = total / PENNIES_PER_DOLLAR;
int cents = total % PENNIES_PER_DOLLAR;

For example, if total is 243, then dollars is set to 2 and cents to 43.
To take the square root of a number, you use the Math.sqrt method. For example,
 is written as Math.sqrt(x). To compute xn, you write Math.pow(x, n). However,

to compute x2 it is significantly more efficient simply to compute x * x.
x

If both arguments of the /
operator are integers, the
result is an integer and the
remainder is discarded.

The % operator computes
the remainder of a division.

94 CHAPTER 3 Fundamental Data Types94

Integer Division

It is unfortunate that Java uses the same symbol, namely /, for both integer and floating-point
division. These are really quite different operations. It is a common error to use integer divi-
sion by accident. Consider this program segment that computes the average of three integers.

int s1 = 5; // score of test 1
int s2 = 6; // score of test 2
int s3 = 3; // score of test 3
double average = (s1 + s2 + s3) / 3; // Error
System.out.print("Your average score is ");
System.out.println(average);

What could be wrong with that? Of course, the average of s1, s2, and s3 is

Here, however, the / does not mean division in the mathematical sense. It denotes
integer division, because the values s1 + s2 + s3 and 3 are both integers. For example,
if the scores add up to 14, the average is computed to be 4, the result of the integer divi-
sion of 14 by 3. That integer 4 is then moved into the floating-point variable average.
The remedy is to make the numerator or denominator into a floating-point number:

double total = s1 + s2 + s3;
double average = total / 3;

or
double average = (s1 + s2 + s3) / 3.0;

As you can see, the visual effect of the /, Math.sqrt, and
Math.pow notations is to flatten out mathematical terms. In algebra,
you use fractions, superscripts for exponents, and radical signs for
roots to arrange expressions in a compact two-dimensional form. In
Java, you have to write all expressions in a linear arrangement. For
example, the subexpression

of the quadratic formula becomes
(-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a)

Figure 3 shows how to analyze such an expression. With complicated expressions like these,
it is not always easy to keep the parentheses (...) matched—see Common Error 3.2.

Table 1 shows additional methods of the Math class. Inputs and outputs are floating-
point numbers.

3.1Common Error�

�

�

�

�

�

�

�

�

ŝ1 s2 s3� �

3

b� b2 4ac��
2a

--

The Math class contains
methods sqrt and pow
to compute square roots
and powers.

3.4 Arithmetic and Mathematical Functions 95

Figure 3

Analyzing an Expression

(–b + Math.sqrt(b * b – 4 * a * c)) / (2 * a)

b2

b2 – 4ac

b2 – 4ac

4ac 2a

2a

–b + b2 – 4ac

–b + b2 – 4ac

Table 1

Mathematical Methods

Math.pow(x, y) x y (x� 0, or x=0 and y�0, or x�0 and y is an integer)

Math.sqrt(x) Square root of x (�0)

Sine of x (x in radians)

Cosine of x

Tangent of x

Arc sine (sin–1x� [–�/2, �/2], x� [–1,1])

Arc cosine (cos–1x�[0,�], x� [–1,1])

Arc tangent (tan–1x� (–�/2, �/2))

Arc tangent (tan–1(y/x) � [–�/2,�/2], x may be 0

Convert x radians to degrees (i.e., returns x 	180/�)

Convert x degrees to radians (i.e., returns x 	�/180)

e x

Natural log (ln(x), x >0)

Math.sin(x)

Math.cos(x)

Math.tan(x)

Math.asin(x)

Math.acos(x)

Math.atan(x)

Math.atan2(y, x)

Math.toRadians(x)

Math.toDegrees(x)

Math.exp(x)

Math.log(x)

Closest integer to x (as a long)Math.round(x)

Smallest integer � x (as a double)Math.ceil(x)

Largest integer
 x (as a double)Math.floor(x)

Absolute value |x|Math.abs(x)

Function Returns

96 CHAPTER 3 Fundamental Data Types96

Unbalanced Parentheses

Consider the expression

1.5 * ((-(b - Math.sqrt(b * b - 4 * a * c)) / (2 * a))

What is wrong with it? Count the parentheses. There are five opening parentheses (and
four closing parentheses). The parentheses are unbalanced. This kind of typing error is
very common with complicated expressions. Now consider this expression.

1.5 * (Math.sqrt(b * b - 4 * a * c))) - ((b / (2 * a))

This expression has five opening parentheses (and five closing parentheses), but it is
still not correct. In the middle of the expression,

1.5 * (Math.sqrt(b * b - 4 * a * c))) - ((b / (2 * a))

there are only two opening parentheses (but three closing parentheses), which is an
error. In the middle of an expression, the count of opening parentheses (must be greater
than or equal to the count of closing parentheses), and at the end of the expression the
two counts must be the same.

Here is a simple trick to make the counting easier without using pencil and paper. It
is difficult for the brain to keep two counts simultaneously, so keep only one count when
scanning the expression. Start with 1 at the first opening parenthesis; add 1 whenever
you see an opening parenthesis; and subtract 1 whenever you see a closing parenthesis.
Say the numbers aloud as you scan the expression. If the count ever drops below zero, or
if it is not zero at the end, the parentheses are unbalanced. For example, when scanning
the previous expression, you would mutter

1.5 * (Math.sqrt(b * b - 4 * a * c))) - ((b / (2 * a))
 1 2 1 0 –1

and you would find the error.

On-Line Help

The Java library has hundreds of classes and thousands of methods. It is neither necessary
nor useful trying to memorize them. Instead, you should become familiar with using the
on-line documentation. You can download the documentation from http://java.sun.com/
j2se/1.3/docs.html. Install the documentation set and point your browser to your Java
installation directory /docs/api/index.html. Alternatively, you can browse http://
java.sun.com/j2se/1.3/docs/api/index.html. For example, if you are not sure how the pow
method works, or cannot remember whether it was called pow or power, the on-line help

3.2Common Error�

�

�

�

�

�

�

�

�

�

3.2Productivity Hint�

�

�

�

3.4 Arithmetic and Mathematical Functions 97

can give you the answer quickly. Click on the Math class in the class window on the left, and
look at the method summary in the main window (see Figure 4).

If you use javadoc to document your own classes, then this documentation format
will look extremely familiar to you. The programmers who implement the Java library
use javadoc themselves. They too document every class, every method, every parame-
ter, and every return value, and then use javadoc to extract the documentation in
HTML format.

White Space

The compiler does not care whether you write your entire program onto a single line or
place every symbol onto a separate line. The human reader, though, cares very much. You
should use blank lines to group your code visually into sections. For example, you can
signal to the reader that an output prompt and the corresponding input statement belong
together by inserting a blank line before and after the group. You will find many exam-
ples in the source code listings in this book.

White space inside expressions is also important. It is easier to read

x1 = (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a);

Figure 4

On-Line Help

�

�

�

�

�

�

�

�

�

�

3.3Quality Tip�

�

�

�

98 CHAPTER 3 Fundamental Data Types98

than

X1=(-b+Math.sqrt(b*b-4*a*c))/(2*a);

Simply put spaces around all operators + - * / % =. However, don’t put a space after
a unary minus: a - used to negate a single quantity, as in -b. That way, it can be easily
distinguished from a binary minus, as in a - b. Don’t put spaces between a method
name and the parentheses, but do put a space after every Java keyword. That makes
it easy to see that the sqrt in Math.sqrt(x) is a method name, whereas the if in
if (x > 0)... is a keyword.

