
Heuristic Search of Optimal Reduction Schedule in

Heterogeneous Cluster Environments

Pangfeng Liu Tzu-Hao Sheng

Chih-Hsuae Yang

Department of Computer Science and Information Engineering

National Chung Cheng University

Chiayi, Taiwan, R.O.C.

fpangfeng,sth88,ych88g@cs.ccu.edu.tw

Abstract

Network of workstation (NOW) is a cost-

e�ective alternative to massively parallel super-

computers. As commercially available o�-the-

shelf processors become cheaper and faster, it is

now possible to build a PC or workstation clus-

ter that provides high computing power within a

limited budget. However, a cluster may consist of

di�erent types of processors and this heterogene-

ity within a cluster complicates the design of ef-

�cient collective communication protocols, and it

is a very hard combinatorial problem to design an

optimal reduction protocol. Nevertheless, we show

that a simple exchange lemma can greatly reduce

seraph space so that we can �nd the optimal solu-

tion e�ciently. Combined with standard branch-

and-nound technique the search space is reduced to

be less than one percent of original size for most

practical cluster size.

1 Introduction

Network of workstation (NOW) is a cost-e�ective

alternative to massively parallel supercomput-

ers [2]. As commercially available o�-the-shelf

processors become cheaper and faster, it is now

possible to build a PC or workstation cluster

that provides high computing power within a lim-

ited budget. High performance parallelism is

achieved by dividing the computation into man-

ageable subtasks, and distributing these subtasks

to the processors within the cluster. These o�-the-

shelf high-performance processors provide a much

higher performance to cost ratio so that high per-

formance cluster can be built inexpensively. In

addition, the processors can be conveniently con-

nected by industry standard network components.

For example, fast ethernet technology provides up

to 100 mega bits per second of bandwidth with in-

expensive fast ethernet adaptors and hubs.

In parallel to the development of inexpensive

and standardized hardware components for NOW,

system software for programming on NOW is

also advancing rapidly. For example, the Mes-

sage Passing Interface (MPI) library has evolved

into a standard for writing message-passing par-

allel code [4, 5, 1]. An MPI programmer uses

a standardized high-level programming interface

to exchange information among processes, instead

of native machine-speci�c communication library.

An MPI programmer can write highly portable

parallel code and run it on any parallel machine

(including network of workstation) that has MPI

implementation.

Most of the literature on cluster computing em-

phasizes on homogeneous cluster { a cluster con-

sisting of the same type of processors. However,

we argue that heterogeneity is one of the key is-

sue that must be addressed in improving paral-

lel performance of NOW. First it is always the

case that one wish to connect as many proces-

sors as possible into a cluster to increase paral-

lelism and reduce execution time. Despite the

increased computing power, the scheduling man-

agement of such a heterogeneous network of work-

station (HNOW) becomes complicated since these

processors will have di�erent performance in com-

putation and communication from one another.

Secondly, since most of the processors that are

used to build a cluster are commercially o�-the-

shelf products, they will very likely be outdated

by faster successors before they become unusable.

Very often a cluster will consist of \leftovers" from

the previous installation, and \new comers" that

are recently purchased. The issue of heterogeneity

is both scienti�c and economic.

Any workstation cluster, be it homogeneous or

heterogeneous, requires e�cient collective com-

munication [3]. For example, a barrier synchro-

nization is often placed between two successive

phases of computation to make sure that all pro-



cessors �nish the �rst phase before anyone goes

to the next. In addition, a scatter operation dis-

tributes input data from the source to all the other

processors for parallel processing, then a global re-

duction operation combines the partial solutions

obtained from individual processors into the �nal

answer. The e�ciency of these collective commu-

nication will a�ect the overall performance, some-

times dramatically.

Heterogeneity of a cluster complicates the de-

sign of e�cient collective communication proto-

cols on it. When the processors send and receive

messages at di�erent rates, it is di�cult to syn-

chronize them so that the message can arrive at

the right processor at the right time for maximum

communication throughput. On the other hand,

in homogeneous NOW every processor requires

the same amount of time to transmit a message.

For example it is straightforward to implement

a reduction operation as a series of sending and

receiving messages, and in each phase we reduce

the number of processors that have received the

combined result from other processors. In a het-

erogeneous environment it is no long clear how we

should proceed to complete the same task.

