

1

C h a p t e r

1

Introduction

�

To learn about the architecture of computers

�

To learn about machine code and high-level programming languages

�

To become familiar with your computing environment and your compiler

�

To compile and run your first Java program

�

To recognize syntax and logic errors

C H A P T E R G O A L S

To understand the activity of programming

1.1 What Is a Computer?

2

1.2 What Is Programming?

2

1.3 The Anatomy of a Computer

3

Random Fact 1.1: The ENIAC and the
Dawn of Computing

6

1.4 Translating Human-Readable
Programs to Machine Code

8

1.5 Programming Languages

10

1.6 The Java Programming Language

11

1.7 Becoming Familiar with Your
Computer

13

Productivity Hint 1.1: Backup Copies

16

1.8 Compiling a Simple Program

17

Syntax 1.1: Method Call

21

Common Error 1.1: Omitting
Semicolons

22

Advanced Topic 1.1: Alternative
Comment Syntax

22

Advanced Topic 1.2: Escape
Sequences

23

1.9 Errors

24

Common Error 1.2: Misspelling Words

25

1.10 The Compilation Process

26

C H A P T E R C O N T E N T S

2

CHAPTER 1

Introduction2

You have probably used a computer for work or fun. Many people use computers for everyday
tasks such as balancing a checkbook or writing a term paper. Computers are good for such
tasks. They can handle repetitive chores, such as totaling up numbers or placing words on a

page, without getting bored or exhausted. More importantly, the com-
puter presents you with the checkbook or the term paper on the screen
and lets you fix up mistakes easily. Computers also make good game
machines because they can play sequences of sounds and pictures, involv-
ing the human user in the process.

What makes all this possible is not just the computer. The com-
puter must be

programmed

 to perform these tasks. A computer itself is
a machine that stores data (numbers, words, pictures), interacts with devices (the monitor
screen, the sound system, the printer), and executes programs. Programs are sequences of
instructions and decisions that the computer carries out to achieve a task. One program

balances checkbooks; a different program, perhaps designed and con-
structed by a different company, processes words; and a third pro-
gram, probably from yet another company, plays a game.

Today’s computer programs are so sophisticated that it is hard to
believe that they are all composed of extremely primitive operations.
A typical operation may be one of the following:

�

Put a red dot onto this screen position.

�

Send the letter

A

 to the printer.

�

Get a number from this location in memory.

�

Add up these two numbers.

�

If this value is negative, continue the program at that instruction.

Only because a program contains a huge number of such operations, and because the computer
can execute them at great speed, does the computer user have the illusion of smooth interaction.

The flexibility of a computer is quite an amazing phenomenon. The same machine
can balance your checkbook, print your term paper, and play a game. In contrast, other
machines carry out a much narrower range of tasks; a car drives, and a toaster toasts.
Computers can carry out a wide range of tasks because they execute different programs,
each of which directs the computer to work on a specific task.

A computer program tells a computer, in minute detail, the sequence
of steps that are needed to fulfill a task. The act of designing and
implementing these programs is called computer programming. As
you work through this book, you will learn how to program a computer—
that is, how to direct the computer to execute tasks.

1.1 What Is a Computer?

1.2 What Is Programming?

A computer program
executes a sequence of
very basic operations
in rapid succession.

Programmers develop
computer programs to
make computers perform
new tasks.

A computer must be
programmed to perform
tasks. Different tasks
require different programs.

1.3

The Anatomy of a Computer 3

To use a computer you do not need to do any programming. When you write a term
paper with a word processor, that software package has been programmed by the manu-
facturer and is ready for you to use. That is only to be expected—you can drive a car
without being a mechanic and toast bread without being an electrician. Many people
who use computers every day in their careers never need to do any programming.

Of course, a professional computer scientist or software engineer does a great deal of
programming. You are reading this introductory computer science book, so your career
goal may well be to become such a professional. Programming is not the only skill
required of a computer scientist or software engineer; indeed, programming is not the
only skill required to create successful computer programs. Nevertheless, the activity of
programming is an important part of computer science. It is also a fascinating and plea-
surable activity that continues to attract and motivate students. The discipline of com-
puter science is particularly fortunate that it can make such an interesting activity the
foundation of the learning path.

Writing a computer game with motion and sound effects or a word processor that
supports fancy fonts and pictures is a complex task that requires a team of many highly
skilled programmers. Your first programming efforts will be more mundane. The con-
cepts and skills you learn in this book form an important foundation, and you should not
be disappointed if your first programs do not rival the sophisticated software that is
familiar to you. Actually, you will find that there is an immense thrill even in simple pro-
gramming tasks. It is an amazing experience to see the computer precisely and quickly
carry out a task that would take you hours of drudgery, to make small changes in a pro-
gram that lead to immediate improvements, and to see the computer become an exten-
sion of your mental powers.

To understand the programming process, you need to have a rudimentary understanding
of the building blocks that make up a computer. We will look at a personal computer.

Larger computers have faster, larger, or more powerful components,
but they have fundamentally the same design.

At the heart of the computer lies the

central processing unit

 (CPU)
(see Figure 1). It consists of a single

chip

 (integrated circuit) or a small
number of chips. A computer chip is a component with a plastic or
metal housing, metal connectors, and inside wiring made principally

from silicon. For a CPU chip, the inside wiring is enormously complicated. For example,
the Pentium III chip (a popular CPU for personal computers at the time of this writing)
contains over 28 million structural elements called

transistors—

the elements that enable
electrical signals to control other electrical signals, making automatic computing possi-
ble. The CPU performs program control, arithmetic, and data movement. That is, the
CPU locates and executes the program instructions; it carries out arithmetic operations
such as addition, subtraction, multiplication, and division; it fetches data from external
memory or devices or stores data back. All data must travel through the CPU whenever
it is moved from one location to another. (There are a few technical exceptions to this
rule; some devices can interact directly with memory.)

1.3 The Anatomy of a Computer

At the heart of the
computer lies the central
processing unit (CPU).

4

CHAPTER 1

Introduction4

The computer keeps data and programs in

storage.

 There are
two kinds of storage.

Primary storage,

 also called

random-access
memory

 (

RAM

) or simply

memory,

 is fast but expensive; it is made
from memory chips (see Figure 2). Primary storage has two disad-
vantages. It is comparatively expensive, and it loses all its data
when the power is turned off.