Factor Out Common Code

Suppose you want to find both solutions of the quadratic equation ax2 + bx + c = 0. The
quadratic formula tells us that the solutions are

In Java, there is no analog to the operation, which indicates how to obtain two
solutions simultaneously. Both solutions must be computed separately:

x1 = (-b + Math.sqrt(b * b - 4 * a * c)) / (2 * a);
x2 = (-b - Math.sqrt(b * b - 4 * a * c)) / (2 * a);

This approach has two problems. First, the computation of Math.sqrt(b * b - 4 * a * c)
is carried out twice, which wastes time. Second, whenever the same code is replicated, the
possibility of a typing error increases. The remedy is to factor out the common code:

double root = Math.sqrt(b * b - 4 * a * c);
x1 = (-b + root) / (2 * a);
x2 = (-b - root) / (2 * a);

You could go even further and factor out the computation of 2 * a, but the gain from
factoring out very simple computations is too small to warrant the effort.

In the preceding section, you encountered the Math class, which contains a collection of
helpful methods for carrying out mathematical computations.

There is one important difference between the methods of the Math class, such as the
sqrt method, and the methods that you have seen so far (such as getTotal or

�

�

�

3.4Quality Tip�

x1,2
b� b2 4ac��

2a
--�

�

�

�

�

�

�

�

�

3.5 Calling Static Methods

3.5 Calling Static Methods 99

println). The getTotal and println methods, as you have seen, operate on an object
such as myPurse or System.out. In contrast, the sqrt method does not operate on any
object. That is, you don’t call

double x = 4;
double root = x.sqrt(); // Error

The reason is that, in Java, numbers are not objects, so you can never
invoke a method on a number. Instead, you pass a number as an
explicit parameter to a method, enclosing the number in parentheses
after the method name. For example, the number value x can be a

parameter of the Math.sqrt method: Math.sqrt(x).
This call makes it appear as if the sqrt method is applied to an object called

Math, because Math precedes sqrt just as myPurse precedes getTotal in a method
call myPurse.getTotal(). However, Math is a class, not an object. A method such
as Math.round that does not operate on any object is called a static method. (The
term “static” is a historical holdover from C and C++ that has nothing to do with
the usual meaning of the word.) Static methods do not operate on objects, but they
are still defined inside classes. You must specify the class to which the sqrt method
belongs—hence the call is Math.sqrt(x).

How can you tell whether Math is a class or an object? All classes in the Java
library start with an uppercase letter (such as System). Objects and methods
start with a lowercase letter (such as out and println). You can tell objects and
methods apart because method calls are followed by parentheses. Therefore,
System.out.println() denotes a call of the println method on the out object
inside the System class. On the other hand, Math.sqrt(x) denotes a call to the
sqrt method inside the Math class. This use of upper- and lowercase letters is merely
a convention, not a rule of the Java language. It is, however, a convention that the
authors of the Java class libraries follow consistently. You should do the same in your
programs. If you give names to objects or methods that start with an uppercase let-
ter, you will likely confuse your fellow programmers. Therefore, we strongly recom-
mend that you follow the standard naming convention.

Syntax 3.2 : Static Method Call
ClassName.methodName(parameters)

Example:

Math.sqrt(4)

Purpose:

To invoke a static method (a method that does not operate on an object) and
supply its parameters

A static method does
not operate on an object.

100 CHAPTER 3 Fundamental Data Types100

When you make an assignment of an expression into a variable, the types of the variable
and the expression must be compatible. For example, it is an error to assign

double total = "a lot"; // Error

because total is a floating-point variable and "a lot" is a string. It is, however, legal to
store an integer expression in a double variable:

int dollars = 2;
double total = dollars; // OK

In Java, you cannot assign a floating-point expression to an integer variable.

double total = . . .;
int dollars = total; // Error

You must convert the floating-point value to integer with a cast:

int dollars = (int)total;

The cast (int) converts the floating-point value total to an integer.
The effect of the cast is to discard the fractional part. For example, if
total is 13.75, then dollars is set to 13. If you want to convert the
value of a floating-point expression to an integer, you need to enclose
the expression in parentheses to ensure that it is computed first:

int pennies = (int)(total * 100);

This is different from the expression

int pennies = (int)total * 100;

In the second expression, total is first converted to an integer, and then the resulting
integer is multiplied by 100. For example, if total is 13.75, then the first expression
computes total * 100, or 1375, and then converts that value to the integer 1375. In
the second expression, total is first cast to the integer 13, and then the integer is multi-
plied by 100, yielding 1300. Normally, you will want to apply the integer conversion after
all other computations, so that your computations use the full precision of their input
values. That means you should enclose your computation in parentheses and apply the
cast to the expression in parentheses.

There is a good reason why you must use a cast in Java when you convert a floating-
point number to an integer: The conversion loses information. You must confirm that you
agree to that information loss. Java is quite strict about this. You must use a cast when-
ever there is the possibility of information loss. A cast always has the form (typeName),
for example (int) or (float).

Actually, simply using an (int) cast to convert a floating-point number to an integer
is not always a good idea. Consider the following example:

double price = 44.95;
int dollars = (int)price; // sets dollars to 44

3.6 Type Conversion

You use a cast (typeName)
to convert a value to a
different type.

3.6 Type Conversion 101

What did you want to achieve? Did you want to get the number of dollars in the price?
Then dropping the fractional part is the right thing to do. Or did you want to get the
approximate dollar amount? Then you really want to round up when the fractional part is
0.5 or larger.

One way to round to the nearest integer is to add 0.5, then cast to an integer:

double price = 44.95;
int dollars = (int)(price + 0.5); // OK for positive values
System.out.print("The price is approximately $")
System.out.println(dollars); // prints 45

Adding 0.5 and casting to the int type works, because it turns all
values that are between 44.50 and 45.4999... into 45.

Actually, there is a better way. Simply adding 0.5 works fine for
positive numbers, but it doesn’t work correctly for negative numbers.
Instead, use the Math.round method in the standard Java library. It
works for both positive and negative numbers. However, that
method returns a long integer, because large floating-point numbers

cannot be stored in an int. You need to cast the return value to an int:

int dollars = (int)Math.round(price); // better

Carrying Out Computations

Many programming problems require that you use mathematical formulas to compute
values. It is not always obvious how to turn a problem statement into a sequence of
mathematical formulas and, ultimately, statements in the Java programming language.

Step 1 Understand the problem: What are the inputs? What are the desired outputs?

For example, suppose you are asked to simulate a postage stamp vending machine. A customer
inserts money into the vending machine. Then the customer pushes a “First class stamps”

Syntax 3.3 : Cast
(typeName) expression

Example:

(int)(x + 0.5)
(int)Math.round(100 * f)

Purpose:

To convert an expression to a different type

3.1HOWTO�

�

�

�

Use the Math.round
method to round a
floating-point number to
the nearest integer.

102 CHAPTER 3 Fundamental Data Types102

button. The vending machine gives out as many first-class stamps as the customer paid for. (A
first-class stamp cost 34 cents at the time this book was written.) Finally, the customer pushes
a “Penny stamps” button. The machine gives the change in penny (1-cent) stamps.

In this problem, there is one input:

� The amount of money the customer inserts

There are two desired outputs:

� The number of first-class stamps that the machine returns

� The number of penny stamps that the machine returns

Step 2 Work out examples by hand

This is a very important step. If you can’t compute a couple of solutions by hand, it’s
unlikely that you’ll be able to write a program that automates the computation.

Let’s assume that a first-class stamp costs 34 cents and the customer inserts $1.00.
That’s enough for two stamps (68 cents) but not enough for three stamps ($1.02).
Therefore, the machine returns 2 first-class stamps and 32 penny stamps.

Step 3 Find mathematical equations that compute the answers

Given an amount of money and the price of a first-class stamp, how can you compute
how many first-class stamps can be purchased with the money? Clearly, the answer is
related to the quotient

For example, suppose the customer paid $1.00. Use a pocket calculator to compute the
quotient: $1.00/$0.34 ≈ 2.9412.

