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SUMMARY

While Artificial Intelligence (Al) has tremendous potential as a defense against real-
world cybersecurity threats, understanding the capabilities and robustness of Al remains a
fundamental challenge. This dissertation tackles problems essential to successful deployment
of Al in security settings and is comprised of the following three interrelated research thrusts.

(1) Adversarial Attack and Defense of Deep Neural Networks: We discover vulner-
abilities of deep neural networks in real-world settings and the countermeasures to mitigate
the threat. We develop ShapeShifter, the first targeted physical adversarial attack that fools
state-of-the-art object detectors. For defenses, we develop SHIELD, an efficient defense
leveraging stochastic image compression, and UnMask, a knowledge-based adversarial
detection and defense framework.

(2) Theoretically-Principled Defense via Game Theory and ML: We develop new
theories that guide defense resources allocation to guard against unexpected attacks and
catastrophic events, using a novel online decision-making framework that compels players
to employ “diversified” mixed strategies. Furthermore, by leveraging the deep connection
between game theory and boosting, we develop a communication-efficient distributed
boosting algorithm with strong theoretical guarantees in the agnostic learning setting.

(3) Using Al to Protect Enterprise and Society: We show how Al can be used in real
enterprise environment with a novel framework called Virtual Product that predicts potential
enterprise cyber threats. Beyond cybersecurity, we also develop the Firebird framework to
help municipal fire departments prioritize fire inspections.

Our work has made multiple important contributions to both theory and practice: our
distributed boosting algorithm solved an open problem of distributed learning; ShaperShifter
motivated a new DARPA program (GARD); Virtual Product led to two patents; and Firebird
was highlighted by National Fire Protection Association as a best practice for using data to

inform fire inspections.
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CHAPTER 1
INTRODUCTION

Internet-connected devices, such as mobile phones and smart home systems, have become
ubiquitous in our everyday lives. The increased connectivity also presents new cybersecurity
challenges and creates significant national risks. The number of cyber incidents on federal
systems reported to the U.S. Department oF Homeland Security increased more than ten-fold
between 2006 and 2015 [1].

To defend against these daunting and ever-increasing attacks, artificial intelligence (Al)
and machine learning (ML) have been explored and employed by cybersecurity researchers
and practitioners. However, even today, researchers have not yet fully understood the
complex ML models and their capabilities in solving various real-world tasks. The goal
of this thesis is to gain a deeper understanding of the capabilities and limitations of Al
in security-critical tasks, so that we can develop resilient Al-powered next-generation

cybersecurity defenses.

1.1 Thesis Overview and Main Ideas

Many cybersecurity scenarios can be modeled as a

game between the defender and the attacker. To de- Security (@*

sign the best security solution, we need to fully un-

My Research

derstand the capabilities and limitations from both the

defense and attack point of views, and how they in- Machine 0 Game @
Learning%*  Theory @

teract with each other. Recent advances in Al provide

great opportunities to fortify security-critical applications. However, Al may also pose new

threats and challenges. To solve these challenges, my research innovates at the intersection

of Al cybersecurity, and algorithmic game theory. My thesis includes three parts of research,



spanning the theory and application parts of cybersecurity. I make contributions to both the
defensive and attacking sides of cybersecurity. Table 1.1 provides a brief overview of my
dissertation.

Table 1.1: Thesis outline, and publications contributing to each part.

Part I: Adversarial Attack and Defense of Deep Neural Networks (Chapter 3, 4, 5)

§ ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector.
Shang-Tse Chen, Cory Cornelius, Jason Martin, Duen Horng Chau. In Proceedings of the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD), 2018.

§ Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression.
Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred Hohman, Siwei Li, Li Chen, Michael
E. Kounavis, Duen Horng Chau. In Proceedings of the ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), 2018.

§ Extracting Knowledge For Adversarial Detection and Defense in Deep Learning.

Scott Freitas, Shang-Tse Chen, Duen Horng Chau. In KDD 2019 Workshop on Learning and Mining
for Cybersecurity (LEMINCS), 2019.

