
Pangfeng Liu, Department of Computer Science and Information Engineering, National Taiwan University.

Communication Optimization
for Parallel Processing

Lecture 2



Distributed Memory Model

Each processor has its own memory, which
cannot be seen by other processors.
The processors are connected by an

interconnection network. For the time being,
we assume that the interconnection network
provides point-to-point data transmission.



Interconnection Network

Processor

Memory



Cluster Computing

Cluster computing is a cost-effective way to provide
high performance with limited costs.

A cluster can be viewed as “poor man’s parallel
machines”.

If the processors has different communication and
computation capability, the cluster is heterogeneous;
otherwise it is homogeneous.

Heterogeneity introduces additional complication
into distributed memory computation.



Heterogeneity

A heterogeneous cluster imposes challenge in
the following issues.
Workload balancing
Collective Communication



Data Partitioning

 One of the most important issues in distributed
memory parallel computing is the partition of data.

 Two issues in data partitioning
 Data locality
 Load balancing

 Data locality indicates the easy of access for a
processor to its data. Since now there is no shared
memory, data must be distributed among
processors.



Local and Remote Data

The local data are with the processor’s local
memory.
The remote data are located in the memory of

some other processors.
The latency of accessing remote data is

tremendous.



Load Balancing

 To distribute the data/work evenly among
processors.

 There are two measurements of this
criterion.
 The number of data assigned to each processor

is roughly the same.
 The amount of computation of each processor is

roughly the same.



Interconnection Network

Processor

Memory



Data Locality and Load Balancing

 To put all data in one processor has the
highest data locality, but load is not
balanced.

 To randomly distribute the data to
processors produces balanced load, but
loses all data locality.



Graph Relaxation

Compute the attributes of a pixel with the
attributes of the neighbors of this pixel.



Data Partitioning for Graph
Relaxation

 The data should be distributed to processors
in contiguous blocks, not fragments.

 Partitioning methods for arrays.
 Row partition
 Column partition
 Round-robin partition
 Block partition



Partitioning Issues

 Data locality
 To have good data locality, data next to each other

should be assigned to the same processor as much as
possible.

 Load balancing
 To have balanced load, the processors should be

assigned the same number of rows, columns, or blocks,
depending on the partitioning method used. The data
may be duplicated before the computation starts.



Remote Data Access

 To collect all the data beforehand so that the
computation is not slowed down by the
computation.

 The simplest form is to duplicate the
boundary data before computation.



Remote Data Access

 Inspector and executor approach
 The inspector “test-run”an application to know

the remote data access pattern, and produces a
schedule so that the runtime system can retrieve
the remote data.

 The executor, after gathering all the essential
data, can proceed to perform computation.



Matrix Multiplication

 Due to the nature of matrix multiplication, it
seems natural that in the multiplication of A
X B, A should be row partitioned, and B
should be column partitioned.



Matrix Decomposition

How to partition A, B, and C into 4
processors?

A CB

 =



Owner-Computes Rule

 The owner of a data compute the new value.
 By assigning the same number of data to

each processor we can have the additional
benefit that computation is also evenly
distributed.

 A more nature approach since additional
data transmission is unnecessary.



Message Passing

 Distributed memory machines use message
passing for the following purposes.
 Transmission of data
 Synchronization



Message Passing Costs

The latency of message passing incurs much
higher costs than shared memory; therefore it
is vital to reduce the amount of
communication.
This is major reason we have this course.

The goal of reducing remote data access (i.e.,
communication) coincides with the objective
of data locality.



Message Passing Library

The message-passing library is very similar to
network communication. In fact many message-
passing libraries are built on top of TCP/IP.

Message-passing programming is not as intuitive as
shared memory, but it has the advantage that no
processors will update the same data, so no
synchronization on data access is required.

Due to the phased nature, either due to collecting
data or heterogeneity of processors, synchronization
is often required.



Parallel Prefix

 The prefix operation is that when given a
sequence xi, compute si so that si = x0 op x1 …op
xi-1

 When the op is addition, the prefix operation
computes partial sums for the entire sequence of
numbers.

 Prefix is easily computed in O(n) sequentially.
 Parallel prefix is to compute prefix in parallel.



Application

When a sparsely occupied array wants to be
compacted, the new index can be computed
from prefix, where each occupied cell has an
x to be 1, and an empty one 0.



A Naïve Algorithm

Each processor computes an s value has time
complexity O(n) and cost O(n2), clearly not a
work optimal solution.



A Better Algorithm

Receive data from the neighbor that is 2i to
your left, and combine it with your own data.
Repeat the process for log N times while

increasing i by 1 for each iteration.



Caveat

 The operator must be associative.
 (A op B) op C is equal to A op (B op C).

 All the sends must synchronize with the
receives.



A Cost Optimal Algorithm

 Use only n/log n processors, so each processor
handles log n data.

 Each processor computes the prefix for the data it
has.

 All processor collectively compute the prefix
using the last prefix result from the previous step.

 Each processor “patches”the prefix result into the
final answers.



An Illustration



Analysis

The total time is O(log n).
Computation
O(log n)

Communication
O(log n)

Cost is optimal.



Numerical Integration

 The domain is partitioned into segment so
that each processor is responsible for
computing the integral of a segment.

 Finally the answer is sent from each
processor to be summed up.



Issues

Each processor must know the starting and
end points of its segment.
The error can be controlled by a method

called adaptive quadrature, which doubles the
number of sub-intervals if the results from
two successive integrations differ more than a
predefined error bound.



N-body Method

 Gravitational N-body problem computes the
interaction among N particles in space.



Approximation

 A direct method requires N2 interaction and is not
computational possible for large problem sizes.

 An approximate method uses the center of mass to
approximate the effect of a cluster, and can reduce
the time complexity to NlogN (for uniform
distribution).

 The approximation can be applied only when the
cluster is very far way from where the effect is
measured.