How do you get “2 stamps” out of 2.9412? It’s the integer part. By discarding the
fractional part, you get the number of whole stamps that the customer has purchased.

In mathematical notation,

where x denotes the largest integer ≤ x. That function is sometimes called the “floor
function”.

You now know how to compute the number of stamps that are given out when the
customer pushes the “First-class stamps” button. When the customer gets the stamps,
the amount of money is reduced by the value of the stamps purchased. For example, if
the customer gets two stamps, the remaining money is $0.32. It is the difference between
$1.00 and 2 $0.34. Here is the general formula:

remaining money money − number of first-class stamps price of first-class stamp
How many penny stamps does the remaining money buy? That’s easy. If $0.32 is left, the
customer gets 32 stamps. In general, the number of penny stamps is

number of penny stamps 100 remaining money

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

amount of money
price of first-class stamp
--

number of first-class stamps
money

price of first-class stamp
--�

	

� 	

� 	

3.6 Type Conversion 103

Step 4 Turn the mathematical equations into Java statements

In Java, you can compute the integer part of a nonnegative floating-point value by apply-
ing an (int) cast. Therefore, you can compute the number of first-class stamps with the
following statement:

firstClassStamps =
 (int)(money / FIRST_CLASS_STAMP_PRICE);
money = money -
 firstClassStamps * FIRST_CLASS_STAMP_PRICE;

Finally, the number of penny stamps is

pennyStamps = 100 * money;

That’s not quite right, though. The value of pennyStamps should be an integer, but the
right hand side is a floating-point number. Therefore, the correct statement is

pennyStamps = (int)Math.round(100 * money);

Step 5 Build a class that carries out your computations

HOWTO 2.1 explains how to develop a class by finding methods and instance variables.
In our case, we can find three methods:

� void insert(double amount)

� int giveFirstClassStamps()

� int givePennyStamps()

The state of a vending machine can be described by the amount of money that the cus-
tomer has available for purchases. Therefore, we supply one instance variable, money.

Here is the implementation:

public class StampMachine
{
 public StampMachine()
 {
 money = 0;
 }

 public void insert(double amount)
 {
 money = money + amount;
 }

 public int giveFirstClassStamps()
 {
 int firstClassStamps =
 (int)(money / FIRST_CLASS_STAMP_PRICE);
 money = money -
 firstClassStamps * FIRST_CLASS_STAMP_PRICE;

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

104 CHAPTER 3 Fundamental Data Types104

 return firstClassStamps;
 }

 public int givePennyStamps()
 {
 int pennyStamps = (int)Math.round(100 * money);
 money = 0;
 return pennyStamps;
 }

 private double money;
 private static final double FIRST_CLASS_STAMP_PRICE =
 0.34;
}

Step 6 Test your class

Run a test program (or use BlueJ) to verify that the values that your class computes are
the same values that you computed by hand. In our example, try the statements

StampMachine machine = new StampMachine();
machine.insert(1);
System.out.println("First class stamps: " +
 machine.giveFirstClassStamps());
System.out.println("Penny stamps: " +
 machine.givePennyStamps());

Check that the result is

First class stamps: 2
Penny stamps: 32

Roundoff Errors

Roundoff errors are a fact of life when calculating with floating-point numbers. You
probably have encountered that phenomenon yourself with manual calculations. If you
calculate 1/3 to two decimal places, you get 0.33. Multiplying again by 3, you obtain
0.99, not 1.00.

In the processor hardware, numbers are represented in the binary number system, not
in decimal. You still get roundoff errors when binary digits are lost. They just may crop
up at different places than you might expect. Here is an example:

double f = 4.35;
int n = (int)(100 * f);
System.out.println(n); // prints 434!

Of course, one hundred times 4.35 is 435, but the program prints 434.

�

�

�

�

�

�

�

�

�

3.3Common Error�

�

�

�

�

�

3.6 Type Conversion 105

Computers represent numbers in the binary system (see Advanced Topic 3.4). In the
binary system, there is no exact representation for 4.35, just as there is no exact represen-
tation for 1/3 in the decimal system. The representation used by the computer is just a
little less than 4.35, so 100 times that value is just a little less than 435. When a floating-
point value is converted to an integer, the entire fractional part is discarded, even if it is
almost 1. As a result, the integer 434 is stored in n. Remedy: Use Math.round to convert
floating-point numbers to integers:

int n = (int)Math.round(100 * f);

Note that the wrong result of the first computation is not caused by lack of precision. The
problem lies with the wrong choice of rounding method. Dropping the fractional part,
no matter how close it may be to 1, is not a good rounding method.

Binary Numbers

You are familiar with decimal numbers, which use the digits 0, 1, 2, ... , 9. Each digit has
a place value of 1, 10, 100 = 102, 1000 = 103, and so on. For example,

435 4 102 + 3 101 + 5 100

Fractional digits have place values with negative powers of ten: 0.1 10–1,
0.01 10–2, and so on. For example,

4.35 4 100 + 3 10–1 + 5 10–2

Computers use binary numbers instead, which have just two digits (0 and 1) and
place values that are powers of 2. Binary numbers are easier for computers to manipulate,
because it is easier to build logic circuits that differentiate between “off ” and “on” than it
would be to build circuits that can accurately tell ten different voltage levels apart.

It is easy to transform a binary number into a decimal number. Just compute the
powers of two that correspond to ones in the binary number. For example,

1101 binary 1 23 1 22 0 21 1 20 8 4 1 13

Fractional binary numbers use negative powers of two. For example,

1.101 binary 1 20 1 2–1 0 2–2 1 2–3 1 0.5 0.125 1.625

Converting decimal numbers to binary numbers is a little trickier. Here is an algo-
rithm that converts a decimal integer into its binary equivalent: Keep dividing the inte-
ger by 2, keeping track of the remainders. Stop when the number is 0. Then write the
remainders as a binary number, starting with the last one. For example,

100 2 50 remainder 0
50 2 25 remainder 0
25 2 12 remainder 1
12 2 6 remainder 0

�

�

�

�

3.4Advanced Topic�

� 	 	 	

�

�

�

�

�

�

�

�

�

�

�
�

� 	 	 	

� 	 � 	 � 	 � 	 � � � �

� 	 � 	 � 	 � 	 � � � �

� �
� �
� �
� �

106 CHAPTER 3 Fundamental Data Types106

6 2 3 remainder 0
3 2 1 remainder 1
1 2 0 remainder 1

Therefore, 100 in decimal is 1100100 in binary.
To convert a fractional number 1 to its binary format, keep multiplying by 2. If

the result is 1, subtract 1. Stop when the number is 0. Then use the digits before the
decimal points as the binary digits of the fractional part, starting with the first one.
For example,

0.35 2 0.7
0.7 2 1.4
0.4 2 0.8
0.8 2 1.6
0.6 2 1.2
0.2 2 0.4

Here the pattern repeats. That is, the binary representation of 0.35 is 0.01 0110 0110
0110 ...

To convert any floating-point number into binary, convert the whole part and the
fractional part separately. For example, 4.35 is 100.01 0110 0110 0110 ... in binary.

You don’t actually need to know about binary numbers to program in Java, but at
times it can be helpful to understand a little about them. For example, knowing that an
int is represented as a 32-bit binary number explains why the largest integer that you
can represent in Java is 0111 1111 1111 1111 1111 1111 1111 1111 binary
2,147,483,647 decimal. (The first bit is the sign bit. It is off for positive values.)

To convert an integer into its binary representation, you can use the static toString
method of the Integer class. The call Integer.toString(n, 2) returns a string with
the binary digits of the integer n. Conversely, you can convert a string containing binary
digits into an integer with the call Integer.parseInt(digitString, 2). In both of
these method calls, the second parameter denotes the base of the number system. It can
be any number between 0 and 36. You can use these two methods to convert between
decimal and binary integers. However, the Java library has no convenient method to do
the same for floating-point numbers.