Secondary storage,

 usually a

hard disk

(see Figure 3), provides less expensive storage that persists without
electricity. A hard disk consists of rotating platters, which are

coated with a magnetic material, and read/write heads, which can detect and change

F igure 1

Central Processing Unit

F igure 2

A Memory Module with Memory Chips

Data and programs are
stored in primary storage
(memory) and secondary
storage (such as a hard
disk).

1.3

The Anatomy of a Computer 5

the patterns of varying magnetic flux on the platters. This is essentially the same
recording and playback process that is used in audio or video tapes.

Some computers are self-contained units, whereas others are interconnected through

networks.

 Home computers are usually intermittently connected to the Internet via a
modem. The computers in your computer lab are probably permanently connected to a
local area network. Through the network cabling, the computer can read programs from
central storage locations or send data to other computers. For the user of a networked
computer, it may not even be obvious which data reside on the computer itself and which
are transmitted through the network.

Most computers have

removable storage

 devices that can access data or programs on
media such as floppy disks, tapes, or compact discs (CDs).

The most common use for a floppy disk is to move data from one computer to
another; you can copy data from your home computer and bring the disk to school to
continue working with it. Now that network connections have become commonplace,
some computer manufacturers have discontinued the use of floppy disk drives, because
email or a network-based file-sharing service can transport data between networked
computers much more quickly and easily.

Compact discs originally served as read-only memories (CD-ROMs), which, like a
commercial audio CD, could only be “played back” to bring the data on them into mem-
ory, but more and more new computers support CDs that a personal computer user can
record (CD-Rs) or even overwrite with new data (CD-RWs).

F igure 3

A Hard Disk

6

CHAPTER 1

Introduction6

To interact with a human user, a computer requires other peripheral devices. The
computer transmits information to the user through a display screen, loudspeakers, and
printers. The user can enter information and directions to the computer by using a key-
board or a pointing device such as a mouse.

The CPU, the RAM, and the electronics controlling the hard disk and other devices
are interconnected through a set of electrical lines called a

bus.

 Data travel along the bus
from the system memory and peripheral devices to the CPU and back. Figure 4 shows a

motherboard,

 which contains the CPU, the RAM, and

card slots,

 through which cards that
control peripheral devices connect to the bus.

The ENIAC and the Dawn of Computing

The ENIAC (

e

lectronic

n

umerical

i

ntegrator

a

nd

c

omputer) was the first usable elec-
tronic computer. It was designed by J. Presper Eckert and John Mauchly at the Univer-
sity of Pennsylvania and was completed in 1946. Instead of transistors, which were not
invented until two years after it was built, the ENIAC contained about 18,000

vacuum
tubes

 in many cabinets housed in a large room (see Figure 5). Vacuum tubes burned out
at the rate of several tubes per day. An attendant with a shopping cart full of tubes con-

F igure 4

A Motherboard

1.1Random Fact�

�

�

�

1.3

The Anatomy of a Computer 7

stantly made the rounds and replaced defective ones. The computer was programmed by
connecting wires on panels. Each wiring configuration would set up the computer for a
particular problem. To have the computer work on a different problem, the wires had to
be replugged.

Work on the ENIAC was supported by the U.S. Navy, which was interested in
computations of ballistic tables that would give the trajectory of a projectile, depend-
ing on the wind resistance, initial velocity, and atmospheric conditions. To compute
the trajectories, one must find the numerical solutions of certain differential equa-
tions; hence the name “numerical integrator”. Before machines like ENIAC were
developed, humans did this kind of work, and until the 1950s the word “computer”
referred to these people. The ENIAC was later used for peaceful purposes such as the

tabulation of U.S. census data.

Figure 6 gives a schematic overview of the architecture of a computer. Program instruc-
tions and data (such as text, numbers, audio, or video) are stored on the hard disk, on a
CD, or elsewhere on the network. When a program is started, it is brought into memory,
from which the CPU can read it. The CPU reads the program an instruction at a time. As
directed by these instructions, the CPU reads data, modifies them, and writes them back to

F igure 5

The ENIAC

�

�

�

�

�

�

�

�

�

�

�

�

�

8

CHAPTER 1

Introduction8

RAM or to secondary storage. Some program instructions will cause
the CPU to place dots on the display screen or to vibrate the speaker.
As these actions happen many times over and at great speed, the
human user will perceive images and sound. Similarly, the CPU can
send instructions to a printer to mark the paper with patterns of closely
spaced dots, which a human recognizes as text characters and pictures.
Some program instructions read user input from the keyboard or
mouse. The program analyzes the nature of these inputs and then exe-
cutes the next appropriate instructions.

On the most basic level, computer instructions are extremely primi-
tive. The processor executes

machine instructions.

 CPUs from different
vendors, such as the Intel Pentium or the Sun SPARC, have different
sets of machine instructions. To enable Java applications to run on
multiple CPUs without modification, most Java programs contain
machine instructions for a so-called “Java virtual machine” (JVM), an
idealized CPU that is then simulated by a program run on the actual
CPU. The difference between actual and virtual machine instructions

F igure 6

Schematic Diagram of a Computer

Printer

Mouse

Keyboard

Modem

Monitor

Speakers

Internet

Bus

Floppy disk drive

Hard disk

CD-ROM Drive
Ports

Disk
controller

Graphics
card

Sound
card

Network
card

CPU

RAM

1.4 Translating Human-Readable Programs to
Machine Code

The CPU reads machine
instructions from memory.
The instructions direct it to
communicate with memory,
secondary storage, and
peripheral devices.

Generally, machine code
depends on the CPU type.
However, the instruction
set of the Java virtual
machine (JVM) can be
executed on many CPUs.

1.4

Translating Human-Readable Programs to Machine Code 9

is not important to us—all you need to know is that machine instructions are very simple
and can be executed very quickly.

A typical sequence of machine instructions is

1. Load the contents of memory location 40.
2. Load the value 100.
3. If the first value is greater than the second value, continue with the instruction

that is stored in memory location 240.

Actually, machine instructions are encoded as numbers so that they can be stored in memory.
On the Java virtual machine, this sequence of instruction is encoded as the sequence of
numbers

21 40 16 100 163 240

On a processor such as a Pentium or SPARC, the encoding would be
quite different.

When the virtual machine fetches this sequence of numbers, it
decodes them and executes the associated sequence of commands.