Part II: Theoretically-Principled Defense via Game Theory and ML (Chapter 6, 7)

§ Diversified Strategies for Mitigating Adversarial Attacks in Multiagent Systems.
Maria-Florina Balcan, Avrim Blum, Shang-Tse Chen. In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2018.

§ Communication Efficient Distributed Agnostic Boosting.

Shang-Tse Chen, Maria-Florina Balcan, Duen Horng Chau. In Proceedings of the International
Conference on Artificial Intelligence and Statistics (AISTATS), 2016.

Part IV: Applying Al to Protect Enterprise and Society (Chapter 8, 9)

§ Predicting Cyber Threats with Virtual Security Products.
Shang-Tse Chen, Yufei Han, Duen Horng Chau, Christopher Gates, Michael Hart, Kevin Roundy. In
Proceedings of the Annual Computer Security Applications Conference (ACSAC), 2017.

§ Firebird: Predicting Fire Risk and Prioritizing Fire Inspections in Atlanta.

Michael Madaio, Shang-Tse Chen, Oliver Haimson, Wenwen Zhang, Xiang Cheng, Matthew Hinds-
Aldrich, Duen Horng Chau, and Bistra Dilkina. In Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD), 2016.
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Figure 1.1: My work on physical adversarial attack discovers a serious vulnerability of
DNNSs in a more realistic threat model where the attacker does not need to have control over
the internal computer vision system pipeline. The crafted physical adversarial objects (e.g.,
fake stop signs) can fool the state-of-the-art object detectors.

1.1.1 Part I: Adversarial Attack and Defense of Deep Neural Networks

Recent advances in deep neural networks (DNNs) have generated much optimism about
deploying Al in safety-critical applications, such as self-driving cars. However, it has
recently been discovered that given the ability to directly manipulate image pixels in the
digital input space, an adversary can easily generate imperceptible perturbations to fool a
DNN image classifier [2].

Although many adversarial attack algorithms have been proposed [3, 4], attacking
a real-world computer vision system is difficult, because attackers usually do not have
the ability to directly manipulate data inside such systems (Figure 1.1). To understand
the vulnerabilities of DNN-based computer vision systems, I collaborated with Intel and
developed ShapeShifter [5], the first targeted physical adversarial attack on the state-
of-the-art Faster R-CNN object detectors.

Attacking an object detector is more difficult than attacking an image classifier, as the
attack needs to mislead the classifications of multiple bounding boxes at different scales.
Extending a digital attack to the physical world adds another layer of difficulty; this requires

the perturbation to be sufficiently robust to survive real-world distortions due to different



Figure 1.2: Snapshots of a drive-by test result. The real stop sign is correctly predicted by
Faster R-CNN with high confidence. The adversarial stop sign crafted by ShapeShifter is
detected as the target class “person.”

viewing distances and angles, lighting conditions, and camera limitations.

ShapeShifter generates adversarial stop signs that were consistently mis-detected by
Faster R-CNN as the target objects in real drive-by tests (Figure 1.2), posing a potential
threat to autonomous vehicles and other safety-critical computer vision systems. Our code
is open-sourced and the drive-by test videos are publicly available!. ShapeShifter was
highlighted as the state-of-the-art physical adversarial attack in the recent DARPA
program ‘“Guaranteeing AI Robustness against Deception” (GARD) that focuses on
defending against such kind of attacks.

Although there have been many attempts to mitigate adversarial attacks, completely
protecting a DNN model from adversarial attacks remains an open problem. Most methods
suffer from significant computational overhead or sacrifice accuracy on benign data. In
collaboration with Intel, we developed SHIELD [6], a practical defense leveraging stochastic
compression that removes adversarial perturbations. SHIELD makes multiple positive
impacts on Intel’s research and product development plans. Utilizing Intel’s Quick Sync
Video (QSV) technology with dedicated hardware for high-speed video processing, we
pave the way for real-time defense in safety-critical applications, such as autonomous
vehicles. Our research sparked insightful discussion at Intel about secure deep learning
that necessitates tight integration of practical defense strategies, software platforms, and

hardware accelerators. Our work will accelerate the industry’s emphasis on this important