Now you can see why we had to fight with a roundoff error when computing 100 times
4.35 in Common Error 3.3. If you actually carry out the long multiplication, you get:

1 1 0 0 1 0 0 * 1 0 0.0 1|0 1 1 0|0 1 1 0|0 1 1 0 . . .

1 0 0.0 1|0 1 1 0|0 1 1 0|0 1 1 0 . . .
 1 0 0.0 1|0 1 1 0|0 1 1 0|0 1 1 . . .
 0
 0
 1 0 0.0 1|0 1 1 0|0 1 1 0 . . .
 0
 0

1 1 0 1 1 0 0 1 0.1 1 1 1 1 1 1 1 . . .

� �
� �
� �

�
�

	 �
	 �
	 �
	 �
	 �
	 �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

3.7 Strings 107

That is, the result is 434, followed by an infinite number of 1s. The fractional part of the
product is the binary equivalent of an infinite decimal fraction 0.999999 ... , which is
equal to 1. But the CPU can store only a finite number of 1s, and it discards them all
when converting the result to an integer.

Next to numbers, strings are the most important data type that most programs use. A
string is a sequence of characters, such as "Hello, World!". In Java, strings are
enclosed in quotation marks, which are not themselves part of the string. Note that,

unlike numbers, strings are objects. (You can tell that String is a
class name because it starts with an uppercase letter. The basic types
int and double start with a lowercase letter.)

The number of characters in a string is called the length of the
string. For example, the length of "Hello, World!" is 13. You can
compute the length of a string with the length method.

int n = message.length();

A string of length zero, containing no characters, is called the empty string and is written
as "".

You already saw in Chapter 2 how to put strings together to form a longer string.
String name = "Dave";
String message = "Hello, " + name;

The + operator concatenates two strings. The concatenation opera-
tor in Java is very powerful. If one of the expressions, either to the left or
the right of a + operator, is a string, then the other one is automatically
forced to become a string as well, and both strings are concatenated.

For example, consider this code:

String a = "Agent";
int n = 7;
String bond = a + n;

Since a is a string, n is converted from the integer 7 to the string "7".
Then the two strings "Agent" and "7" are concatenated to form the
string "Agent7".

This concatenation is very useful to reduce the number of
System.out.print instructions. For example, you can combine

System.out.print("The total is ");
System.out.println(total);

to the single call

System.out.println("The total is " + total);

�

�

3.7 Strings

A string is a sequence of
characters. Strings are
objects of the String
class.

Strings can be concatenated,
that is, put end to end to
yield a new longer string.
String concatenation is
denoted by the + operator.

Whenever one of the
arguments of the + operator
is a string, the other argument
is converted to a string.

108 CHAPTER 3 Fundamental Data Types108

The concatenation "The total is " + total computes a single
string that consists of the string "The total is ", followed by the
string equivalent of the number total.

Sometimes you have a string that contains a number, usually from
user input. For example, suppose that the string variable input has
the value "19". To get the integer value 19, you use the static
parseInt method of the Integer class.

int count = Integer.parseInt(input);
 // count is the integer 19

To convert a string containing floating-point digits to its floating-point value, use the
static parseDouble method of the Double class. For example, suppose input is the
string "3.95".

double price = Double.parseDouble(input);
 // price is the floating-point number 3.95

The toUpperCase and toLowerCase methods make strings with only upper- or lower-
case characters. For example,

String greeting = "Hello";
System.out.println(greeting.toUpperCase());
System.out.println(greeting.toLowerCase());

This code segment prints HELLO and hello. Note that the toUpperCase and toLowerCase
methods do not change the original String object greeting. They return new String
objects that contain the uppercased and lowercased versions of the original string. In fact, no
String methods modify the string object on which they operate. For that reason, strings
are called immutable objects.

The substring computes substrings of a string. The call

s.substring(start, pastEnd)

returns a string that is made up from the characters in the string s,
starting at character start, and containing all characters up to, but
not including, the character pastEnd. Here is an example:

String greeting = "Hello, World!";
String sub = greeting.substring(0, 4);
 // sub is "Hell"

The substring operation makes a string that consists of four char-
acters taken from the string greeting. A curious aspect of the sub-
string operation is the numbering of the starting and ending
positions. Starting position 0 means “start at the beginning of the

string”. For technical reasons that used to be important but are no longer relevant, Java
string position numbers start at 0. The first string position is labeled 0, the second one 1,
and so on. For example, Figure 5 shows the position numbers in the greeting string.

The position number of the last character (12 for the string "Hello, World!") is
always 1 less than the length of the string.

If a string contains the digits
of a number, you use the
Integer.parseInt
or Double.parseDouble
method to obtain the number
value.

Use the substring method
to extract a part of a string.

String positions are
counted starting with 0.

3.7 Strings 109

Let us figure out how to extract the substring "World". Count characters starting at
0, not 1. You find that W, the 8th character, has position number 7. The first character
that you don’t want, !, is the character at position 12 (see Figure 6). Therefore, the
appropriate substring command is

String w = greeting.substring(7, 12);

It is curious that you must specify the position of the first character that you do want and
then the first character that you don’t want. There is one advantage to this setup. You can
easily compute the length of the substring: it is pastEnd - start. For example, the
string "World" has length 12 7 5.

If you omit the second parameter of the substring method, then all characters from
the starting position to the end of the string are copied. For example,

String tail = greeting.substring(7);
 // copies all characters from position 7 on

sets tail to the string "World!".

Formatting Numbers

The default format for printing numbers is not always what you would like. For example,
consider the following code segment:

int quarters = 2;
int dollars = 3;
double total = dollars + quarters * 0.25; // price is 3.5
final double TAX_RATE = 8.5; // tax rate in percent
double tax = total * TAX_RATE / 100; // tax is 0.2975
System.out.println("Total: $" + total);
System.out.println("Tax: $" + tax);

The output is
Total: $3.5
Tax: $0.2975

Figure 5

String Positions

Figure 6

Extracting a Substring

H e l l o , W o r l d !
0 1 2 3 4 5 6 7 8 9 10 11 12

H e l l o , W o r l d !
0 1 2 3 4 5 6 7 8 9

5

10 11 12

� �

3.5Advanced Topic�

�

�

�

�

�

110 CHAPTER 3 Fundamental Data Types110

You may prefer the numbers to be printed with two digits after the decimal point, like this:
Total: $3.50
Tax: $0.30

You can achieve this with the NumberFormat class in the java.text package. First, you
must use the static method getNumberInstance to obtain a NumberFormat object.
Then you set the maximum number of fraction digits to 2:

NumberFormat formatter =
 NumberFormat.getNumberInstance();
formatter.setMaximumFractionDigits(2);

Then the numbers are rounded to two digits. For example, 0.2875 will be converted to the
string "0.29". On the other hand, 0.2975 will be converted to "0.3", not "0.30". If you
want trailing zeroes, you also have to set the minimum number of fraction digits to 2:

formatter.setMinimumFractionDigits(2);

Then you use the format method of that object. The result is a string that you can print.
formatter.format(tax)

returns the string "0.30". The statement
System.out.println("Tax: $" + formatter.format(tax));

rounds the value of tax to two digits after the decimal point and prints: Tax: $0.30.
The “number instance” formatter is useful because it lets you print numbers with

as many fraction digits as desired. If you just want to print a currency value, the
getCurrencyInstance method of the NumberFormat class produces a more conve-
nient formatter. The “currency instance” formatter generates currency value strings, with
the local currency symbol (such as $ in the United States) and the appropriate number of
digits after the decimal point (for example, two digits in the United States).