How can you communicate the command sequence to the computer?
The simplest method is to place the actual numbers into the computer

memory. This is, in fact, how the very earliest computers worked. However, a long program
is composed of thousands of individual commands, and it is tedious and error-prone to look
up the numeric codes for all commands and place the codes manually into memory. As we
said before, computers are really good at automating tedious and error-prone activities, and
it did not take long for computer programmers to realize that the computers themselves
could be harnessed to help in the programming process.

The first step was to assign short names to the commands. For example,

iload

denotes “integer load”,

bipush

 means “push integer constant”, and

if_icmpgt

 means “if
integers compare greater”. Using these commands, the instruction sequence becomes

iload 40
bipush 100
if_icmpgt 240

That is a lot easier to read for humans. To get the instruction sequences
accepted by the computer, though, the names must be translated into the
machine codes. Early computers used a computer program called an assem-
bler to carry out these translations. An assembler takes the sequence of
characters such as iload, translates it into the command code 21, and car-
ries out similar operations on the other commands. Assemblers have
another feature: They can give names to memory locations as well as to

instructions. Our program sequence might have checked that some interest rate was greater
than 100 percent, and the interest rate was stored in memory location 40. It is usually not
important where a value is stored; any available memory location will do. When symbolic
names are used instead of memory addresses, the program gets even easier to read:

iload intRate
bipush 100
if_icmpgt intError

Because machine instructions
are encoded as numbers, it is
difficult to write programs in
machine code.

Assembly language makes
it easier to generate
machine instructions
by translating mnemonics
and symbolic names.

10 CHAPTER 1 Introduction10

It is the job of the assembler program to find suitable numeric addresses for the symbolic
names and to put those addresses into the generated code sequence.

Assembler instructions were a major advance over programming with raw
machine instructions, but they suffer from two problems: It still
takes a great many instructions to achieve even the simplest goals,
and the exact instruction sequence differs from one processor to
another.

In the mid-1950s, high-level programming languages began to
appear. In these languages, the programmer expresses the idea behind
the task that needs to be performed, and a special computer program,

called a compiler, translates the high-level description into machine instructions for a par-
ticular processor.

For example, in Java, the high-level programming language that you will use in this
book, you might give the following instruction:

if (intRate > 100)
 System.out.print("Interest rate error");

This means, “If the interest rate is over 100, display an error message.” It is then the job
of the compiler program to look at the sequence of characters if (intRate > 100) and
translate that into

21 40 16 100 163 240

Compilers are quite sophisticated programs. They have to translate
logical statements, such as the if, into sequences of computations, tests,
and jumps, and they must find memory locations for variables—items of
information identified by symbolic names—like intRate. In this
course, we will generally take the existence of a compiler for granted. If
you decide to become a professional computer scientist, you may well
learn more about compiler-writing techniques later in your studies.

High-level programming languages are independent of specific com-
puter architecture, but they are human creations. As such, they follow
certain conventions. To ease the translation process, those conven-
tions are much stricter than they are for human languages. When you
talk to another person, and you scramble or omit a word or two, your
conversation partner will usually still understand what you have to say.
Compilers are less forgiving. For example, if you omit the quotation
mark close to the end of the instruction,

if (intRate > 100)
System.out.print("Interest rate error);

the Java compiler will get quite confused and complain that it cannot translate an instruction
containing this error. That is actually a good thing. If the compiler were to try to guess what

1.5 Programming Languages

High-level languages
let you describe tasks
at a higher conceptual
level than machine code.

A compiler translates
programs written in a
high-level language into
machine code.

Each programming
language has its own set
of rules for forming
instructions. Compilers
enforce these rules strictly.

1.6 The Java Programming Language 11

you did wrong and tried to fix it, it might not guess your intentions correctly. In that case,
the resulting program would do the wrong thing—quite possibly with disastrous effects, if
that program controlled a device on whose functions someone’s well-being depends. When
a compiler reads programming instructions in a programming language, it will translate
them into machine code only if the input follows the language conventions exactly.

Just as there are many human languages, there are many programming languages.
Consider the instruction

if (intRate > 100)
System.out.print("Interest rate error");

This is how you must express a decision in Java. Java is a very popular programming lan-
guage, and it is the one we use in this book. But in Pascal (another programming language
that was in common use in the 1970s and 1980s) the same instruction would be written as

if intRate > 100 then write('Interest rate error');

In this case, the differences between the Java and Pascal versions are slight. For other
constructions, there will be far more substantial differences. Compilers are language-
specific. The Java compiler will translate only Java code, whereas a Pascal compiler will
reject anything but legal Pascal code. For example, if a Java compiler reads the instruction
if intRate > 100 then ..., it will complain, because the condition of the if state-
ment isn’t surrounded by parentheses () and the compiler doesn’t expect the word then.
The choice of the layout for a language construct like the if statement is somewhat arbi-
trary, and the designers of different languages choose different tradeoffs among readabil-
ity, easy translation, and consistency with other languages.

In 1991, a group led by James Gosling and Patrick Naughton at Sun Microsystems
designed a language that they code-named “Green” for use in consumer devices such

as intelligent television “set-top” boxes. The language was designed
to be simple and architecture-neutral, so that it could be executed
on a variety of hardware. No customer was ever found for this
technology.

Gosling recounts that in 1994 the team realized, “We could write
a really cool browser. It was one of the few things in the client/server
mainstream that needed some of the weird things we’d done: archi-
tecture neutral, real-time, reliable, secure.” The HotJava browser,

which was shown to an enthusiastic crowd at the SunWorld exhibition in 1995, had one
unique property: It could download programs, called applets, from the web and run
them. Applets, written in the language now called Java, let web developers provide a
variety of animation and interaction that can greatly extend the capabilities of a web
page (see Figure 7). Since 1996, both Netscape and Microsoft have supported Java in
their browsers.

Java has grown at a phenomenal rate. Programmers have embraced the language
because it is simpler than its closest rival, C++. In addition to the programming language
itself, Java has a rich library that makes it possible to write portable programs that can

1.6 The Java Programming Language

Java was originally designed
for programming consumer
devices, but it was first
successfully used to write
Internet applets.

12 CHAPTER 1 Introduction12

bypass proprietary operating systems—a feature that was eagerly sought by those who
wanted to be independent of those proprietary systems and was bitterly fought by their
vendors.

Some of the early expectations that were placed on the Java language were overly
optimistic, and the slogan “write once, run anywhere” turned into “write once, debug
everywhere” for the early adopters of Java, who had to deal with less-than-perfect imple-
mentations. Since then, Java has come a long way. The Java 2 language and library,
released in 1998, has brought a much greater level of stability to Java development. A

“micro edition” and an “enterprise edition” of the Java library make
Java programmers at home on hardware ranging from the smallest
embedded devices to the largest Internet servers.