It is a very hard optimization problem to �nd an

optimal reduction schedule for heterogeneous clus-

ters. In practice we often resort to dynamic pro-

gramming or branch-and-bound search[3]. This

paper shows that a simple technique called pro-

cessor exchange is very e�ective in reducing the

number of nodes we have to search in the branch-

and-bound process. In addition, we introduce a

simple slowest-node-�rst schedule which, despite

that it does not guarantee optimality, performs

reasonably well in practice.

The rest of the paper is organized as follows.

Section 2 describe the communication model in

our treatment of reduction problem in HNOW.

Section 3 describes the concept of earliest possible

schedule and Section 4 describes a slowest-node-

�rst heuristic for reduction in heterogeneous clus-

ter. Section 5 states the exchange lemma, Sec-

tion 6 shows the experimental results, and Sec-

tion 7 concludes.

2 Communication Model

The communication model is de�ned as follows.

The system consists of a set of n processors

fp0; :::pn�1g, each is capable of direct point-to-

point communication to one another. A processor

pi is characterized by its transmission time t(pi),

i.e. the time it takes for pi to send a message to

any other processor.

In order to make the communication model re-

alistic, we further assume that two communica-

tions cannot overlap, i.e. neither the sender nor

the receiver can engage in any other communica-

tion at the same time. This assumption is based

on that in practice most of the workstation clus-

ters are connected by non-share-able communica-

tion media, like ethernet. As a result, the algo-

rithms designed under this model will be useful in

practice.

Based on the communication model, we de�ne

the reduction problem. Suppose each processor

in the system has an unit of information, and we

would like to combine all these informations into

the �nal answer, how do we schedule the proces-

sors so that the reduction takes the least amount

of time? For example, each processor may have

a number and we want compute the total sum

of these numbers by message passing. For a ho-

mogeneous system a simple tree algorithm can be

used so that during each iteration half of the pro-

cessors send their information to the other where

the information will be combined. The algorithm

takes logn rounds to combine all the informations

since the number of active processors reduces by

half per iteration. However, due to the variance

in communication speed, this algorithm cannot

guarantee minimum reduction time.

We formally de�ne the reduction as a schedul-

ing problem. We observe that during the reduc-

tion process exactly n�1 messages will be sent by

n� 1 di�erent processors. As a result the slowest

processor should not send any message { instead it

should only receive message and compute the �nal

reduction result. Based on this observation, we

de�ne a reduction schedule as mapping function

from a processor to the time that it starts send-

ing its message. Formally we de�ne the scheduling

function s so that for any processor p1, p starts

and completes sending its message at time s(p)

and s(p) + t(p) respectively. The interval [s(p),

c(s; p)] is de�ned as the transmission window of

p, where c(s; p) = s(p) + t(p) is the completion

time of p under a schedule s.

Due to the constraint that a processor can par-

ticipate a single communication at any given time,

we must distinguish valid schedule from invalid

ones. To formalize this constraint, we de�ne two

sets of processors for any schedule at any given

time. Let A(s; t) be the number of processors

that are still actively sending their messages, and

C(s; t) be the number of processors that have

completed sending their messages at time t un-

der schedule s.

1Except the slowest processor, which does not send any

message.



A(s; t) = jfpijs(pi) � t < c(s; pi)gj

C(s; t) = jfpijt � c(s; pi)gj

2A(s; t) + C(s; t) � n (1)

A schedule function s is valid if and only if for

all time t Inequality 1 is true. The inequality

means that at any time t, the total number of

senders and receivers, and those processors that

have sent out their messages, should not be more

than the number of processors in the system. Fig-

ure 1 show a valid schedule and the corresponding

A and C functions.

0C

2A

543

2

1 2 6

4 2 4 4 2 0

B

E

C

D

F

G

time

Figure 1: An valid schedule example showing the

A and C functions. The system consist of seven

processors { indicated by the uppercase letters

from A to G. The transmission time for these

seven processors are 10, 5, 5, 5, 4, 2, 2, respec-

tively.

3 Earliest-Possible Schedule

This section describe a technique called earliest

possible scheduling that can \normalize" all the

possible valid schedules. We use this canonical

form to simplify the discussion of �nding the op-

timal schedule.

An earliest possible (EP) schedule is one in

which all the communication are initiated as ear-

lier as possible. A new communication can be

initiated as soon as the number of free processors

reaches 2 { one for the sender and one for the

receiver.

Note that it is trivial to convert any valid sched-

ule into an EP schedule without increasing the

total time { we just move the transmission win-

dow of each processor as early as possible. As a

result EP schedule servers as a canonical form in

which we will limit our search of optimal schedule.