NumberFormat formatter = NumberFormat.getCurrencyInstance();
System.out.print(formatter.format(tax));
 // prints "$0.30"

The Java programs that you have constructed so far have constructed objects, called
methods, printed results, and exited. They were not interactive and took no user input.
In this section, you will learn one method for reading user input.

The JOptionPane class has a static method showInputDialog
that displays an input dialog (see Figure 7). The user can type any
string into the input field and click the “OK” button. Then the show-
InputDialog method returns the string that the user entered. You
should capture the user input in a string variable. For example,

String input =
 JOptionPane.showInputDialog("How many nickels do you have?");

�

�

�

�

�

�

�

�

�

�

�

3.8 Reading Input

The JOptionPane
.showInputDialog
method prompts the user
for an input string.

3.8 Reading Input 111

Often you want the input as a number, not a string. Use the Integer.parseInt and
Double.parseDouble methods to convert the string to a number:

int count = Integer.parseInt(input);

If the user doesn’t type in a number, then the parseInt method throws an exception. An
exception is a way for a method to indicate an error condition. You will see in Chapter 15
how to handle exceptions. Until then, we will simply rely on the default mechanism for
exception handling. That mechanism terminates the program with an error message.

Exception in thread "main"
java.lang.NumberFormatException: x
 at java.lang.Integer.parseInt(Unknown Source)
 at java.lang.Integer.parseInt(Unknown Source)
 at InputTest.main(InputTest.java:10)

That doesn’t make your programs very user-friendly. You will simply have to wait until
Chapter 15 to make your programs bulletproof. In the meantime, you should assume that

the user is cooperative and types in an actual number when you prompt
for one. Since the users of your first programs are likely to be just your-
self, your instructor, and your grader, that should not be a problem.

Finally, whenever you call JOptionPane.showInputDialog in
your programs, you need to add a line

System.exit(0)

to the end of your main method. The showInputDialog method starts a user interface
thread to handle user input. When the main method reaches the end, that thread is still
running, and your program won’t exit automatically. (See Chapter 20 for more informa-
tion on threads.) To force the program to exit, you need to call the exit method of the
System class. The parameter of the exit method is the status code of the program. A
code of 0 denotes successful completion; you can use nonzero status codes to denote var-
ious error conditions.

Here is an example of a test class that takes user input. This class tests the Purse
class and lets the user supply the numbers of nickels, dimes, and quarters.

File InputTest.java
1 import javax.swing.JOptionPane;
2
3 /**
4 This program tests input from an input dialog.

Figure 7

An Input Dialog

You must call System.
exit(0) to exit a
program that has a
graphical user interface.

112 CHAPTER 3 Fundamental Data Types112

5 */
6 public class InputTest
7 {
8 public static void main(String[] args)
9 {

10 Purse myPurse = new Purse();
11
12 String input = JOptionPane.showInputDialog(
13 "How many nickels do you have?");
14 int count = Integer.parseInt(input);
15 myPurse.addNickels(count);
16
17 input = JOptionPane.showInputDialog(
18 "How many dimes do you have?");
19 count = Integer.parseInt(input);
20 myPurse.addDimes(count);
21
22 input = JOptionPane.showInputDialog(
23 "How many quarters do you have?");
24 count = Integer.parseInt(input);
25 myPurse.addQuarters(count);
26
27 double totalValue = myPurse.getTotal();
28 System.out.println("The total is " + totalValue);
29
30 System.exit(0);
31 }
32 }

Admittedly, the program is not very elegant. It pops up three dialog boxes to collect
input and then displays the output in the console window. You will learn in Chapter 12
how to write programs with more sophisticated graphical user interfaces.

Reading Exception Reports

You will often have programs that terminate and display an error message such as

Exception in thread "main" java.lang.NumberFormatException: x
 at java.lang.Integer.parseInt(Unknown Source)
 at java.lang.Integer.parseInt(Unknown Source)
 at InputTest.main(InputTest.java:10)

An amazing number of students simply give up at that point, saying “it didn’t work”, or
“my program died”, without ever reading the error message. Admittedly, the format of
the exception report is not very friendly. But it is actually easy to decipher it.

3.3Productivity Hint�

�

�

�

3.8 Reading Input 113

When you have a close look at the error message, you will notice two pieces of useful
information:

1. The name of the exception, such as NumberFormatException
2. The line number of the code that contained the statement that caused the excep-

tion, such as InputTest.java:10
The name of the exception is always in the first line of the report, and it ends in Exception.
If you get a NumberFormatException, then there was a problem with the format of
some number. That is useful information.

The line number of the offending code is a little harder to determine. The exception
report contains the entire stack trace—that is, the names of all methods that were pending
when the exception hit. The first line of the stack trace is the method that actually gener-
ated the exception. The last line of the stack trace is a line in main. Often, the exception
was thrown by a method that is in the standard library. Look for the first line in your code
that appears in the exception report. For example, skip the lines that refer to

java.lang.Integer.parseInt(Unknown Source).

Once you have the line number in your code, open up the file, go to that line, and look
at it! In the great majority of cases, knowing the name of the exception and the line that
caused it makes it completely obvious what went wrong, and you can easily fix your error.

Reading Console Input

You just saw how to read input from an input dialog. Admittedly, it is a bit strange to
have dialogs pop up for every input. Some programmers prefer to read the input from
the console window. Console input has one great advantage. As you will see in Chapter
6, you can put all your input strings into a file and redirect the console input to read from
a file. That’s a great help for program testing. However, console input is somewhat cum-
bersome to program. This note explains the details.

Console input reads from the System.in object. However, unlike System.out,
which was ready-made for printing numbers and strings, System.in can only read bytes.
Keyboard input consists of characters. To get a reader for characters, you have to turn
System.in into an InputStreamReader object, like this:

InputStreamReader reader =
 newInputStreamReader(System.in);

An input stream reader can read characters, but it can’t read a whole
string at a time. That makes it pretty inconvenient—you wouldn’t
want to piece together every input line from its individual characters.
To overcome this limitation, you can turn an input stream reader into
a BufferedReader object:

BufferedReader console =
 new BufferedReader(reader);

�

�

�

�

�

�

�

3.6Advanced Topic�

�

�

�

�

�

�

Wrap System.in inside a
BufferedReader to
read input from the console
window.

114 CHAPTER 3 Fundamental Data Types114

If you like, you can combine the two constructors:

BufferedReader console = new BufferedReader(
 new InputStreamReader(System.in));

Now you use the readLine method to read an input line, like this:

System.out.println(
 "How many nickels do you have?");
String input = console.readLine();
int count = Integer.parseInt(input);

There is one remaining problem. When there is a problem with read-
ing input, the readLine method generates an exception, just as the
parseInt method does when you give it a string that isn’t an integer.
However, the readLine method generates an IOException, which
is a checked exception, a more severe kind of exception than the Num-
berFormatException that the parseInt method generates. The
Java compiler insists that you take one of two steps when you call a
method that can throw a checked exception.

1. Handle the exception. You will see how to do that in Chapter 15
2. Acknowledge that you are not handling the exception. Then you have to indicate

that your method can cause a checked exception because it calls another method
that can cause that exception. You do that by tagging your method with a throws
specifier, like this:

public static void main(String[] args) throws IOException

or

public void readInput(BufferedReader reader) throws IOException

There is no shame associated with acknowledging that your method might throw a
checked exception—it is just “truth in advertising”. Of course, in a professional program,
you do need to handle all exceptions somewhere, and the main method won’t throw any
exceptions. You’ll have to wait for Chapter 15 for the details.

Following this note is another version of the test program for the Purse class, this
time reading input from the console. Figure 8 shows a typical program run.