Because Java was designed for the Internet, it has two attributes
that make it very suitable for beginners: safety and portability. If you
visit a web page that contains applets, those applets automatically
start running. It is important that you can trust that applets are inher-

ently safe. If an applet could do something evil, such as damaging data or reading per-
sonal information on your computer, then you would be in real danger every time you
browsed the Web—an unscrupulous designer might put up a web page containing dan-
gerous code that would execute on your machine as soon as you visited the page. The
Java language has an assortment of security features that guarantee that no evil applets
can run on your computer. As an added benefit, these features also help you to learn the

Figure 7

An Applet for Visualizing Molecules (http://www.openscience.org/jmol)

Java was designed to be
safe and portable, benefitting
both Internet users and
students.

1.7 Becoming Familiar with Your Computer 13

language faster. The Java virtual machine can catch many kinds of beginners’ mistakes
and report them accurately. (In contrast, many beginners’ mistakes in the C language
merely produce programs that act in random and confusing ways.) The other benefit of
Java is portability. The same Java program will run, without change, on Windows,
UNIX, Linux, or the Macintosh. This too is a requirement for applets. When you visit a
web page, the web server that serves up the page contents has no idea what computer you
are using to browse the Web. It simply returns you the portable code that was generated
by the Java compiler. The virtual machine on your computer executes that portable code.
Again, there is a benefit for the student. You do not have to learn how to write programs
for different computers’ operating systems.

At this time, Java has already established itself as one of the most important languages
for general-purpose programming as well as for computer science instruction. However,
although Java is a good language for beginners, it is not perfect, for two reasons.

Because Java was not specifically designed for students, no thought was given to make it
really simple to write basic programs. A certain amount of technical machinery is necessary in
Java to write even the simplest programs. To understand what this technical machinery does,
you need to know something about programming. This is not a problem for a professional

programmer with prior experience in another programming language, but
not having a linear learning path is a drawback for the student. As you
learn how to program in Java, there will be times when you will be asked
to be satisfied with a preliminary explanation and wait for complete details
in a later chapter.

Furthermore, you cannot hope to learn all of Java in one semester. The
Java language itself is relatively simple, but Java contains a vast set of library
packages that are necessary to write useful programs. There are packages for
graphics, user interface design, cryptography, networking, sound, database

storage, and many other purposes. Even expert Java programmers do not know the contents of
all of the packages—they just use those that they need for particular projects. Using this book,
you should expect to learn a good deal about the Java language and about the most important
packages. Keep in mind that the central goal of this book is not to make you memorize Java
minutiae, but to teach you how to think about programming.

You may be taking your first programming course as you read this book,
and you may well be doing your work on an unfamiliar computer system.
You should spend some time making yourself familiar with the computer.
Because computer systems vary widely, this book can only give an outline
of the steps you need to follow. Using a new and unfamiliar computer sys-
tem can be frustrating, especially if you are on your own. Look for training
courses that your campus offers, or just ask a friend to give you a brief tour.

Step 1. Log In
If you use your own home computer, you probably don’t need to worry about this step.
Computers in a lab, however, are usually not open to everyone. Access is usually restricted

1.7 Becoming Familiar with Your Computer

Java has a very large library.
Focus on learning those
parts of the library that you
need for your programming
projects.

Set aside some time to
become familiar with the
computer system and the
Java compiler that you will
use for your class work.

14 CHAPTER 1 Introduction14

to those who have paid the necessary fees, and often each student account has permis-
sions and restrictions that enable the student to do class work but not mess up the system
for others. You will need an account name or number and a password to gain access to
such a system.

Step 2. Locate the Java Compiler
Computer systems differ greatly in this regard. On some systems you must open a shell
window (see Figure 8) and type commands to launch the compiler. Other systems have
an integrated development environment in which you can write and test your programs
(see Figure 9). Many university labs have information sheets and tutorials that walk
you through the tools that are installed in the lab. The companion web site for this
book (reference [1] at the end of this chapter) contains instructions for several popular
compilers.

Step 3. Understand Files and Folders
As a programmer, you will write Java programs, try them out, and improve them. You
will be provided a place in secondary storage to store them, and you need to find out
where that place is. Information in secondary storage is kept in files. A file is a collection
of items of information that are kept together, such as the text of a word processing doc-
ument or the instructions of a Java program. Files have names, and the rules for legal
names differ from one system to another. Some systems allow spaces in file names; others
don’t. Some distinguish between upper- and lowercase letters; others don’t. Most Java
compilers require that Java files end in an extension .java; for example, Test.java. Java
file names cannot contain spaces, and the distinction between upper- and lowercase let-
ters is important.

Files are stored in folders or directories. These file containers can be nested. That is, a
folder can contain not only files but also other folders, which themselves can contain

Figure 8

A Shell Window

1.7 Becoming Familiar with Your Computer 15

more files and folders (see Figure 10). This hierarchy can be quite large, especially on
networked computers, where some of the files may be on your local disk, others else-
where on the network. While you need not be concerned with every branch of the hier-
archy, you should familiarize yourself with your local environment. Different systems
have different ways of showing files and directories. Some use a graphical display and let
you move around by clicking the mouse on folder icons. In other systems, you must enter
commands to visit or inspect different locations.

Step 4. Write a Simple Program
In the next section, we will introduce a very simple program. You will need to learn how
to type it in, how to run it, and how to fix mistakes.

Step 5. Save Your Work
You will spend many hours typing Java program code and improving it. The resulting
program files have some value, and you should treat them as you would other important
property. A conscientious safety strategy is particularly important for computer files.
They are more fragile than paper documents or other more tangible objects. It is easy to
delete a file by accident, and occasionally files are lost because of a computer malfunc-
tion. Unless you kept another copy, you must then retype the contents. Because you
probably won’t remember the entire file, you will likely find yourself spending almost as
much time again as you did to enter and improve it in the first place. This costs time, and
it may cause you to miss deadlines. It is therefore crucially important that you learn how

Figure 9

An Integrated Development Environment

16 CHAPTER 1 Introduction16

to safeguard files and that you get in the habit of doing so before disaster strikes. You can
make safety or backup copies of files by saving copies on a floppy, into another folder, or
to a different computer on your local area network or the Internet.

