Communication Optimization for Parallel Processing

Lecture 1

Pangfeng Liu, Department of Computer Science and Information Engineering, National Taiwan University.

Importance of Parallel Processing

- The users demand solution for larger problems with faster turnaround time.
- Weather forecast, military simulation, computational physics.
- The Google search engine consists of thousand of computers.
- The deep blue and deep thought also used parallel processing techniques.

Parallel Computing

- Having multiple processors working simultaneously on a problem. The processor work collectively to solve the single problem. Usually for the maximum performance.
- **Temporal concurrency**.

Distributed Computing

- Having multiple systems working in different places, usually for reliability purposes, or when the data the system needs to process are scatter in different geographical regions.
- **General Section Section**

Adding Numbers Together

A simple experiment
There are 200 numbers to be added.
How to add them in the least amount of time?

Speedup

- □ The ratio between the parallel time and the sequential time.
- The sequential time must be the best possible.
- How to improve your speedup?
 - □ Make your parallel version faster.
 - □ Make your sequential version slower. ?

Efficiency

The speedup divided by the number of processor.

- □ A measure of "how are doing in parallel".
- The efficiency is always between 0 and 1.Why is that?

Cost

The product of parallel time and number of processors

A measurement of "how much resource we have put in".

Emulation of Parallel Algorithms

Use a sequential method to emulate the behavior of a parallel algorithm.

- We emphasize that the computation for the speedup must be from the "best possible sequential algorithm".
- □ If that is the case, we cannot have super linear speedup.

Upper Bound Analysis

- □ How fast we know we can do it.
- **Usually derived from an algorithm.**
 - There exists an algorithm so that for all inputs the running time/space used is bounded by a function of the input size.
- **Usually in big-O notation.**

Lower Bound Analysis

- How much time we know we must spend in order to do it
- Usually derived from mathematical analysis/adversary arguments.
- □ For every algorithm, there exists an input such that the algorithm must use X amount of resource in order to solve it.
- **Usually in Omega notation**

An Example

How much time do we need to find the largest number among N integers?
Use "the number of comparison" as the cost metric.

- Upper bound is?
- Lower bound is?

Another Example

Add N numbers together in *parallel*.
How do we improve
The execution time?
The efficiency?

Tree Method

- Using 2n-1 processors as a complete binary tree.
- □ The computation takes log n in time.
- □ The cost is O(nlogn).

A Better Tree Method

- Use $2(n/\log n) 1$ processors to form a tree.
- Each leaf has log n numbers to add, then it passes the result up the tree as before.
 - **Computation**
 - $\Box \quad O(\log n) \text{ time}$
 - Communication
 - $\Box \quad O(\log n) \text{ time}$
- $\Box \quad \text{The time is } O(\log n) \text{ time.}$
- $\Box \quad \text{The cost is } O(n).$

A Equally Good Algorithm

Using 1 processor takes O(n) time.
The cost is O(n).

A sequential algorithm indeed.

Optimal in What Sense?

Now we have three algorithms to choose from.
Time optimal
Cost optimal
Programming effort optimal

Model of Parallel Computation

Distributed Memory Machines
Shared Memory Machines
Computation Network

Distributed Memory

- Processors are connected loosely by an "interconnection network".
- Each processor has its own memory.
- Processors communicate by message passing.
- The minimization of communication cost is the most important issue.
- The topology of the interconnection network is very application-dependent.

Shared Memory

- Processors are connected by a shared-memory.
- The processors can communicate by sharedmemory since one processor can see the changes made in the global memory by other processors.
- The memory access conflict is the most important issue.

Computation Network

- Hardwired connection for a dedicate purpose.
- Specially designed hardware for a special computation.
 - **FFT**
- Sorting and permutation networks