File ConsoleInputTest.java
1 import java.io.BufferedReader;
2 import java.io.InputStreamReader;
3 import java.io.IOException;
4
5 /**
6 This program tests input from a console window.
7 */

�

�

�

�

�

�

�

�

�

�

When calling the
readLine method of
the BufferedReader
class, you must tag the
calling methods with
throws IOException.

3.8 Reading Input 115

8 public class ConsoleInputTest
9 {

10 public static void main(String[] args) throws IOException
11 {
12 Purse myPurse = new Purse();
13
14
15 BufferedReader console = new BufferedReader(
16 new InputStreamReader(System.in));
17 System.out.println(
18 "How many nickels do you have?");
19 String input = console.readLine();
20 int count = Integer.parseInt(input);
21 myPurse.addNickels(count);
22
23 System.out.println("How many dimes do you have?");
24 input = console.readLine();
25 count = Integer.parseInt(input);
26 myPurse.addDimes(count);
27
28 System.out.println(
29 "How many quarters do you have?");
30 input = console.readLine();
31 count = Integer.parseInt(input);
32 myPurse.addQuarters(count);
33
34 double totalValue = myPurse.getTotal();
35 System.out.println("The total is " + totalValue);

Figure 8

Reading Input from the Console

116 CHAPTER 3 Fundamental Data Types116

36
37 System.exit(0);
38 }
39 }

Strings are composed of individual characters. Characters are values
of the char type. A variable of type char can hold a single character.

Character constants look like string constants, except that char-
acter constants are delimited by single quotes: 'H' is a character,
"H" is a string containing a single character. You can use escape
sequences (see Advanced Topic 1.1) inside character constants. For
example, '\n' is the newline character, and '\u00E9' is the char-

acter é. You can find the values of the character constants that are used in Western
European languages in Appendix A6.

Characters have numeric values. For example, if you look at Appendix A6, you can
see that the character 'H' is actually encoded as the number 72.

The charAt method of the String class returns a character from a string. As with
the substring method, the positions in the string are counted starting at 0. For exam-
ple, the statement

String greeting = "Hello";
char ch = greeting.charAt(0);

sets ch to the character 'H'.

International Alphabets

The English alphabet is pretty simple: upper- and lowercase a to z. Other European lan-
guages have accent marks and special characters. For example, German has three umlaut
characters (ä, ö, ü) and a double-s character (ß). These are not optional frills; you couldn’t
write a page of German text without using these characters a few times. German com-
puter keyboards have keys for these characters (see Figure 9).

This poses a problem for computer users and designers. The American standard
character encoding (called ASCII, for American Standard Code for Information
Interchange) specifies 128 codes: 52 upper- and lowercase characters, 10 digits, 32
typographical symbols, and 34 control characters (such as space, newline, and 32 oth-
ers for controlling printers and other devices). The umlaut and double-s are not
among them. Some German data processing systems replace seldom-used ASCII
characters with German letters: [\] { | } ~ are replaced with Ä Ö Ü ä ö ü ß.

3.9 Characters

3.2Random Fact�

�

�

�

�

A char value denotes a
single character. Character
constants are enclosed in
single quotes.

3.9 Characters 117

Most people can live without those ASCII characters, but programmers using Java
definitely cannot. Other encoding schemes take advantage of the fact that one byte can
encode 256 different characters, but only 128 are standardized by ASCII. Unfortu-
nately, there are multiple incompatible standards for using the remaining 128 charac-
ters, such as those used by the Windows and Macintosh operating systems, resulting in
a certain amount of aggravation among European computer users and their American
email correspondents.

Many countries don’t use the Roman script at all. Russian, Greek, Hebrew, Arabic,
and Thai letters, to name just a few, have completely different shapes (see Figure 10). To
complicate matters, scripts like Hebrew and Arabic are written from right to left instead
of from left to right, and many of these scripts have characters that stack above or below
other characters, as those marked with a dotted circle in Figure 10 do in Thai. Each of
these alphabets has between 30 and 100 letters, and the countries using them have estab-
lished encoding standards for them.

The situation is much more dramatic in languages that use the Chinese script: the Chi-
nese dialects, Japanese, and Korean. The Chinese script is not alphabetic but ideographic—
a character represents an idea or thing rather than a single sound. (See Figure 11; can
you identify the characters for soup, chicken, and wonton?) Most words are made up
of one, two, or three of these ideographic characters. Over 50,000 ideographs are
known, of which about 20,000 are in active use. Therefore, two bytes are needed to
encode them. China, Taiwan, Japan, and Korea have incompatible encoding standards
for them. (Japanese and Korean writing use a mixture of native syllabic and Chinese
ideographic characters.)

The inconsistencies among character encodings have been a major nuisance for inter-
national electronic communication and for software manufacturers vying for a global
market. Between 1988 and 1991 a consortium of hardware and software manufacturers
developed a uniform 16-bit encoding scheme called Unicode that is capable of encoding
text in essentially all written languages of the world (see reference [1]). About 39,000
characters have been given codes, including 21,000 Chinese ideographs. A 16-bit code

Figure 9

German Keyboard

Q W E R T Z U I O P

A S D F G H J K L

Y X C V B N M ;
,

Strg Strg Alt Alt Gr> |
< |

•
^

:
.

_
-

Ö Ä

Ü *
+

~ ́
#

?
ß /

`=
0 }

)

9]
(

8 [
 /

7 {
&

6
 %

 5
 $

4
§

3 3
"

2 2
!

1

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

118 CHAPTER 3 Fundamental Data Types118

Figure 10

The Thai Alphabet

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

3.10 Comparing Primitive Types and Objects 119

can incorporate 65,000 codes, so there is ample space for expansion. Future versions of
the standard will be able to encode such scripts as Egyptian hieroglyphs and the ancient
script used on the island of Java.

All Unicode characters can be stored in Java strings, but which ones can actually be
displayed depends on your computer system.

In Java, every value is either a primitive type or an object reference.
Primitive types are numbers (such as int, double, char, and the
other number types listed in Advanced Topic 3.2) and the boolean
type that you will encounter in Chapter 5. There is an important dif-
ference between primitive types and objects in Java. Primitive type

variables hold values, but object variables don’t hold objects—they hold references to
objects. You can see the difference when you make a copy of a variable. When you copy a

primitive type value, the original and the copy of the number are
independent values. But when you copy an object reference, both the
original and the copy are references to the same object.

Consider the following code, which copies a number and then
adds an amount to the copy (see Figure 12):

double balance1 = 1000;
double balance2 = balance1; // see Figure 12
balance2 = balance2 + 500;

Now the variable balance1 contains the value 1000, and balance2 contains 1500.

Figure 11

A Menu with Chinese Characters

�

�

�

�

�

�

�

�

3.10 Comparing Primitive Types and Objects

Number variables hold
values. Object variables
hold references.

A copy of an object reference
is another reference to the
same object.

120 CHAPTER 3 Fundamental Data Types120

Now consider the seemingly analogous code with BankAccount objects.

BankAccount account1 = new BankAccount(1000);
BankAccount account2 = account1; // see Figure 13
account2.deposit(500);

Unlike the preceding code, now both account1 and account2 have a balance of $1500.
What can you do if you actually need to make a true copy of an object—that is, a new

object whose state is identical to an existing object? As you will see in Chapter 13, you
can define a clone method for your classes to make such a copy. But in the meantime,
you will simply have to construct a new object:

BankAccount account2 = new
 BankAccount(account1.getBalance());

Strings are objects; therefore, if you copy a String variable, you get two references to the
same string object. However, unlike bank accounts, strings are immutable. None of the
methods of the String class change the state of a String object. Thus, there is no prob-
lem in sharing string references.