Backup Copies

Backing up on floppy disks is the easiest and most convenient method for most people.
Another increasingly popular form of backup is Internet file storage. Here are a few pointers
to keep in mind.

� Back up often. Backing up a file takes only a few seconds, and you
will hate yourself if you have to spend many hours recreating
work that you could have saved easily. Back up your work once
every thirty minutes, and every time before you test one of your
programs.

� Rotate backups. Use more than one floppy disk for backups, and rotate them. That
is, first back up onto the first floppy disk and put it aside. Then back up onto the
second floppy disk. Then use the third, and then go back to the first. That way
you always have three recent backups. Even if one of the floppy disks has a defect,
you can use one of the others.

Figure 10

Nested Folders

1.1Productivity Hint�

�

�

�

�

�

Develop a strategy for
keeping backup copies of
your work before disaster
strikes.

1.8 Compiling a Simple Program 17

� Back up source files only. The compiler translates the files that you write into files
consisting of machine code. There is no need to back up the machine code files,
since you can recreate them easily by running the compiler again. Focus your
backup activity on those files that represent your effort. That way your backup
disks won’t fill up with files that you don’t need.

� Pay attention to the backup direction. Backing up involves copying files from one
place to another. It is important that you do this right—that is, copy from your
work location to the backup location. If you do it the wrong way, you will over-
write a newer file with an older version.

� Check your backups once in a while. Double-check that your backups are where you
think they are. There is nothing more frustrating than to find out that the backups are
not there when you need them. This is particularly true if you use a backup program
that stores files on an unfamiliar device (such as data tape) or in a compressed format.

� Relax, then restore. When you lose a file and need to restore it from backup, you are
likely to be in an unhappy, nervous state. Take a deep breath and think through the
recovery process before you start. It is not uncommon for an agitated computer user
to wipe out the last backup when trying to restore a damaged file.

You are now ready to write and run your first Java program. The traditional choice for the very
first program in a new programming language is a program that displays a simple greeting:
“Hello, World!”. Let us follow that tradition. Here is the “Hello, World!” program in Java.

File Hello.java
1 public class Hello
2 {
3 public static void main(String[] args)
4 {
5 // display a greeting in the console window
6
7 System.out.println("Hello, World!");
8 }
9 }

We will examine this program in a minute. For now, you should make a new program file
and call it Hello.java. Enter the program instructions and compile
and run the program, following the procedure that is appropriate for
your compiler.

Java is case-sensitive. You must enter upper- and lowercase letters
exactly as they appear in the program listing. You cannot type MAIN or
PrintLn. If you are not careful, you will run into problems—see
Common Error 1.1.

�

�

�

�

�

�

�

1.8 Compiling a Simple Program

Java is case-sensitive.
You must be careful about
distinguishing between
upper- and lowercase
letters.

18 CHAPTER 1 Introduction18

On the other hand, Java has free-form layout. You can use any number of spaces
and line breaks to separate words. You can cram as many words as possible into each
line,

public class Hello{public static void main(String[]
args){// display a greeting in the console window
System.out.println("Hello, World!");}}

You can even write every word and symbol on a separate line,

public
class
Hello
{
public
static
void
main
(
. . .

However, good taste dictates that you lay out your programs in a read-
able fashion. Chapters 2 and 3 contain recommendations for good
layout.

When you run the program, the message

Hello, World!

will appear somewhere on the screen (see Figures 11 and 12). The
exact location depends on your programming environment.

Now that you have seen the program working, it is time to under-
stand its makeup. The first line,

public class Hello

starts a new class. Classes are a fundamental concept in Java, and you
will begin to study them in Chapter 2. In Java, every program consists
of one or more classes.

The keyword public denotes that the class is usable by the “pub-
lic”. You will later encounter private features, which are not.

At this point, you should simply regard the

public class ClassName
{
 . . .
}

as a necessary part of the “plumbing” that is required to write any Java program. In Java, every
source file can contain at most one public class, and the name of the public class must match
the name of the file containing the class. For example, the class Hello must be contained in a
file Hello.java. It is very important that the names and the capitalization match exactly. You
can get strange error messages if you call the class HELLO or the file hello.java.

Lay out your programs so
that they are easy to read.

Classes are the fundamental
building blocks of Java
programs.

Each class contains
definitions of methods. Each
method contains a sequence
of instructions.

1.8 Compiling a Simple Program 19

The construction

public static void main(String[] args)
{
}

defines a method called main. A method contains a collection of programming instruc-
tions that describe how to carry out a particular task. Every Java application must have a
main method. Most Java programs contain other methods besides main, and you will see
in Chapter 2 how to write other methods.

Figure 11

Running the Hello Program in a Console Window

Figure 12

Running the Hello Program in an Integrated Development
Environment

20 CHAPTER 1 Introduction20

The parameter String[] args is a required part of the main
method. (It contains command line arguments, which we will not discuss
until Chapter 16.) The keyword static indicates that the main method
does not operate on an object. (As you will see in Chapter 2, most meth-
ods in Java do operate on objects, and static methods are not common
in large Java programs. Nevertheless, main must always be static,
because it starts running before the program can create objects.)

At this time, simply consider
public class ClassName
{
 public static void main(String[] args)
 {

 . . .
 }
}

as yet another part of the “plumbing”. Our first program has all instructions inside the
main method of a class.

The first line inside the main method is a comment
// display a greeting in the console window

This comment is purely for the benefit of the human reader, to explain
in more detail what the next statement does. Any text enclosed between
// and the end of the line is completely ignored by the compiler. Com-

ments are used to explain the program to other programmers or to yourself.
The instructions or statements in the body of the main method—that is, the state-

ments inside the curly braces {}—are executed one by one. Each statement ends in a
semicolon ;. Our method has a single statement:

System.out.println("Hello, World!");

This statement prints a line of text, namely “Hello, World!”. However, there are many places
where a program can send that string: to a window, to a file, or to a networked computer on
the other side of the world. You need to specify that the destination for the string is the stan-
dard output—that is, a console window. The console window is represented in Java by an
object called out. Just as you needed to place the main method in a Hello class, the design-
ers of the Java library needed to place the out object into a class. They placed it in the
System class, which contains useful objects and methods to access system resources. To use
the out object in the System class, you must refer to it as System.out.

To use an object such as System.out, you specify what you want
to do to it. In this case, you want to print a line of text. The println
method carries out this task. You do not have to implement this
method—the programmers who wrote the Java library already did
that for us—but you do need to call the method.