Since the EP algorithm can completely determine

a schedule once the order of processors in the se-

quence P is �xed, we only have to consider up

to (n� 1)! di�erent schedules. Figure 2 shows the

EP schedule that is converted from the schedule in

Figure 1, and Figure 3 shows that the algorithm

EP will assign non-decreasing start time to the

processors in the order they appear in the input

processor sequence P .

0C

2A 4 4

2 3 4 5 6

6 2 2 0

G

F

C

E

B

D

time

Figure 2: The EP schedule converted from the

schedule in Figure 1

Algorithm EP(P)

{

i = 1

time = 0

free = the number of processors in P

Active = empty set

Complete = empty set

while (i <= n-1)

do while free >= 2

set time to be the start time of

the ith processor in P;

add P_i into Active;

i = i + 1;

free = free - 2;

find the processor p among Active that

has the smallest completion time;

time = the completion time of p;

move q from Active to Complete;

free = free + 1;

}

Figure 3: The earliest possible scheduling algo-

rithm.

4 Slowest-Node-First

Scheduling

We introduce a simple scheduling method called

slowest-node-�rst (SNF) for the reduction prob-

lem. SNF simply sorts the processors in P in

non-increasing order, and give the sorted sequence

P = (p1; p2; :::pn�1)
2 to algorithm EP . In the

2t(pi) � t(pj) if i < j



next section we show that this simple technique is

very e�ective in obtaining a good reduction sched-

ule. Figure 4 shows the slowest-node-�rst schedule

with the same cluster as in Figure 2.

G

0 4C

62A 2

3

4

5 6

2 0

0 4C

62A 2

3

4

5 6

2 0

G

F

E

D

C

B

time

Figure 4: Slowest-node-�rst scheduling result

from the same cluster as in Figure 1 and 2.

The rational of having the slowest processors

to send message �rst is as follows. At the begin-

ning of the reduction process, we would like to

overlap as many communication as possible. In-

tuitively we let all the slow processors send �rst

so that they will overlap with each other, instead

of having to wait for each other at the end of the

reduction.

5 Exchange Lemma

This section describe the exchange lemma that

clari�es our intuition that slow processors should

send �rst, as we did in SNF scheduling.

2A+C 2 3 23

pq

2A+C 2 3 22

p q

s

s’

time

Figure 5: An illustration on the contribution to

the sum of C and 2A.

Lemma 1 Let s be a valid schedule that s(p) =

c(s; q), i.e. p starts right after q ends. If t(p) >

t(q) then we can exchange p and q so that the

modi�ed schedule s
0 in which s

0(p) = s(q) and

s
0(q) = c(s0; p), is also valid.

Proof. From Figure 5 we observe that the con-

tribution of Pi and Pj to the sum of C and A

functions is always higher in s than in s
0, there-

fore if s can satisfy Ineqality 1, so can s
0.

From Lemma 1 it follows immediately that in

the search of optimal reduction schedule we can

neglect those schedules that have a slower sender

p waiting for any faster processor q to complete.

There are two cases to consider. First if s(p) =

c(s; q) then by Lemma 1 we can switch p and q.

On the other hand, if there is a gap between the

transmission window of p and q, then we can de-

lay the transmission of q so that it ends right

where p starts. We can do so because there is

no new transmission initiated between s(p) and

s(q)+ t(q). As a result we will consider only those

schedules that all the senders wait for slower pro-

cessors only.

Corollary 1 There exists an optimal schedule

such that every processor waits for slower proces-

sors only.

Figure 6 shows a counterexample that SNF al-

ways gives optimal reduction time, even in a sim-

ple cluster consisting of two types of processors.

This cluster has 4 slow processors with transmis-

sion time x, and 8 fast processors with transmis-

sion time 1. The alternative schedule requires

2x + 1 time when 1:5 � x < 2, or 4 when

1 < x < 1:5. In contrast SNF requires x + 3

time for both cases, and has a longer reduction

time for for all x between 1 and 2.

6 Experimental Results

As we describe in Section 3, any valid schedule

can be converted into a earliest possible schedule,

which in turn can be described by a processor se-

quence. As a result we can �nd an optimal reduc-

tion schedule among the (n�1)! possible processor
sequences, where n is the number of processors in

the cluster. However, (n�1)! is quite a large num-

ber and we apparently cannot try all of these per-

mutations for practical value of (n�1)!, even by a

straightforward branch-and-bound procedure. To

overcome this problem, we show that by using the

exchange lemma (Lemma 1) we can dramatically

reduce the search space.