1. The int type denotes integers, numbers without fractional part.

2. Assignment to a variable is not the same as mathematical equality.

3. The ++ and -- operators increment and decrement a variable.

4. A final variable is a constant. Once its value has been set, it cannot be changed.

Figure 12

Copying Numbers

Figure 13

Copying Object References

1000balance1 =

1000balance2 =

balance =

account1 =

account2 =

1000

BankAccount

Chapter Summary

Chapter Summary 121

5. Use named constants to make your programs easier to read and maintain.

6. If both arguments of the / operator are integers, the result is an integer and the
remainder is discarded.

7. The % operator computes the remainder of a division.

8. The Math class contains methods sqrt and pow to compute square roots and
powers.

9. A static method does not operate on an object.

10. You use a cast (typeName) to convert a value to a different type.

11. Use the Math.round method to round a floating-point number to the nearest
integer.

12. A string is a sequence of characters. Strings are objects of the String class.

13. Strings can be concatenated, that is, put end to end to yield a new longer string.
String concatenation is denoted by the + operator.

14. Whenever one of the arguments of the + operator is a string, the other argument is
converted to a string.

15. If a string contains the digits of a number, you use the Integer.parseInt or
Double.parseDouble method to obtain the number value.

16. Use the substring method to extract a part of a string.

17. String positions are counted starting with 0.

18. The JOptionPane.showInputDialog method prompts the user for an input
string.

19. You must call System.exit(0) to exit a program that has a graphical user interface.

20. Wrap System.in inside a BufferedReader to read input from the console
window.

21. When calling the readLine method of the BufferedReader class, you must tag
the calling methods with throws IOException.

22. A char value denotes a single character. Character constants are enclosed in single
quotes.

23. Number variables hold values. Object variables hold references.

24. A copy of an object reference is another reference to the same object.

Further Reading

[1] http://www.unicode.org/ The web site of the Unicode consortium. It contains character tables
that show the Unicode values of characters from many scripts.

122 CHAPTER 3 Fundamental Data Types122

java.io.BufferedReader
 readLine
java.io.InputStreamReader
java.lang.Double
 parseDouble
 toString
java.lang.Integer
 parseInt
 toString
 MAX_VALUE
 MIN_VALUE
java.lang.Math
 E
 PI
 abs
 acos
 asin
 atan
 atan2
 ceil
 cos
 exp
 floor
 log
 max
 min
 pow
 round
 sin
 sqrt
 tan
 toDegrees
 toRadians
java.lang.String
 length
 substring
 toLowerCase
 toUpperCase
java.lang.System
 exit
 in
java.math.BigDecimal
 add
 divide
 multiply
 subtract

Classes, Objects, and Methods Introduced in
This Chapter

Review Exercises 123

java.math.BigInteger
 add
 divide
 multiply
 subtract
java.text.NumberFormat
 format
 getCurrencyInstance
 getNumberInstance
 setMaximumFractionDigits
 setMinimumFractionDigits
javax.swing.JOptionPane
 showInputDialog

Exercise R3.1. Write the following mathematical expressions in Java.

Exercise R3.2. Write the following Java expressions in mathematical notation.

dm = m * ((Math.sqrt(1 + v / c) / Math.sqrt(1 - v / c)) - 1);
volume = Math.PI * r * r * h;
volume = 4 * Math.PI * Math.pow(r, 3) / 3;
p = Math.atan2(z, Math.sqrt(x * x + y * y));

Exercise R3.3. What is wrong with this version of the quadratic formula?

x1 = (-b - Math.sqrt(b * b - 4 * a * c)) / 2 * a;
x2 = (-b + Math.sqrt(b * b - 4 * a * c)) / 2 * a;

Exercise R3.4. Give an example of integer overflow. Would the same example work cor-
rectly if you used floating-point? Give an example of a floating-point roundoff error.
Would the same example work correctly if you used integers? For this exercise, you
should assume that the values are represented in a sufficiently small unit, such as cents
instead of dollars, so that the values don’t have a fractional part.

Exercise R3.5. Write a test program that executes the following code:

Purse myPurse = new Purse();
myPurse.addNickels(3);

Review Exercises

s s0 v0t
1
2
---gt2

� ��

G 4�
2 a

P 2 m1 m2�()
--------------------------------�

FV PV 1
INT
100
----------�

YRS

	�

c a2 b2 2ab cos���

124 CHAPTER 3 Fundamental Data Types124

myPurse.addDimes(2);
myPurse.addQuarters(1);
System.out.println(myPurse.getTotal());

The program prints the total as 0.6000000000000001. Explain why. Give a recommen-
dation to improve the program so that users will not be confused.

Exercise R3.6. Let n be an integer and x a floating-point number. Explain the difference
between

n = (int)x;

and
n = (int)Math.round(x);

Exercise R3.7. Let n be an integer and x a floating-point number. Explain the difference
between

n = (int)(x + 0.5);

and
n = (int)Math.round(x);

For what values of x do they give the same result? For what values of x do they give dif-
ferent results?

Exercise R3.8. Explain the differences between 2, 2.0, '2', "2", and "2.0".

Exercise R3.9. Explain what each of the following two program segments computes:
x = 2;
y = x + x;

and
s = "2";
t = s + s;

Exercise R3.10. Uninitialized variables can be a serious problem. Should you always initial-
ize every variable with zero? Explain the advantages and disadvantages of such a strategy.

Exercise R3.11. True or false? (x is an int and s is a String)

� Integer.parseInt("" + x) is the same as x

� "" + Integer.parseInt(s) is the same as s

� s.substring(0, s.length()) is the same as s

Exercise R3.12. How do you get the first character of a string? The last character? How
do you remove the first character? The last character?

Exercise R3.13. How do you get the last digit of an integer? The first digit? That is, if n
is 23456, how do you find out that the first digit is 2 and the last digit is 6? Do not con-
vert the number to a string. Hint: %, Math.log.

Exercise R3.14. This chapter contains several recommendations regarding variables and con-
stants that make programs easier to read and maintain. Summarize these recommendations.

Programming Exercises 125

Exercise R3.15. What is a final variable? Can you define a final variable without
supplying its value? (Try it out.)

Exercise R3.16. What are the values of the following expressions? In each line, assume that

double x = 2.5;
double y = -1.5;
int m = 18;
int n = 4;
String s = "Hello";
String t = "World";

� x + n * y - (x + n) * y

� m / n + m % n

� 5 * x - n / 5

� Math.sqrt(Math.sqrt(n))

� (int)Math.round(x)

� (int)Math.round(x) + (int)Math.round(y)

� s + t

� s + n

� 1 - (1 - (1 - (1 - (1 - n))))

� s.substring(1, 3)

� s.length() + t.length()

Exercise R3.17. Explain the similarities and differences between copying numbers and
copying object references.

Exercise R3.18. What are the values of a, b, c, and d after these statements?

double a = 1;
double b = a;
a++;
Purse p = new Purse();
Purse q = p;
p.addNickels(5);
double c = p.getTotal();
double d = q.getTotal();

Exercise R3.19. When you copy a BankAccount reference, the original and the copy share
the same object. That can be significant because you can modify the state of the object
through either of the references. Explain why this is not a problem for String references.

Exercise P3.1. Enhance the Purse class by adding methods addPennies and
addDollars.

Programming Exercises

126 CHAPTER 3 Fundamental Data Types126

Exercise P3.2. Add methods getDollars and getCents to the Purse class. The get-
Dollars method should return the number of whole dollars in the purse, as an integer.
The getCents method should return the number of cents, as an integer. For example, if
the total value of the coins in the purse is $2.14, getDollars returns 2 and getCents
returns 14.

Exercise P3.3. Write a program that prints the values

1

10

100

1000

10000

100000

1000000

10000000

100000000

1000000000

10000000000

100000000000

Implement a class
public class PowerGenerator
{
 /**
 Constructs a power generator.
 @param aFactor the number that will be multiplied by itself
 */
 public PowerGenerator(int aFactor) { . . }
 /**
 Computes the next power.
 */
 public double nextPower() { . . . }
 . . .
}

Then supply a test class PowerGeneratorTest that calls System.out.println(
myGenerator.nextPower()) twelve times.