Whenever you call a method in Java, you need to specify three items:

1. The object that you want to use (in this case, System.out)
2. The name of the method you want to use (in this case, println)
3. A pair of parentheses, containing any other information the method needs (in this

case, ("Hello, World!"))

Use comments to help
human readers understand
your program.

You call a method by
specifying an object,
the method name, and
the method parameters.

Every Java application
contains a class with a main
method. When the application
starts, the instructions in the
main method are executed.

1.8 Compiling a Simple Program 21

Note that the two periods in System.out.println have different meanings. The first
period means “locate the out object in the System class”. The second period means
“apply the println method to that object”.

A sequence of characters enclosed in quotation marks

"Hello, World!"

is called a string. You must enclose the contents of the string inside quotation marks so
that the compiler knows you literally mean "Hello, World!". There is a reason for this

requirement. Suppose you need to print the word main. By enclosing
it in quotation marks, "main", the compiler knows you mean the
sequence of characters m a i n, not the method named main. The
rule is simply that you must enclose all text strings in quotation
marks, so that the compiler considers them plain text and does not try
to interpret them as program instructions.

You can also print numerical values. For example, the statement

System.out.println(3 + 4);

displays the number 7.
The println method prints a string or a number and then starts a new line. For

example, the sequence of statements

System.out.println("Hello");
System.out.println("World!");

prints two lines of text:

Hello
World!

There is a second method, called print, that you can use to print an item without start-
ing a new line afterward. For example, the output of the two statements

System.out.print("00");
System.out.println(3 + 4);

is the single line
007

Syntax 1.1 : Method Call
object.methodName (parameters)

Example:

System.out.println("Hello, Dave!");

Purpose:

To invoke a method on an object and supply any additional parameters

A string is a sequence of
characters enclosed in
quotation marks.

22 CHAPTER 1 Introduction22

Omitting Semicolons

In Java every statement must end in a semicolon. Forgetting to type a semicolon is a
common error. It confuses the compiler, because the compiler uses the semicolon to
find where one statement ends and the next one starts. The compiler does not use line
breaks or closing braces to recognize the end of statements. For example, the compiler
considers

System.out.println("Hello")
System.out.println("World!");

a single statement, as if you had written

System.out.println("Hello") System.out.println("World!");

Then it doesn’t understand that statement, because it does not expect the word System
following the closing parenthesis after "Hello". The remedy is simple. Scan every state-
ment for a terminating semicolon, just as you would check that every English sentence
ends in a period.

Alternative Comment Syntax

In Java there are two methods for writing comments. You already learned that the com-
piler ignores anything that you type between // and the end of the current line. The
compiler also ignores any text between a /* and */.

/* A simple Java program */

The // comment is easier to type if the comment is only a single line long. If you have a
comment that is longer than a line, then the /* . . . */ comment is simpler:

/*
This is a simple Java program that you can use to try out
your compiler and interpreter.
*/

It would be somewhat tedious to add the // at the beginning of each line and to move
them around whenever the text of the comment changes.

In this book, we use // for comments that will never grow beyond a line, and /* . . .
*/ for longer comments. If you prefer, you can always use the // style. The readers of your
code will be grateful for any comments, no matter which style you use.

1.1Common Error�

�

�

�

�

�

�

1.1Advanced Topic�

�

�

�

�

�

�

1.8 Compiling a Simple Program 23

Escape Sequences

Suppose you want to display a string containing quotation marks, such as

Hello, "World"!

You can’t use

System.out.println("Hello, "World"!");

As soon as the compiler reads "Hello, ", it thinks the string is finished, and then it
gets all confused about World followed by two quotation marks. A human would
probably realize that the second and third quotation marks were supposed to be part
of the string, but compilers have a one-track mind. If a simple analysis of the
input doesn’t make sense to them, they just refuse to go on, and they report an error.
Well, how do you then display quotation marks on the screen? You precede the quo-
tation marks inside the string with a backslash character. Inside a string, the sequence
\" denotes a literal quote, not the end of a string. The correct display statement is
therefore

System.out.println("Hello, \"World\"!");

The backslash character is used as an escape character, and the character sequence \"
is called an escape sequence. The backslash does not denote itself; instead, it is used
to encode other characters that would otherwise be difficult to include in a string.

Now, what do you do if you actually want to print a backslash (for example, to specify
a Windows file name)? You must enter two \\ in a row, like this:

System.out.println(
 "The secret message is in C:\\Temp\\Secret.txt");

This statement prints
The secret message is in C:\Temp\Secret.txt

Another escape sequence occasionally used is \n, which denotes a newline or line
feed character. Printing a newline character causes the start of a new line on the display.
For example, the statement

System.out.print("*\n**\n***\n");

prints the characters
*
**

on three separate lines. Of course, you could have achieved the same effect with three
separate calls to println.

Finally, escape sequences are useful for including international characters in a string.
For example, suppose you want to print “All the way to San José!”, with an accented let-
ter é. If you use a U.S. keyboard, you may not have a key to generate that letter. Java uses

1.2Advanced Topic�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

24 CHAPTER 1 Introduction24

the Unicode encoding scheme to denote international characters. For example, the é
character has Unicode encoding 00E9. You can include that character inside a string by
writing \u, followed by its Unicode encoding:

System.out.println("All the way to San Jos\u00E9!");

You can look up the codes for the U.S. English and Western European characters in
Appendix A6, and codes for thousands of characters in reference [2].

Experiment a little with the Hello program. What happens if you make a typing error
such as

System.ouch.println("Hello, World!");
System.out.println("Hello, World!);
System.out.println("Hell, World!");

In the first case, the compiler will complain. It will say that it has
no clue what you mean by ouch. The exact wording of the error
message is dependent on the compiler, but it might be something
like “Undefined symbol ouch”. This is a compile-time error or syn-
tax error. Something is wrong according to the language rules,
and the compiler finds it. When the compiler finds one or more

errors, it refuses to translate the program to Java virtual machine instructions,
and as a consequence you have no program that you can run. You must fix the
error and compile again. In fact, the compiler is quite picky, and it is common to
go through several rounds of fixing compile-time errors before compilation suc-
ceeds for the first time.

If the compiler finds an error, it will not simply stop and give up. It will try to
report as many errors as it can find, so you can fix them all at once. Sometimes, how-
ever, one error throws it off track. This is likely to happen with the error in the second
line. Because the closing quotation mark is missing, the compiler will think that the);
characters are still part of the string. In such cases, it is common for the compiler to
emit bogus error reports for neighboring lines. You should fix only those error mes-
sages that make sense to you and then recompile.

