Lecture Note 3 for “Programming Languages”

Instructor: Pangfeng Liu

Chapter 5 Names, Binding, Type Checking, and Scopes

5.1 Introduction

· Imperative language is based on Von Neumann architecture, which consists of two important components – Cpu and memory.

· A variable is an abstract view of Von Neumann memory.

· A variable consists of properties, and the type if the most important one. 

5.2 Names

An identifier (or name) is used to identify the entities, e.g., variable names, function names, etc., in a programming language.

5.2.1 Design Issues

· The length of an identifier

· Connection character

· Case sensitivity

· Reserved words or keywords?

5.2.2 Name Forms

· A name is a character string, usually consists of letters and digits. The length limit of identifier places restriction on readability and writability.

· Connection characters divide a name into words for readability.

· Case sensibility can improve readability, e.g., all capital letters are for predefined constants. However, similar identifiers referring to different variables may cause confusion.

5.2.3 Special Words

· Special words are syntactically meaningful words in programming language constructs. 

· Special words can be keywords, which are only special in certain context, and can be used as identifiers in other situations.

· Special words can also be reserved words, which have special meanings at all time, and consequently cannot be used as identifiers what so ever.

· Predefined names do not have special meaning in the language. They are defined in predefined components (library or package), which are included in user programs. They are for the sake of convenience. 

5.3 Variables

· A variable is an abstract view from the programming language to the actual physical memory.

· A variable has the following properties, name, address, value, type, lifetime, and scope.

5.3.1 Name

5.3.2 Address

· The memory address this variable is located. The same name may refer to different addresses at different time.

· Aliasing happens when two different names refer to the same address, e.g., pointers and reference, subprogram parameter passing, union in C/C++, EQUIVLENCE in Fortran.

5.3.3 Type

The type of a variable defines the class of values that can be stored in a variable.

5.3.4 Value

The actual value stored in a variable. Also called r-value.

5.4 The Concept of Binding

· To associate the followings.

· An attribute and an entity

· An operation and a symbol.

· The binding can happen at various times.

· Language design

· Language implementation 

· Compilation

· Linking

· Loading

· Execution

5.4.1 Binding of Attributes to Variables

Static binding is at compile time, and dynamic binding at runtime.

5.4.2 Type Binding

A variable must be bound to a type before its reference.

5.4.2.1 Variable Declarations

· Variable Declarations associates a variable with its name and data type. Explicit declaration is done by the programmer, and implicit declaration is done by the compiler, usually when the variable is first used.

· Implicit declaration is dangerous since the programmers may not be aware of this variable due to typos.

· Declarations do not allocate storage – it simply tells the compiler about the name and type of a variable. Only after definition a variable is allocated storage.

5.4.2.2 Dynamic Type Binding

· In dynamic type binding, a variable is bound to a data type by assignment, instead of declaration.

· Dynamic type binding provides great programming flexibility. However, the type checking mechanism is completely useless. In addition, the cost of interpretation, which is necessary since it is difficult to generate machine code, is very high.

5.4.2.3 Type Inference

To inference the type of an expression is important since ML must decide it from the context. 

5.4.3 Storage Binding and Lifetime

Allocation binds storage and variable, deallocation remove this binding, and the lifetime of a variable is from it is allocated memory till the memory is deallocated. 

5.4.3.1 Static Variables

· Static variables provide global access, can retain values between subprogram invocations (history sensitive), and are efficient.

· Static variables do not support recursion, in which each new invocation should have its own local variables, its lifetime is the entire execution and may occupy memory while it is not in use.

5.4.3.2 Stack-dynamic Variables

Stack-dynamic variables grow on stack during subprogram invocation (or elaboration). They support recursion but may be slow to access because of the costs of elaboration, and all the addresses are relative to stack,

5.4.3.3 Explicit Heap-dynamic Variables

· Allocated and deallocated in heap on demands.