'https://github.com/shangtse/robust-physical-attack
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Figure 1.3: UnMask combats adversarial attacks (in red) by extracting building-block
knowledge (e.g., wheel) from the image (top, in green), and comparing them to expected
features of the classification (“Bird” at bottom) from the unprotected model. Low feature
overlap signals attack. UnMask rectifies misclassification using the image’s extracted
features. Our approach detects 92.9% of gray-box attacks (at 9.67% false positive rate) and
defends the model by correctly classifying up to 92.24% of adversarial images crafted by
the strongest attack, Projected Gradient Descent.

topic. Both ShapeShifter and SHIELD have been incorporated into MLsploit [7], an open-
sourced ML evaluation and fortification framework designed for education and research.
These two works are also part of the Intel AI Academy course.

Shield is best suited for defending against imperceptible perturbations. To defend against
ShapeShifter-style attacks, we developed UnMask, a knowledge-based adversarial detection
and defense framework. UnMask protects models by verifying that an image’s predicted
class (e.g., “bird”) contains the expected building blocks (e.g., beak, wings, eyes). For
example, if an image is classified as “bird”, but the extracted building blocks are wheel,
seat and frame, the model may be under attack. When UnMask detects such attacks, it
can rectify the misclassification by re-classifying the image based on its extracted building

blocks (Figure 1.3).
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Figure 1.4: For € € [%, 1], we define a probability distribution P to be e-diversified if
P(i) < i for all 7. A distribution can be diversified through a Bregman projection onto the
set of all e-diversified distributions. A mixed strategy determined by a diversified distribution
is called a diversified (mixed) strategy. We explore properties of such diversified strategies
in both zero-sum and general-sum games as well as give algorithmic guarantees.

1.1.2 Part II: Theoretically-Principled Defense via Game Theory and ML

Defense resource allocation is a well-known and critical task in security. For example, a
company that wants to implement security controls with a limited budget needs to make
trade-offs in its deployment. I modeled this problem as a two-player zero-sum game between
a defender and an attacker, and introduced a novel solution concept called diversified mixed
strategy [8].

Inspired by the proverb “don’t put all your eggs in one basket,” my new solution concept
compels players to employ a “diversified” strategy that does not place too much weight
on any one action. I systematically studied properties of diversified strategies in multiple
games, and designed efficient algorithms that asymptotically achieve the optimum reward
within the family of diversified strategies. As a result, these algorithms limit the exposure to
adversarial or catastrophic events while still performing successfully in typical cases.

Leveraging the deep connection between game theory, online learning, and boosting, I
proved that the proposed diversified strategy concept can also be used to help learn robust
and efficient ML models. Specifically, I solved an open problem listed in [9] by developing

a boosting-based approach [10] in one of the hardest and most general settings in distributed
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Figure 1.5: Our distributed SmoothBoost algorithm. In each iteration, (1) each machine
samples its own data based on the current data distribution and sends it to the Center;
(2) Center trains an ML model by using some weak learning algorithm and broadcasts
the trained model to all the machines; (3) each machine updates its data distribution (i.e.,
example weights) based on received model, and performs distributed Bregman projection to
ensure the distribution is diversified. All the weak models are combined at the end to obtain
a strong model.

learning, where data is adversarially partitioned and distributed across multiple locations,
and can have arbitrary forms of noise (Figure 1.5). Succinctly, since boosting algorithms
tend to place too much weight on outliers, we can project the weights back to the set of
diversified distributions at the end of each boosting iteration. Our algorithm is simultaneously
noise tolerant, communication efficient, and computationally efficient. This is a significant
improvement over prior works that either were only communication efficient in noise-free
scenarios or were computationally prohibitive. Our distributed boosting algorithm is not

only theoretically principled but also demonstrates excellent accuracy on real-world datasets.

1.1.3  Part III: Applying Al to Protect Enterprise and Society

Part I and II provide theories, algorithms, and insight of the capabilities and limitations
of Al. But how can we put Al into practice and utilize it to provide solutions that solve

real enterprise security problems and create positive societal impacts? In collaboration



® == Should my company add a firewall?
& Will it detect more incidents?

L
. @ - @ @ tl?':': %ﬁ@

) & o P

O <§\ & Se PO
@ 1.0 10 2 70 Y
B 00 00 0 0 0 N
B 0 0 1 0 1 N
0 4 03 0 5 Y
?