The error in the third line is of a different kind. The program will compile and run,
but its output will be wrong. It will print

Hell, World!

This is a run-time error or logic error. The program is syntactically cor-
rect and does something, but it doesn’t do what it is supposed to do.
The compiler cannot find the error. You, the programmer, must flush
out this type of error. Run the program, and carefully look at its output.

During program development, errors are unavoidable. Once a pro-
gram is longer than a few lines, it requires superhuman concentration to

�

�

�

1.9 Errors

A syntax error is a violation of
the rules of the programming
language. The compiler
detects syntax errors.

A logic error causes a
program to take an action
that the programmer did not
intend. You must test your
programs to find logic errors.

1.9 Errors 25

enter it correctly without slipping up once. You will find yourself omitting semicolons or quotes
more often than you would like, but the compiler will track down these problems for you.

Logic errors are more troublesome. The compiler will not find them—in fact, the com-
piler will cheerfully translate any program as long as its syntax is correct—but the resulting
program will do something wrong. It is the responsibility of the program author to test the
program and find any logic errors. Testing programs is an important topic that you will
encounter many times in this book. Another important aspect of good craftsmanship is
defensive programming: structuring programs and development processes in such a way that
an error in one place of a program does not trigger a disastrous response.

The error examples that you saw so far were not difficult to diagnose or fix, but as you
learn more sophisticated programming techniques, there will also be much more room
for error. It is an uncomfortable fact that locating all errors in a program is very difficult.
Even if you can observe that a program exhibits faulty behavior, it may not at all be obvi-
ous what part of the program caused it and how you can fix it. Special software tools (so-
called debuggers) let you trace through a program to find bugs—that is, logic errors. In
this course you will learn how to use a debugger effectively.

Note that all these errors are different from the kind of errors that you are likely to
make in calculations. If you total up a column of numbers, you may miss a minus sign or
accidentally drop a carry, perhaps because you are bored or tired. Computers do not
make these kinds of errors. When a computer adds up numbers, it will get the correct
answer. Admittedly, computers can make overflow or roundoff errors, just as pocket cal-
culators do when you ask them to perform computations whose result falls outside their
numeric range. An overflow error occurs if the result of a computation is very large or
very small. For example, most computers and pocket calculators overflow when you try
to compute 101000. A roundoff error occurs when a value cannot be represented precisely.
For example, 1/3 may be stored in the computer as 0.3333333, a value that is close to,
but not exactly equal to, 1/3. If you compute 1 − (3 1/3), you may obtain 0.0000001,
not 0, as a result of the roundoff error. We will consider such errors logic errors, because
the programmer should have chosen a more appropriate calculation scheme that handles
overflow or roundoff correctly.

You will learn a three-part error management strategy in this book. First, you will
learn about common errors and how to avoid them. Then you will learn defensive pro-
gramming strategies to minimize the likelihood and impact of errors. Finally, you will
learn debugging strategies to flush out those errors that remain.

Misspelling Words

If you accidentally misspell a word, then strange things may happen, and it may not
always be completely obvious from the error messages what went wrong. Here is a good
example of how simple spelling errors can cause trouble:

public class Hello
{

�

1.2Common Error�

�

�

26 CHAPTER 1 Introduction26

public static void Main(String[] args)
{

System.out.println("Hello, World!");
}

}

This class defines a method called Main. The compiler will not consider this to be the
same as the main method, because Main starts with an uppercase letter and the Java lan-
guage is case-sensitive. Upper- and lowercase letters are considered to be completely dif-
ferent from each other, and to the compiler Main is no better match for main than rain.
The compiler will cheerfully compile your Main method, but when the Java interpreter
reads the compiled file, it will complain about the missing main method and refuse to
run the program. Of course, the message “missing main method” should give you a clue
where to look for the error.

If you get an error message that seems to indicate that the compiler is on the
wrong track, it is a good idea to check for spelling and capitalization. All Java key-
words use only lowercase letters. Names of classes usually start with an uppercase let-
ter, names of methods and variables with a lowercase letter. If you misspell the name
of a symbol (for example, ouch instead of out), the compiler will complain about an
“undefined symbol”. That error message is usually a good clue that you made a spell-
ing error.

Some Java development environments are very convenient to use. You just enter the
code in one window, click on a button to compile, and click on another button to
execute your program. Error messages show up in a second window, and the program
runs in a third window. With such an environment you are completely shielded from
the details of the compilation process. On other systems you must carry out every
step manually, by typing commands such as

edit Hello.java
javac Hello.java
java Hello

into a shell window.
No matter which compilation environment you use, you begin

your activity by typing in the program statements. The program
that you use for entering and modifying the program text is called
an editor. Remember to save your work to disk frequently, because
otherwise the text editor stores the text only in the computer’s
memory. If something goes wrong with the computer and you

need to restart it, the contents of the primary memory (including your program
text) are lost, but anything stored on a hard disk or floppy disk is permanent even if
you need to restart the computer.

�

�

�

�

�

�

�

1.10 The Compilation Process

An editor is a program for
entering and modifying text,
such as a Java program.

1.10 The Compilation Process 27

When you compile your program, the compiler translates the Java
source code (that is, the statements that you wrote) into bytecode, which
consists of virtual machine instructions and some other pieces of
information on how to load the program into memory prior to execu-
tion. The bytecode for a program is stored in a separate file, with
extension .class. For example, the bytecode for the Hello program

will be stored in a file Hello.class. However, the compiler produces a class file only
after you have corrected all syntax errors.

The class file contains the translation of only the instructions that you wrote. That is
not enough actually to run the program. To display a string on a window, quite a bit of
low-level activity is necessary. The authors of the System and PrintStream classes
(which define the out object and the println method) have implemented all necessary
actions and placed the required bytecode into a library. A library is a collection of code
that has been programmed and translated by someone else, ready for you to use in your
program. (More complicated programs are built from more than one class file and more
than one library.)

The Java interpreter loads the bytecode of the program that you wrote, starts your
program, and loads the necessary library files as they are required.

The steps of compiling and running your program are outlined in
Figure 13.

Your programming activity centers around these steps. You start in
the editor, writing the source file. You compile the program and look
at the error messages. You go back to the editor and fix the syntax
errors. When the compiler succeeds, you run your program. If you

find an error, you can run the debugger to execute it a line at a time. Once you find the
cause of the error, you go back to the editor and fix it. You compile and run again to see
whether the error has gone away. If not, you go back to the editor. This is called the edit–
compile–test loop (see Figure 14). You will spend a substantial amount of time in this loop
whenever you work on programming assignments.

