Lecture Note 6 for “Programming Languages”

Instructor: Pangfeng Liu

8 Statement-Level Control Structures

This chapter discusses flow control at the statement-level, which is between the subprogram-level (function calls) and openand-level (evaluation sequencing).

8.1 Introduction

· Two necessary ingredients are necessary for controlling the program execution sequence so that it perform useful computation – selecting a execution sequence among several possibilities, and repeat a sequence of statements for a number of times. These are called control statements in general.

· At the early stage of computer programming, programmer must adapt to the machines, so the control statements are designed simply to reflect the hardware reality, and readability and writability were not concerned. Instruction design was far more important than language design.

· Anything that can be represented by a flowchart can be implemented by selection and repeat ion only. All the other added control statements are added for the sake of readability and writability, and goto is completely unnecessary. However, more control statements could make the program hard to read.

8.2 Compound Statements

· A compound statement glues a sequence of statements together as a unit. This improves the writability of having a set of statements being controlled by a control structure.

· A block also groups statement together, and it could have its own local variables.

· A compound statement should have one entry and one exit only. Sometimes multiple entries through goto is possible, but this is not recommended since it ruins readability.

8.3 Selection Statements

A selection statement chooses the execution sequence among several possibilities. It could be two-way (two alternatives) or n-way (more than two possibilities).

8.3.1 Two-Way Selection

8.3.1.1 Design Issues

· What is the format of the condition that controls which way the control will go?

· What could be the alternatives?

· How to determine the exact semantics if selections are nested?

8.3.1.2 Examples

· Fortran IV uses a Boolean condition to determines whether a single statement should be executed, hence the control flow is quite unnatural.

· The definition of then-clause and else-clause in ALGOL 60 is essential for two-way selection.

8.3.1.3 Nesting Selectors

· If an else clause follows two unmatched then-clauses, which one should it belong to? This is called dangling else problem.

· The dangling else could be solved by rule or syntax. The usually way to solve it is to enforce a rule that a dangling else should match the latest unmatched then-clause, like in C/C++.

· ALGOL solved the problem by syntax, and the then-clause must be a compound statement if it is another if statement.

8.3.1.4 Special Words and Selection Closure

The introduction of endif also solves the dangling else problem since the endif marks the end of an if-statement. This selection closure ensures that we know the end of an if-statement.

8.3.2 Multiple Selection

We could build multiple selections from two-way selections, but it is cumbersome.

8.3.2.1 Design Issues

· What is the format of the condition that controls which way the control will go?

· What could be the selections?

· Is the entire selection construct encapsulated?

· Are the selection exclusive?

· What happens when none of the selections could be applied?

8.3.2.2 Early Multiple Selections

· Fortran has three-way selection according to trichotomy, which is closely related to hardware instructions. No encapsulation is enforced and readability is not good.

· Computed goto is even worse since no error detection is not built-in.

8.3.2.3 Modern Multiple Selections

· ALGOL-W has case statement that selects exclusive execution sequences according to an integer expression.

· Pascal has case construct that selects exclusive execution sequences by comparing an expression with the “constant labels” of each selection.

· ADA is similar to Pascal and in addition, enforces that all the possibilities should be considered (the else clause). Subrange and constant enumeration could be used to specify the condition.

· The switch in C/C++ is similar to Pascal, but does not enforce exclusive execution of selections. A break should be added if the control should not reach the next statement.

· The else if construct simplifies to flow control when incremental filtering is required.

8.4 Iterative Statements

· Repeat a set of statements for a given number of times (counter-controlled), or a specified condition is met (logically controlled).

· Repetition is usually done in recursion in functional languages.

· Repetition is a effective way to process an array.

· The body is the part of the code that will be repeated, the condition, which determines whether the loop should continue, could be pretest or posttest.

8.4.1 Counter-Controlled Loops

· The control variable controls the loop execution; the initial, terminal and stepsize of the control variables are the loop parameters.

· Hardware supported for efficiency.

8.4.1.1 Design Issues

· The type and scope of control variable.

· The value of the control variable after the loop.

· To change the value of control variable and control parameters.

· The loop parameter should be computed once, or every time the loop repeats.

8.4.1.2 The DO Statement of FORTRAN 90

· Fortran I, II, and IV use posttest, and Fortran 77 and 90 uses pretest, by which the execution will not enter the loop if the condition is not met.

· An iteration count is evaluated once, and dictates the number of times the loop is executed.

· The control variable maintains the value outside the loop when it exits the loop

8.4.1.3 The ALGOL 60 for Statement

The control variable could be set to a list, a from-to sequence with a stepsize, or a repetition controlled by a while condition. See the textbook example for details.

8.4.1.4 The Pascal for Statement

Only to and downto (stepsize 1 and –1 respectively) allowed.

8.4.1.5 The Ada for Statement

The scope of the control variable is the block, just like a disposal scratch, and it could not be assigned values within a loop.

8.4.1.6 The for Statement of C/C++/Java

· No explicit control variable is necessary. The control parameters are three statements, rather than three expressions. As a result they must be re-evaluated every time the loop repeats.

· Extremely flexible.

· C++ must have Boolean, rather than numeric expression as in C. Also C++ allows variable declaration in the initialization part of control parameter.

8.4.2 Logically Controlled Loops

8.4.2.1 Design Issues

· Pretest or posttest?

· A special case of counting loop or a separate statement.

8.4.2.2 Examples

· Pascal, C/C++, and Java have both special control constructs for pretest and posttest loops. They are usually “while a condition holds, do the following”, or “do the following until a condition is true (false)”.

· For the posttest cases, “do something while” usually has a reverse logic from “do something until”, or “repeat something until”.

· The condition is usually Boolean, or it could be numeric as in C.

· Posttest loops are less frequently used than pretest ones, mainly because it will at least execute the loops once, and this is usually forgotten.

8.4.3 User-Located Loop Control Mechanism

· In an infinite loop it is vital for the user to be able to leave the loop.

· It is convenient to be able to leave the loop when certain condition holds, not necessarily from the end of the loop.

· The exit in Ada provides an easy way out of a loop, with an optional “when” clause.

· The break in C/C++ and Java is similar, but without a when clause.

· The continue in C/C++ provides a fast “restart” from the beginning of the loop.

8.4.4 Iteration Based on Data Structures

· List processing in LISP.

· Iterator in object-oriented languages like C++.

8.5 Unconditional Branching

8.5.1 Problems with goto

8.5.1.1 We read code from top to the bottom; unrestricted use of goto statements makes this impossible.

8.5.1.2 Without goto we need certain mechanism to break from error conditions, subprograms, or loops.

8.5.1.3 Label Forms

· We need label to specify the destination of gotos.

· Integer numbers as in Fortran.

· Identifiers as in most of the other languages.

8.6 Guarded Commands

8.6.1 A Dijkstra’s selection is similar to a multiple-choice question. AT least one of the selections must be true, and one of these selections will be chosen non-deterministically for execution.

8.6.2 A Dijkstra’s guarded command is similar to a selection, but only the selection will repeat until none of the conditions is true.