. o1 10 3 B virtual
» ; Firewall
¢=> B
5 0 0 1 :

] (] :

]

E Predict
<] 2 0 00 0 Nl ?

A R 7 - ?

Figure 1.6: Virtual Product helps our user Sam discover and understand cyber-threats, and
informs deployment decisions (e.g., add firewall?) through semi-supervised non-negative
matrix factorization on telemetry data from other users (with firewalls deployed). In the data
matrix, each row represents a machine-day, and each column a security event’s occurrences.
Missing events from undeployed products are shown as gray blocks. The last column
indicates whether the firewall has detected an incident. Our virtual firewall serves as a proxy
to the actual firewall and predicts the occurrence of security events and incidents Sam might
observe (dark green block) if he deploys the firewall.

with Symantec, we develop the patented Virtual Product framework, the first method to
predict security events and high-severity incidents that would have been identified by a
security product if it had been deployed. This is made possible by learning from the vast
amounts of telemetry data produced by the prevalent defense-in-depth approach to computer
security, wherein multiple security products are deployed alongside each other, producing
highly correlated alert data. By studying this data, we are able to accurately predict which
security alerts a product would have triggered in a particular situation, even though it was
not deployed. See Figure 1.6 for the overview of our approach.

Beyond cybersecurity, I further explored novel applications of Al in various domains that

create positive societal impacts. In collaboration with the Atlanta Fire Rescue Department,
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Figure 1.7: Firebird Framework Overview. By combining 8 datasets, Firebird identifies
new commercial properties for fire inspections. Its fire risk predictive models (SVM, random
forest) and interactive map help AFRD prioritize fire inspections and personnel allocation.

we developed the Firebird framework [11] (Figure 1.7) that helps municipal fire departments
identify and prioritize commercial property fire inspections. Firebird computes fire risk
scores for over 5, 000 buildings in Atlanta, and correctly predicts 71% of fires. Firebird won
the Best Student Paper Award Runner-up at KDD 2016 and was highlighted by National

Fire Protection Association as a best practice for using data to inform fire inspections.

1.2 Thesis Statement

Uniquely combining techniques from Al, cybersecurity, and algorithmic game theory,

enables the development of next-generation strong cybersecurity defenses, contributing to:

1. New theory that guide defense resources allocation to guard against surprise attacks

and catastrophic events;
2. New scalable and robust machine learning algorithms for a variety of threat models;

3. New application of Al on predicting enterprise cyber threats and prioritizing fire

inspections.



1.3 Research Contributions

The goal of this thesis is to develop robust Al, and apply Al to solve security-critical and

high-stakes problems. Our research contributes in multiple facets of Al and cybersecurity.

New Algorithms:
o Our ShapeShifter attack is the first robust targeted attack that can fool a state-of-the-art

Faster R-CNN object detector. (Chapter 3)

e Our SHIELD defense combines image compression and randomization to protect

neural networks from adversarial attacks in real-time. (Chapter 4)

e Our distributed boosting algorithm is simultaneously noise tolerant, communication

efficient, and computationally efficient. (Chapter 7)

New Theories:

e We introduce a new online decision-making setting in game theory where players
are compelled to play “diversified” strategies, and give strong guarantees on both the

price of anarchy and the social welfare in this setting. (Chapter 6)

e Our distributed boosting algorithm requires exponentially less communication com-
plexity in the agnostic setting, solving an open problem in distributed learning [9].