Figure 13

From Source Code to Running Program

CompilerEditor Interpreter

Running
ProgramSource File

Library files

Class files

The Java compiler translates
source code into instructions
for the Java virtual machine,
called bytecode.

The Java interpreter runs
a program, loading the
necessary bytecode from
class files and library files.

28 CHAPTER 1 Introduction28

1. A computer must be programmed to perform tasks. Different tasks require different
programs.

2. A computer program executes a sequence of very basic operations in rapid succession.

3. Programmers develop computer programs to make computers perform new tasks.

4. At the heart of the computer lies the central processing unit (CPU).

5. Data and programs are stored in primary storage (memory) and secondary storage
(such as a hard disk).

6. The CPU reads machine instructions from memory. The instructions direct it to
communicate with memory, secondary storage, and peripheral devices.

7. Generally, machine code depends on the CPU type. However, the instruction set of
the Java virtual machine (JVM) can be executed on many CPUs.

8. Because machine instructions are encoded as numbers, it is difficult to write pro-
grams in machine code.

Figure 14

The Edit-Compile-Test Loop

True

True

False

False

Edit
program

Begin

Compile
program

Test
program

End

Compiler
 errors??

Run-time
 errors??

Chapter Summary

Chapter Summary 29

9. Assembly language makes it easier to generate machine instructions by translating
mnemonics and symbolic names.

10. High-level languages let you describe tasks at a higher conceptual level than
machine code.

11. A compiler translates programs written in a high-level language into machine
code.

12. Each programming language has its own set of rules for forming instructions. Com-
pilers enforce these rules strictly.

13. Java was originally designed for programming consumer devices, but it was first suc-
cessfully used to write Internet applets.

14. Java was designed to be safe and portable, benefitting both Internet users and students.

15. Java has a very large library. Focus on learning those parts of the library that you
need for your programming projects.

16. Set aside some time to become familiar with the computer system and the Java com-
piler that you will use for your class work.

17. Develop a strategy for keeping backup copies of your work before disaster strikes.

18. Java is case-sensitive. You must be careful about distinguishing between upper- and
lowercase letters.

19. Lay out your programs so that they are easy to read.

20. Classes are the fundamental building blocks of Java programs.

21. Each class contains definitions of methods. Each method contains a sequence of
instructions.

22. Every Java application contains a class with a main method. When the application
starts, the instructions in the main method are executed.

23. Use comments to help human readers understand your program.

24. You call a method by specifying an object, the method name, and the method parameters.

25. A string is a sequence of characters enclosed in quotation marks.

26. A syntax error is a violation of the rules of the programming language. The compiler
detects syntax errors.

27. A logic error causes a program to take an action that the programmer did not intend.
You must test your programs to find logic errors.

28. An editor is a program for entering and modifying text, such as a Java program.

29. The Java compiler translates source code into instructions for the Java virtual
machine, called bytecode.

30. The Java interpreter runs a program, loading the necessary bytecode from class files
and library files.

30 CHAPTER 1 Introduction30

Further Reading

[1] http://www.horstmann.com/bigjava/help/compilers.html Instructions for using several popu-
lar Java compilers.
[2] http://www.unicode.org/ The web site of the Unicode Consortium. It contains character tables
that show the Unicode values of characters from many scripts.

Here is a list of all classes, methods, static variables, and constants introduced in this
chapter. Turn to the documentation in Appendix A6 for more information.

java.io.PrintStream
 print
 println
java.lang.String
 length
java.lang.System
 out

Exercise R1.1. Explain the difference between using a computer program and program-
ming a computer.

Exercise R1.2. What distinguishes a computer from a typical household appliance?

Exercise R1.3. Rank the storage devices that can be part of a computer system by
(a) speed, (b) cost, and (c) storage capacity.

Exercise R1.4. What is the Java virtual machine?

Exercise R1.5. What is an applet?

Exercise R1.6. Explain two benefits of higher-level programming languages over assem-
bler code.

Exercise R1.7. List the programming languages mentioned in this chapter.

Exercise R1.8. What is an integrated programming environment?

Exercise R1.9. What is a console window?

Exercise R1.10. Describe exactly what steps you would take to back up your work after
you have typed in the Hello.java program.

Classes, Objects, and Methods Introduced in This
Chapter

Review Exercises

Programming Exercises 31

Exercise R1.11. On your own computer or on your lab computer, find the exact location
(folder or directory name) of

� The sample file Hello.java, which you wrote with the editor
� The Java interpreter java.exe
� The library file rt.jar that contains the runtime library

Exercise R1.12. Explain the special role of the \ escape character in Java character
strings.

Exercise R1.13. Write three versions of the Hello.java program that have different
syntax errors. Write a version that has a logic error.

Exercise R1.14. How do you discover syntax errors? How do you discover logic
errors?

Exercise P1.1. Write a program that displays your name inside a box on the console
screen, like this:

+----+
|Dave|
+----+

Do your best to approximate lines with characters like | - +.

Exercise P1.2. Write a program that prints a face, using text characters, hopefully better
looking than this one:

 /////
 | o o |
(| ^ |)
_/

Use comments to indicate when you print the hair, ears, mouth, and so on.

Exercise P1.3. Write a program that prints a Christmas tree:

 /\
 / \
 / \
/ \

 " "
 " "
 " "

Remember to use escape sequences to print the \ and " characters.

Programming Exercises

32 CHAPTER 1 Introduction32

Exercise P1.4. Write a program that prints a staircase:

 +---+
 | |
 +---+---+
 | | |
 +---+---+---+
 | | | |
+---+---+---+---+
| | | | |
+---+---+---+---+

Exercise P1.5. Write a program that computes the sum of the first ten positive integers,
1 + 2 + · · · + 10. Hint: Write a program of the form

public class Sum10
{
 public static void main(String[] args)
 {
 System.out.println();
 }
}

Exercise P1.6. Write a program that computes the sum of the reciprocals 1/1 + 1/2 + · · · + 1/10.
This is harder than it sounds. Try writing the program, and check the result. The program’s
result isn’t likely to be correct. Then write the numbers as floating-point numbers, 1.0, 2.0,
. . . , 10.0, and run the program again. Can you explain the difference in the results? We
will explore this phenomenon in Chapter 3.