Exercise P3.4. Write a program that prompts the user for two integers and then prints
� The sum
� The difference
� The product
� The average

Programming Exercises 127

� The distance (absolute value of the difference)
� The maximum (the larger of the two)
� The minimum (the smaller of the two)

Implement a class
public class Pair
{
 /**
 Constructs a pair.
 @param aFirst the first value of the pair
 @param aSecond the second value of the pair
 */
 public Pair(double aFirst, double aSecond) { . . . }
 /**
 Computes the sum of the values of this pair.
 @return the sum of the first and second values
 */
 public double getSum() { . . . }
 . . .
}

Then implement a class PairTest that reads in two numbers (using either a JOption-
Pane or a BufferedReader), constructs a Pair object, invokes its methods, and prints
the results.

Exercise P3.5. Write a program that reads in four integers and prints their sum and aver-
age. Define a class DataSet with methods

void addValue(int x)
int getSum()
double getAverage()

Hint: Keep track of the sum and the count of the values. Then write a test program
DataSetTest that reads four numbers and calls addValue four times.

Exercise P3.6. Write a program that reads in four integers and prints the largest and
smallest value that the user entered. Use a class DataSet with methods

� void addValue(int x)
� int getLargest()
� int getSmallest()

Keep track of the smallest and largest value that you’ve seen so far. Then use the
Math.min and Math.max methods to update it in the addValue method. What should
you use as initial values? Hint: Integer.MIN_VALUE, Integer.MAX_VALUE.

Write a test program DataSetTest that reads four numbers and calls addValue four times.

Exercise P3.7. Write a program that prompts the user for a measurement in meters and
then converts it into miles, feet, and inches. Use a class

public class Converter
{

128 CHAPTER 3 Fundamental Data Types128

 /**
 Constructs a converter that can convert between two units.
 @param aConversionFactor the factor with which to multiply
 to convert to the target unit
 */
 public Converter(double aConversionFactor) { . . . }
 /**
 Converts from a source measurement to a target measurement.
 @param fromMeasurement the measurement
 @return the input value converted to the target unit
 */
 public double convertTo(double fromMeasurement) { . . . }
}

Then construct three instances, such as

final double MILE_TO_KM = 1.609; // from Appendix A7
Converter metersToMiles = new Converter(1000 * MILE_TO_KM);

Exercise P3.8. Write a program that prompts the user for a radius and then prints

� The area and circumference of the circle with that radius
� The volume and surface area of the sphere with that radius

Define classes Circle and Sphere.

Exercise P3.9. Implement a class SodaCan whose constructor receives the height and
diameter of the soda can. Supply methods getVolume and getSurfaceArea. Supply a
SodaCanTest class that tests your class.

Exercise P3.10. Write a program that asks the user for the length of the sides of a square.
Then print

� The area and perimeter of the square
� The length of the diagonal (use the Pythagorean theorem)

Define a class Square.

Exercise P3.11. Giving change. Implement a program that directs a cashier how to give
change. The program has two inputs: the amount due and the amount received from the
customer. Compute the difference, and compute the dollars, quarters, dimes, nickels,
and pennies that the customer should receive in return.

First transform the difference into an integer balance, denominated in pennies. Then
compute the whole dollar amount. Subtract it from the balance. Compute the number of
quarters needed. Repeat for dimes and nickels. Display the remaining pennies.

Define a class Cashier with methods

� setAmountDue
� receive
� returnDollars
� returnQuarters

Programming Exercises 129

� returnDimes
� returnNickels
� returnPennies

For example,
Cashier harry = new Cashier();
harry.setAmountDue(9.37);
harry.receive(10);
double quarters = harry.returnQuarters(); // returns 2
double dimes = harry.returnDimes(); // returns 1
double nickels = harry.returnNickels(); // returns 0
double pennies = harry.returnPennies(); // returns 3

Exercise P3.12. Write a program that reads in an integer and breaks it into a sequence of
individual digits in reverse order. For example, the input 16384 is displayed as

4
8
3
6
1

You may assume that the input has no more than five digits and is not negative.

Define a class DigitExtractor:
public class DigitExtractor
{
 /**
 Constructs a digit extractor that gets the digits
 of an integer in reverse order.
 @param anInteger the integer to break up into digits
 */
 public DigitExtractor(int anInteger) { . . . }
 /**
 Returns the next digit to be extracted.
 @return the next digit
 */
 public double nextDigit() { . . . }
}

Then call System.out.println(myExtractor.nextDigit()) five times.

Exercise P3.13. Implement a class QuadraticEquation whose constructor receives
the coefficients a, b, c of the quadratic equation ax2 + bx + c = 0. Supply methods
getSolution1 and getSolution2 that get the solutions, using the quadratic formula.
Write a test class QuadraticEquationTest that prompts the user for the values of a,
b, and c, constructs a QuadraticEquation object, and prints the two solutions.

Exercise P3.14. Write a program that reads two times in military format (0900, 1730)
and prints the number of hours and minutes between the two times. Here is a sample
run. User input is in color.

130 CHAPTER 3 Fundamental Data Types130

Please enter the first time: 0900
Please enter the second time: 1730
8 hours 30 minutes

Extra credit if you can deal with the case where the first time is later than the second time:

Please enter the first time: 1730
Please enter the second time: 0900
15 hours 30 minutes

Implement a class TimeInterval whose constructor takes two military times. The class
should have two methods getHours and getMinutes.

Exercise P3.15. Writing large letters. A large letter H can be produced like this:

* *
* *

* *
* *

Define a class LetterH with a method

String getLetter()
{
 return "* *\n* *\n*****\n* *\n* *\n";
}

Do the same for the letters E, L, and O. Then write the message
H
E
L
L
O

in large letters.

Exercise P3.16. Write a program that transforms numbers 1, 2, 3, ... , 12 into the corre-
sponding month names January, February, March, ... , December. Hint: Make a very
long string "January February March. . .", in which you add spaces such that each
month name has the same length. Then use substring to extract the month you want.
Implement a class Month whose constructor parameter is the month number and whose
getName method returns the month name.

Exercise P3.17. Write a program to compute the date of Easter Sunday. Easter Sunday
is the first Sunday after the first full moon of Spring. Use this algorithm, invented by the
mathematician Carl Friedrich Gauss in 1800:

1. Let y be the year (such as 1800 or 2001)
2. Divide y by 19 and call the remainder a. Ignore the quotient.
3. Divide y by 100 to get a quotient b and a remainder c
4. Divide b by 4 to get a quotient d and a remainder e
5. Divide 8 * b + 13 by 25 to get a quotient g. Ignore the remainder.

Programming Exercises 131

6. Divide 19 * a + b - d - g + 15 by 30 to get a remainder h. Ignore the quotient.
7. Divide c by 4 to get a quotient j and a remainder k
8. Divide a + 11 * h by 319 to get a quotient m. Ignore the remainder.
9. Divide 2 * e + 2 * j - k - h + m + 32 by 7 to get a remainder r. Ignore

the quotient.
10. Divide h - m + r + 90 by 25 to get a quotient n. Ignore the remainder.
11. Divide h - m + r + n + 19 by 32 to get a remainder p. Ignore the quotient.

Then Easter falls on day p of month n. For example, if y is 2001:

a = 6
b = 20
c = 1
d = 5, e = 0
g = 6
h = 18
j = 0, k = 1
m = 0
r = 6
n = 4
p = 15

Therefore, in 2001, Easter Sunday fell on April 15. Write a class Year with methods
getEasterSundayMonth and getEasterSundayDay.