(Chapter 7)

New Applications:

e Our Virtual Product framework (Chapter 8) is the first method to predict security
events and high-severity incidents identifiable by a security product as if it had been

deployed.

e Our Firebird framework (Chapter 9) computes fire risk scores for over 5, 000 buildings

in the city, with true positive rates of up to 71% in predicting fires.
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1.4 Impact
This thesis work has made significant impact to society:

e My thesis ideas in developing theoretically principled, practical techniques to defend

ML-based systems directly contributed to two funded competitive grant awards:

— Our theory-guided decision making framework (Chapter 6) laid the foundation of
the $1.2M medium NSF grant Understanding and Fortifying Machine Learning
Based Security Analytics (NSF CNS 1704701);

— ShapeShifter and SHIELD (Chapter 3) were two highlights of the $1.5M In-
tel “gift” grant for Intel Science & Technology Center for Adversary-Resilient

Security Analytics ISTC-ARSA);

o Our ShapeShifter attack, developed with Intel, reveals serious vulnerabilities for
autonomous vehicles that use pure vision-based input, and was highlighted as the state-
of-the-art physical adversarial attack in the recent DARPA program “Guaranteeing
Al Robustness against Deception” (GARD). Our work appeared in the media ? and
is open-sourced at https://github.com/shangtse/robust-physical-

attack.
e ShapeShifter and SHIELD have been integrated into the Intel AI Academy course.
e Our Virtual Product framework, developed with Symantec, has led to two patents.

e Our Firebird project is open-sourced® and has been used by the Atlanta Fire Rescue
Department to prioritize fire inspections. Firebird won the Best Student Paper Award
Runner-up at KDD 2016 and was highlighted by National Fire Protection Association

as a best practice for using data to inform fire inspections.

’https://techhq.com/2018/10/study-reveals—new-vulnerability-in-self—
driving-cars/
dnttp://firebird.gatech.edu
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e My thesis research on Al-infused security has been recognized by the 2018 IBM PhD

Fellowship.
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CHAPTER 2
SURVEY

Our survey focuses on two important areas of research related to this thesis: security of ML

and applications of ML in cybersecurity.

2.1 Security of Machine Learning

We briefly survey robust machine learning algorithms under various threat models.

Random Classification Noise. This is one of the most basic threat models studied in
classic learning theory [12]. In this setting, the training and testing data come from the same
fixed but unknown distribution. However, the label of each training example presented to the
learning algorithm is randomly flipped with probability 0 < 1 < 1/2. Here we only consider
the binary classification case, and 7 is a parameter called the classification error rate. It is
known that if a training algorithm is in the family of Statistical query (SQ) learning, it can

be converted into a noise-tolerant algorithm in the random classification noise setting [13].

Malicious Noise. This setting is similar to the random classification noise model, where
7 fraction of the training examples are changed by the adversary. The only difference is
that the adversary can arbitrarily change not only the label but also the features of the
training examples, making it a notoriously difficult setting [14]. It has been proved that it is
information-theoretically impossible to learn to accuracy 1 — e if > ¢/(1 + €) [15]. Most
of the positive results require strong assumptions on the underlying data distribution or the
target function [16, 17]. For learning linear separators, the current state-of-the-art method is

developed by Awasthi et al. [18].
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Agnostic Learning. This is the setting that we will study in Chapter 7. In the two
aforementioned settings, with probability 1 — 7 the examples are labeled by an unknown
target function from a known hypothesis set. For example, in the case of learning a linear
classifier, 1 — 7 fraction of the examples are linearly separable, and the remaining examples
are contaminated by random classification noise or malicious noise, respectively. In contrast,
in the agnostic learning setting, we do not make any assumptions on the data distribution nor
the target function [19]. Since the target function may not be from the hypothesis set that
the training algorithm uses, the goal is to achieve accuracy as close to the best hypothesis in

our hypothesis set as possible.

Adversarial Machine Learning. This line of research was first studied by cybersecurity
researchers in applications such as spam filtering [20], network intrusion detection [21],
and malware detection [22]. Depending on the stage at which an attacker can manipulate
data, adversarial attacks can be further categorized into causative attacks and exploratory
attacks [23].

Causative attack, also known as poisoning attack, refers to the setting where the attacker
can manipulate the training data in order to decrease the accuracy on all or a subset of
the test examples. For example, the attacker can add backdoors to a maliciously trained
traffic sign image classifier such that it achieves high overall test accuracy but classifies stop
signs as speed limit signs when a special sticker is attached to the stop sign [24]. Similarly,
one can also train networks for face recognition and speech recognition that only perform
malicious behaviors when a specific “trojan” trigger is presented [25].

