FORTRAN ¨Ï¥Î¤@¹ï¹ê±`¼Æ (a, b) ¥Nªí½Æ±`¼Æ¡A a ©M b ¬O³æ·Ç±`¼Æ¡A ¤À§O¥Nªí½Æ¼Æªº¹ê¼Æ³¡¤À©Mµê¼Æ³¡¤À¡C
¨Ò¦p
(1.0, 1.0) (-6.0, 9.7) ¤À§O¬Û·í©ó 1.0 + 1.0i -6.0 + 9.7i
ªº½Æ±`¼Æ¡C
½Æ¼ÆªºÅܼơA°}¦C©Î¨ç¼Æ¡A¨ä¸ê®Æ«¬¦¡¥²¶·¨Ï¥Î COMPLEX «¬¦¡±Ôz¤©¥H«Å§i¡C ¨Ò¦p¡A
COMPLEX A, RHO(10, 10) «Å§i A ©M 10 x 10 ªº°}¦C RHO ¬°½Æ¼Æ¡C COMPLEX FUNCTION GAMMA(Z, W) COMPLEX Z, W ©Î FUNCTION GAMMA(Z, W) COMPLEX GAMMA, Z, W «Å§i GAMMA ¬°§t½Æ¤Þ¼Æ Z ©M W ªº½Æ¨ç¼Æ
½Æ¼Æªººâ³N¥|«h¹Bºâ¡A ¥Îªk©M³æ·Ç¹ê¼Æ¬Û¦P¡A ¤´µM¨Ï¥Î¹Bºâ¤l + , - , *, ©M / ¡C ½Æ¼Æªº«ü¼Æ¹Bºâ ** ¥u©ó«ü¼Æ¬°¾ã¼Æ¡C
¾ã¼Æ¡A¹ê¼Æ¡A©M½Æ¼ÆÈ¥i¥H²V«¬(mixed-mode)¹Bºâ¡C ¦ý¬Oª`·N¡A ¿·Ç¼ÆÈ¤£¥i©M½Æ¼ÆÈ²V¥Î; ¿·Ç¼ÆÈ¤£¥i«ü©wµ¹½ÆÅܼơA ½Æ¼ÆÈ¤]¤£¥i«ü©wµ¹¿·ÇÅܼơC
½Æ¼Æ¸g±`¨Ï¥Îªº¦³µ´¹ïÈ¡A ¦@³m¡A ©M«ü¼Æ¨ç¼Æ¡C ³o¨Ç¨ç¼Æ¥i¤À§O¨Ï¥Î FORTRAN ªº®w¦s¨ç¼Æ ABS, CONJG, ©M EXP¡C ¨ä¥L½Ñ¦p SIN, COS, LOG, ©M SQRT ¤]¥i¥H¨Ï¥Î½Æ¼ÆÈ°µ¬° ¤Þ¼Æ¡A ·íµM¨ä¨ç¼ÆÈ¤]¬O½Æ¼Æ«¬¦¡¡C
¦¹¥~¡A ¹ê¼Æ©M½Æ¼Æ«¬¦¡¤§¶¡ªºÂà´«¡A ¥i¥Î
AIMAG(z) | pºâ½Æ¤Þ¼Æ z ªºµê¼Æ³¡¤À¡C |
CMPLX(x,y) ©Î CMPLX(x) | ±N¨âÓ¾ã¼Æ¡A¹ê¼Æ¡A©Î¿·Ç¼Æ x ©M y Âà´«¦¨½Æ¼Æ¡C x ¬°¹ê¼Æ³¡¤À¡A y ¬°¹ê¼Æ³¡¤À¡C CMPLX(x) ¬Û·í©ó CMPLX(x,0)¡C |
REAL(z) | pºâ½Æ¤Þ¼Æ z ªº¹ê¼Æ³¡¤À¡C |
½Æ¼ÆÈªº¿é¤J¥i¥H¨Ï¥Î¦ê¦C¦¡ªº READ ±Ôz¡A ¤£¹L¥Nªí½Æ¼ÆÈªº¦¨¹ï¹ê¼ÆÈn¬A¦b¬A©·¤º¡C ½Æ¼ÆÈ¤]¥i¥H¨Ï¥Î®æ¦¡¤Æªº READ ±Ôz¿é¤J¡A ¨C¤@½Æ¼ÆÈ¥i¨Ï¥Î¤@¹ï F, E, ©Î G ´yz¦¡¡A ¤£¹L¤£¥²¬A¦b¬A©·¤º¡C
½Æ¼ÆÈ¨Ï¥Î¦ê¦C¦¡¿é¥X®É¡A ¥Nªí½Æ¼ÆÈªº¦¨¹ï¹ê¼ÆÈ¥Î³rÂI¹j¶}¡A ¨Ã¥B¬A¦b¬A©·¤º¡C ¨Ï¥Î®æ¦¡¤Æªº¿é¥X®É¡A ¨C¤@½Æ¼ÆÈ¤]¬O¨Ï¥Î¤@¹ï F, E, ©Î G ´yz¦¡¡C
¨Ò¦p¡A
PROGRAM DEMO3 COMPLEX X, Y, W, Z, A READ *, X, Y READ 5, W 5 FORMAT(2F2.0) PRINT *, X, Y, W 10 FORMAT(1X, F6.2, ' +', F8.2, 'I') Z = (X + Y) / (1.0, 2.2) A = X * Y PRINT 10, Z, A END
²Ä¥|³¹»¡©ú IF ±Ôz¥Îªk¡A´¿Á|¨D¤G¦¸¤èµ{¦¡ªº®Ú¬°¨Ò¡C ¨º¬O¦]¬°¤G¦¸¤èµ{¦¡ªº®Ú¤]¥i¯à¬O½Æ¼Æ®Ú¡A¦Ó»Ýn¥Î¹ê¼Æªí¥Ü¡C ²{¦b¥i¥H¨Ï¥Î COMPLEX ¸ê®Æ«¬¦¡¡A µ{¦¡¤]´N§ó¬°Â²³æ¡C
COMPLEX A, B, C, DISC, ROOT1, ROOT2 PRINT *, 'ENTER THE COEFFICIENTS OF THE QUADRATIC EQUATION' READ *, A, B, C DISC = SQRT(B ** 2 - 4.0 * A * C) ROOT1 = (-B + DISC) / (2.0 * A) ROOT2 = (-B - DISC) / (2.0 * A) PRINT *, 'THE ROOTS ARE:' PRINT 10, ROOT1, ROOT2 10 FORMAT (5X, F7.3, ' +', F7.3, 'I') END¨ÒÃD: