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SUMMARY

While Arti�cial Intelligence (AI) has tremendous potential as a defense against real-

world cybersecurity threats, understanding the capabilities and robustness of AI remains a

fundamental challenge. This dissertation tackles problems essential to successful deployment

of AI in security settings and is comprised of the following three interrelated research thrusts.

(1) Adversarial Attack and Defense of Deep Neural Networks: We discover vulner-

abilities of deep neural networks in real-world settings and the countermeasures to mitigate

the threat. We developShapeShifter, the �rst targeted physical adversarial attack that fools

state-of-the-art object detectors. For defenses, we developSHIELD, an ef�cient defense

leveraging stochastic image compression, andUnMask, a knowledge-based adversarial

detection and defense framework.

(2) Theoretically-Principled Defense via Game Theory and ML: We develop new

theories that guide defense resources allocation to guard against unexpected attacks and

catastrophic events, using a novel online decision-making framework that compels players

to employ “diversi�ed” mixed strategies. Furthermore, by leveraging the deep connection

between game theory and boosting, we develop a communication-ef�cient distributed

boosting algorithm with strong theoretical guarantees in the agnostic learning setting.

(3) Using AI to Protect Enterprise and Society: We show how AI can be used in real

enterprise environment with a novel framework calledVirtual Productthat predicts potential

enterprise cyber threats. Beyond cybersecurity, we also develop theFirebird framework to

help municipal �re departments prioritize �re inspections.

Our work has made multiple important contributions to both theory and practice: our

distributed boosting algorithm solved an open problem of distributed learning;ShaperShifter

motivated a new DARPA program (GARD);Virtual Productled to two patents; andFirebird

was highlighted by National Fire Protection Association as a best practice for using data to

inform �re inspections.
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CHAPTER 1

INTRODUCTION

Internet-connected devices, such as mobile phones and smart home systems, have become

ubiquitous in our everyday lives. The increased connectivity also presents new cybersecurity

challenges and creates signi�cant national risks. The number of cyber incidents on federal

systems reported to the U.S. Department oF Homeland Security increased more than ten-fold

between 2006 and 2015 [1].

To defend against these daunting and ever-increasing attacks, arti�cial intelligence (AI)

and machine learning (ML) have been explored and employed by cybersecurity researchers

and practitioners. However, even today, researchers have not yet fully understood the

complex ML models and their capabilities in solving various real-world tasks. The goal

of this thesis is to gain a deeper understanding of the capabilities and limitations of AI

in security-critical tasks, so that we can develop resilient AI-powered next-generation

cybersecurity defenses.

1.1 Thesis Overview and Main Ideas

Many cybersecurity scenarios can be modeled as a

game between the defender and the attacker. To de-

sign the best security solution, we need to fully un-

derstand the capabilities and limitations from both the

defense and attack point of views, and how they in-

teract with each other. Recent advances in AI provide

great opportunities to fortify security-critical applications. However, AI may also pose new

threats and challenges. To solve these challenges, my research innovates at the intersection

of AI, cybersecurity, and algorithmic game theory. My thesis includes three parts of research,
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spanning the theory and application parts of cybersecurity. I make contributions to both the

defensive and attacking sides of cybersecurity. Table 1.1 provides a brief overview of my

dissertation.

Table 1.1: Thesis outline, and publications contributing to each part.

Part I: Adversarial Attack and Defense of Deep Neural Networks (Chapter 3, 4, 5)

x ShapeShifter: Robust Physical Adversarial Attack on Faster R-CNN Object Detector.

Shang-Tse Chen, Cory Cornelius, Jason Martin, Duen Horng Chau. InProceedings of the European
Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases
(ECML-PKDD), 2018.

x Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression.

Nilaksh Das, Madhuri Shanbhogue,Shang-Tse Chen, Fred Hohman, Siwei Li, Li Chen, Michael
E. Kounavis, Duen Horng Chau. InProceedings of the ACM SIGKDD Conference on Knowledge
Discovery and Data Mining (KDD), 2018.

x Extracting Knowledge For Adversarial Detection and Defense in Deep Learning.

Scott Freitas,Shang-Tse Chen, Duen Horng Chau. InKDD 2019 Workshop on Learning and Mining
for Cybersecurity (LEMINCS), 2019.

Part II: Theoretically-Principled Defense via Game Theory and ML (Chapter 6, 7)

x Diversi�ed Strategies for Mitigating Adversarial Attacks in Multiagent Systems.

Maria-Florina Balcan, Avrim Blum,Shang-Tse Chen. In Proceedings of the International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2018.

x Communication Ef�cient Distributed Agnostic Boosting.

Shang-Tse Chen, Maria-Florina Balcan, Duen Horng Chau. InProceedings of the International
Conference on Arti�cial Intelligence and Statistics (AISTATS), 2016.

Part IV: Applying AI to Protect Enterprise and Society (Chapter 8, 9)

x Predicting Cyber Threats with Virtual Security Products.