In an exploratory attack, also called an evasion attack, the attacker can only change the
test examples to fool a trained ML model. The success of Deep Neural Networks (DNN5s)
in computer vision does not exempt them from this threat. It is possible to reduce the
accuracy of a state-of-the-art DNN image classifier to zero percent by adding imperceptible

adversarial perturbations [2, 26]. Many new attack algorithms have been proposed [27,
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28, 29, 30] and applied to other domains such as malware detection [31, 32], sentiment
analysis [33], and reinforcement learning [34, 35]. In Chapter 3, we demonstrate a new
attack in a slightly different setting called physical adversarial attacks. There have been
various attempts to mitigate the threat of adversarial attacks [4, 36], but immunizing a
DNN model to adversarial attacks remains an open problem and an active research area. In

Chapter 4 and 5, we propose new methods toward this goal.

2.2 Applications of Machine Learning to Cybersecurity

Malware Detection. Traditional anti-malware software depends heavily on signature-
based methods, which use static fingerprints of known malware to detect future malicious
files [37]. However, it can only identify “known” malware for which the signatures have
been created, and hence can be easily evaded by more advanced attacking techniques like
polymorphism and obfuscation [38, 39]. Many machine learning based approaches, using
various feature extraction techniques and learning algorithms, have thus been explored [40,
41, 42, 43]. Reputation-based approaches using graph mining is another popular line of

research [44, 45].

Intrusion Detection System. The main task of an intrusion detection system (IDS) is to
monitor a system’s vulnerability exploits and attacks. Similar to malware detection, early
work on IDS used signature-based approaches [46], which has limited ability to detect
zero-day attacks. Anomaly-based detection models the normal internet traffic or system
behavior using machine learning and data mining methods, and detects deviations from the

baseline behavior [47, 48].

Online Fraudulent Behavior Detection. Al helps many websites provide better services,
but it also creates new vulnerabilities. For example, an adversary can create fake accounts
and write fraudulent reviews to manipulate reputation-based recommendation system. Re-

searchers have used data mining and machine learning techniques to detect fake reviews [49,

15



50], internet bots [51], auction fraud [52], insider trading [53], and credit card fraud [54].
A good defense requires a combination of several techniques such as natural language

processing, graph mining, and time series analysis.
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Part I

Adversarial Attack and Defense of Deep

Neural Networks
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OVERVIEW

Deep neural networks (DNNs), although very powerful, are known to be vulnerable to
adversarial attacks. In computer vision applications, such attack can be achieved by adding
carefully crafted but visually imperceptible perturbations to input images.

The threat of adversarial attack casts a shadow over deploying DNNs in security- and
safety-critical applications, such as self-driving cars. To better understand and fix the
vulnerabilities, there is a growing body of research on both designing stronger attacks and
making DNN models more robust. However, many existing works are “impractical” either
because they assume an unrealistic threat model, or the defense is too computationally
expensive to be used in practice. In Part I of my thesis, we present the following practical

attack and defenses.

o ShapeShifter (Chapter 3) is the first “physical” adversarial attack that fools the

state-of-the-art object detector.

e SHIELD (Chapter 4) is an efficient defense leveraging stochastic image compression

o UnMask (Chapter 5) is a knowledge-based adversarial detection and defense frame-

work.

18



CHAPTER 3
SHAPESHIFTER: ROBUST PHYSICAL ADVERSARIAL ATTACK ON OBJECT
DETECTOR

Given the ability to directly manipulate image pixels in the digital input space, an adversary
can easily generate imperceptible perturbations to fool a Deep Neural Network (DNN) image
classifier, as demonstrated in prior work. In this work, we propose ShapeShifter, an attack
that tackles the more challenging problem of crafting physical adversarial perturbations to
fool image-based object detectors like Faster R-CNN. Attacking an object detector is more
difficult than attacking an image classifier, as it needs to mislead the classification results in
multiple bounding boxes at different scales. Extending a digital attack to the physical world
adds another layer of difficulty, because it requires the perturbation to be robust enough to
survive real-world distortions like different viewing distances and angles, lighting conditions,
and camera limitations. We show that the Expectation over Transformation technique, which
was originally proposed to enhance the robustness of adversarial perturbations in image
classification, can be adapted to the object detection setting. ShapeShifter can generate
adversarially perturbed stop signs that Faster R-CNN consistently mis-detects as other
objects, posing a potential threat to autonomous vehicles and other safety-critical computer

vision systems.