We use three techniques to reduce the number

of processor sequences we have to consider. First



time

SNF

schedule
Alternative

Figure 6: A counterexample that SNF always

gives optimal reduction time in a cluster consist-

ing of two types of processors.

of all, we examine the sequences in such an order

that those sequences with slower processors ap-

pearing �rst will be examined �rst. Formally we

de�ne the priority of a sequence to be the num-

ber processors that have longer transmission time

than the next processor in the sequence. In other

words, the slowest-processor-�rst schedule has the

highest priority, and will be considered �rst.

The second technique is to apply the exchange

lemma so that we do not have to examine all the

permutations. Note that by Lemma 1 one we �nd

that a slower processor has to wait for a faster

processor, we can stop the search at that subtree

immediately. Notice that it is possible for several

senders to complete simultaneously so that more

than one processor can start at the same time.

In that case if any sender is faster than any of

those processor that can start when the sender

completes, then we can drop this partial solution,

and dramatically reduce the search space. Also

notice that from the exchange lemma it is trivia

to argue that the last sender must be the fastest

processor in the system. That makes the total

possible permutation to be (n� 2)!

Finally, we use generic branch-and-bound tech-

nique to traverse the search tree. If the time of

a partially examined sequence is already larger

than the current optimal sequence, then the entire

subtree is pruned. This technique is most e�ec-

tive when the di�erence among processor speed is

large.

The input cluster con�gurations are generated

as follow. We assume that the number of classes

in a cluster is between 3 and 6. This assumption is

practical since processors are usually purchased in

batches. For a given class number, we build their

relative communication speed into a table. Then

we vary the cluster size from 6 to 16. Each pro-

cessor will randomly pick a communication speed

from that speed table. For each cluster size we

repeat the experiments for 50 times and compute

the average number of tree nodes the algorithm

has to search in order to �nd the optimal solu-

tion.

We quantify the search e�ciency of our algo-

rithm as follows. For a naive algorithm that scan

through all the possible permutations, it has to

go over P =
(n�1)!

m1!m2!:::mk!
permutations, where n is

the number of processors and mi is the number of

processors in the ith class among the k di�erent

processor classes. For an algorithm that scans p

solutions before �nding the optimal one, we de�ne

search e�ciency to be 1� p

P
. As indicated by Ta-

ble 1, our algorithm has extremely high e�ciency,

especially for large cluster sizes. In addition, for

cluster with more than 16 processors, the naive

algorithm will simply take too much time, while

our algorithm can still �nd the optimal solution

e�ciently.

processor # classes number

3 4 5 6

6 53.22 56.48 58.36 63.82

7 64.28 72.74 77.41 71.38

8 71.28 79.24 82,26 84.18

9 86.78 91.88 93.33 94.48

10 89.99 93.80 94.70 96.42

11 94.32 96.84 97.29 98.71

12 94.62 97.58 97.48 98.82

13 96.40 98.63 99.09 99.62

14 96.78 98.64 99.40 99.65

15 97.70 99.45 99.84 99.83

16 98.21 99.51 99.84 99.96

Table 1: E�ciency of the search algorithm.

7 Conclusion

This paper shows that a simple exchange lemma

can greatly reduce seraph space so that we can e�-

ciently �nd the optimal reduction schedule within

a heterogeneous environment. Combined with

standard branch-and-bound technique the search

space is reduced to be less than one percent of

original size for most practical cluster size.

It will be interesting to extend this technique to

other communication protocols and models. For

example, in our model the communication time is

determined completely by the sender. In a more



complex model the communication time may be

determined by both the send and the receiver. In

addition, in a switch-based multi-port system a

processor may participate up to a small number of

communication simultaneously. These questions

are very important in designing collective commu-

nication protocols in heterogeneous clusters, and

will certainly be the focus of further investigations

in this area.

References

[1] Message Passing Interface Forum. Mar 1994.

[2] T. Anderson, D. Culler, and D. Patterson. A

case for networks of workstations (now). In

IEEE Micro, Feb 1995.

[3] M. Banikazemi, V. Moorthy, and D.K. Panda.

E�cient collective communication on hetero-

geneous networks of workstations. In Proceed-

ings of International Parallel Processing Con-

ference, 1998.

[4] J. Bruck et al. E�cient message passing inter-

face(mpi) for parallel computing on clusters

of workstations. Journal of Parallel and Dis-

tributed Computing, Jan 1997.

[5] W. Gropp, E. Lusk, N. Doss, and A. Skjel-

lum. A high-performance, portable implemen-

tation of the mpi: a message passing interface

standard. Technical report, Argonne National

Laboratory and Mississippi State University.