Shang-Tse Chen, Yufei Han, Duen Horng Chau, Christopher Gates, Michael Hart, Kevin Roundy. In
Proceedings of the Annual Computer Security Applications Conference (ACSAC), 2017.

x Firebird: Predicting Fire Risk and Prioritizing Fire Inspections in Atlanta.

Michael Madaio,Shang-Tse Chen, Oliver Haimson, Wenwen Zhang, Xiang Cheng, Matthew Hinds-
Aldrich, Duen Horng Chau, and Bistra Dilkina. InProceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining (KDD), 2016.
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Figure 1.1: My work on physical adversarial attack discovers a serious vulnerability of
DNNs in a more realistic threat model where the attacker does not need to have control over
the internal computer vision system pipeline. The crafted physical adversarial objects (e.g.,
fake stop signs) can fool the state-of-the-art object detectors.

1.1.1 PartI: AdversarialAttackandDefenseof DeepNeuralNetworks

Recent advances in deep neural networks (DNNs) have generated much optimism about

deploying AI in safety-critical applications, such as self-driving cars. However, it has

recently been discovered that given the ability to directly manipulate image pixels in the

digital input space, an adversary can easily generate imperceptible perturbations to fool a

DNN image classi�er [2].

Although many adversarial attack algorithms have been proposed [3, 4], attacking

a real-world computer vision system is dif�cult, because attackers usually do not have

the ability to directly manipulate data inside such systems (Figure 1.1). To understand

the vulnerabilities of DNN-based computer vision systems, I collaborated with Intel and

developedShapeShifter[5], the �rst targeted physical adversarial attack on the state-

of-the-art Faster R-CNN object detectors.

Attacking an object detector is more dif�cult than attacking an image classi�er, as the

attack needs to mislead the classi�cations of multiple bounding boxes at different scales.

Extending a digital attack to the physical world adds another layer of dif�culty; this requires

the perturbation to be suf�ciently robust to survive real-world distortions due to different
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Figure 1.2: Snapshots of a drive-by test result. The real stop sign is correctly predicted by
Faster R-CNN with high con�dence. The adversarial stop sign crafted byShapeShifteris
detected as the target class “person.”

viewing distances and angles, lighting conditions, and camera limitations.

ShapeShiftergenerates adversarial stop signs that were consistently mis-detected by

Faster R-CNN as the target objects in real drive-by tests (Figure 1.2), posing a potential

threat to autonomous vehicles and other safety-critical computer vision systems. Our code

is open-sourced and the drive-by test videos are publicly available1. ShapeShifterwas

highlighted as the state-of-the-art physical adversarial attack in the recentDARPA

program “Guaranteeing AI Robustness against Deception” (GARD)that focuses on

defending against such kind of attacks.

Although there have been many attempts to mitigate adversarial attacks, completely

protecting a DNN model from adversarial attacks remains an open problem. Most methods

suffer from signi�cant computational overhead or sacri�ce accuracy on benign data. In

collaboration with Intel, we developedSHIELD [6], a practical defense leveraging stochastic

compression that removes adversarial perturbations.SHIELD makes multiple positive

impacts on Intel's research and product development plans. Utilizing Intel's Quick Sync

Video (QSV) technology with dedicated hardware for high-speed video processing, we

pave the way for real-time defense in safety-critical applications, such as autonomous

vehicles. Our research sparked insightful discussion at Intel aboutsecure deep learning

that necessitates tight integration of practical defense strategies, software platforms, and

hardware accelerators. Our work will accelerate the industry's emphasis on this important

1https://github.com/shangtse/robust-physical-attack
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Figure 1.3: UnMaskcombats adversarial attacks (in red) by extractingbuilding-block
knowledge(e.g.,wheel) from the image (top, in green), and comparing them to expected
features of the classi�cation (“Bird” at bottom) from the unprotected model. Low feature
overlap signals attack.UnMaskrecti�es misclassi�cation using the image's extracted
features. Our approachdetects92.9% of gray-box attacks (at 9.67% false positive rate) and
defendsthe model by correctly classifying up to 92.24% of adversarial images crafted by
the strongest attack, Projected Gradient Descent.

topic. BothShapeShifterandSHIELDhave been incorporated intoMLsploit [7], an open-

sourced ML evaluation and forti�cation framework designed for education and research.

These two works are also part of theIntel AI Academy course.

Shieldis best suited for defending against imperceptible perturbations. To defend against

ShapeShifter-style attacks, we developedUnMask, a knowledge-based adversarial detection

and defense framework.UnMaskprotects models by verifying that an image's predicted

class (e.g., “bird”) contains the expected building blocks (e.g., beak, wings, eyes). For

example, if an image is classi�ed as “bird”, but the extracted building blocks arewheel,

seatandframe, the model may be under attack. WhenUnMaskdetects such attacks, it

can rectify the misclassi�cation by re-classifying the image based on its extracted building

blocks (Figure 1.3).
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