3.1 Introduction

Adversarial examples are input instances that are intentionally designed to fool a machine
learning model into producing a chosen prediction. The success of DNNs in computer vision
does not exempt it from this threat. It is possible to bring the accuracy of a state-of-the-art
DNN image classifier down to zero percent by adding imperceptible adversarial perturba-

tions [2, 26]. The existence of adversarial examples not only reveals intriguing theoretical
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Figure 3.1: Illustration motivating the need of physical adversarial attack, because attackers
typically do not have full control over the computer vision system pipeline.

properties of DNN, but also raises serious practical concerns about their deployment in
security- and safety-critical systems. Autonomous vehicle is an example application that
cannot be fully trusted until DNNs are robust to adversarial attacks. The need to understand
robustness of DNNSs attracts tremendous interest among machine learning, computer vision,
and security researchers.

Although many adversarial attack algorithms have been proposed, using them to attack
a real-world computer vision systems is difficult. First of all, many of these existing attack
algorithms focus on the image classification task, yet for many real-world use cases there
will be more than one object in an image. Object detection, which recognizes and localizes
multiple objects in an image, is a more suitable model for many vision-based real-world use
cases. Attacking an object detector is more difficult than attacking an image classifier, as it
needs to mislead the classification results in multiple bounding boxes at different scales [55].

Further difficulty comes from the fact that a DNN is usually only one component in
a complete computer vision system pipeline. For many applications, attackers do not
have the ability to directly manipulate data inside the pipeline. Instead, they can only
manipulate the things outside of the system, i.e., those things in the physical environment.
Figure 3.1 illustrates the intuition behind physical adversarial attacks. To be successful

attacks, physical adversarial attacks must be robust enough to survive real-world distortions
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like different viewing distances and angles, lighting conditions, and camera limitations.

Prior work can either attack object detectors digitally [56], or attack image classifiers
physically [3, 57, 58]. However, existing attempts to physically attack object detectors
remain unsatisfactory. The perturbed stop sign shown in [59] cannot be detected by the
Faster R-CNN object detector [60]. However, the perturbation is very noticeable. The
authors tested it against a background with poor texture contrast, making the perturbed stop
sign difficult to see even by humans. A concurrent work [61] claims to be able to generate
some adversarial stickers that, when attached to a stop sign, can fool the YOLO object
detector [62] and Faster R-CNN.

In this work, we propose ShapeShifter, the first robust targeted attack that can fool a state-
of-the-art Faster R-CNN object detector. To make the attack robust, we adopt the Expectation
over Transformation technique [63, 64], and adapt it from the image classification task to the
object detection task. As a case study, we created adversarial stop signs that are mis-detected

by Faster R-CNN in real drive-by tests. Our contributions are summarized below.

3.1.1 Our Contributions

e To the best of knowledge, our work presents the first reproducible and robust targeted

attack against Faster R-CNN [55]. We have open-sourced our code on GitHub'.

e We show that the Expectation over Transformation technique [63], originally pro-
posed for image classification, can be adapted to the object detection task and can

significantly enhance the robustness of the resulting perturbation.

e By carefully studying the Faster R-CNN object detector algorithm, we overcome non-
differentiable components in the model, and successfully perform optimization-based

attacks using gradient descent and backpropogation.

e We generate perturbed stop signs that can consistently fool Faster R-CNN in real

'https://github.com/shangtse/robust-physical-attack
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drive-by tests (videos available on the GitHub repository), demonstrating for the need

to improve and fortify vision-based object detectors.

3.2 Background

This section provides background information of adversarial attacks and briefly describes

the Faster R-CNN object detector that we attack in this work.

3.2.1 Adversarial Attacks

Given a trained machine learning model C' and a benign instance z € X’ that is correctly
classified by C, the goal of the untargeted adversarial attack is to find another instance
' € X, such that C(z') # C(zx) and d(z,z’) < € for some distance metric d(-,-) and
perturbation bu