· Explicit heap-dynamic variables are good in implementing dynamic structures, since storage can be allocated and deallocated on demand.

· They provide great flexibility in building complicated data structures, but it is difficult to debug and maintain.

5.4.3.4 Implicit Heap-dynamic Variables

· An object is allocated in heap when it is assigned value.

· Implicit heap-dynamic variables are very flexible but also extremely expensive.

5.5 Type Checking

· Type checking ensures that the operands of an operator are of correct type. Here the “operators” include function calls and assignment.

· If the type binding is static, i.e., type binding is done in compile-time, then type checking can nearly complete in compile-time, with the exception that a memory cell can contain values from different data types at run-time.

5.6 Strong Typing

· A simple definition: a name has a single data type that can be determined at compile-time.

· A more useful definition: the types of all objects can be determined at compile-time.

· Fortran is not strongly typed because of unchecked parameters and the use of EQUIVLANCE.

· Pascal is nearly strongly typed except for the variant records.

· Ada is nearly strongly typed since it requires the tag of the variant records, but it allows the extraction of bit patterns of any variables as integers.

· C/C++ is not strongly typed because of unions.

· ML is strongly typed.

· Java is strongly typed.

· The more coercion allowed, the more uncertainty in determining the type of an expression.

5.7 Type Compatibility

· Type compatibility determines whether one can use a variable in a place where another data type is required, e.g., assignment and procedure parameter passing.

· Name type compatibility means two variables are compatible only if they are declared together, or with the same type.

· Structure type compatibility means two variables are compatible if they have the same “structure”, which can be difficult to define.

· ISO prefers the declaration equivalence, in which structure compatibility is used most of the time, and name compatibility is used in parameters.

· Ada uses name compatibility.

· C uses structure compatibility, except for structures and unions.

· C++ uses name compatibility.

5.8 Scope

· The scope of a variable is the range of statements in which the variable is visible.

· A variable is local to a block construct if it is declared in that block, otherwise it is non-local.

5.8.1 Static Scope

· The actual variable definition bound to the occurrence of an identifier is determined by first checking the local block in which the name appears, then the block construct that declares the block (i.e., its static parent). This process is repeated until a definition is found. That is, the compiler repeatedly searches along this static ancestor chain to find the correct definition.

· This process can be carried out at compile-time, hence the name static scope.

· Some definition may be “hidden” by a variable of the same name but in a deeper block.

5.8.2 Blocks

· A sequence of statements can form a block as a self-contained programming construct. A block may define its own local variables.

· A block-structured language supports this abstraction.

· Any compound statement in C, C++, and Java can for a block. C++ block can also declare variables.

· The for statement in C++ can declare variables, just like a block. 

5.8.3 Evaluation of Static Scoping

· Static scoping may introduce too many calling possibilities than necessary. See the textbook example.

· Static scoping may be able to release just the right amount of information to those subprograms that need it.

5.8.4 Dynamic Scoping

Dynamic scoping determines the correct definition for an occurrence of a name by examining the calling sequence, rather than the program block declaration hierarchy as in static scoping.

5.8.5 Evaluation of Dynamic Scoping

· All local variables are accessible from any subprograms that were called, hence causing reliability problems.

· The storage binding cannot be determined at compile-time; hence no static type checking is possible.

· Programs are difficult to read.

· Performance penalty.

5.9 Scope and Lifetime

· Scope and lifetime are related, in some cases they mean the same thing.

· Scope (at least for static one) is textual; lifetime is temporal.

· It may happen that in some cases one cannot reference a variable because of scope, although it is indeed within its lifetime.

5.10 Reference Environments

· Reference environment of a statement is the collection of all names visible in that statement.

· Reference environment depends on the scoping method. See the textbook for the two examples.

5.11 Named Constants

· A named constant is “constant” variable (what a funny name!).

· A name constant improves readability and helps reliability.

· In static binding the constant value must be determined at compile-time, but dynamic binding constant can have an expression as its initial value.

5.12 Variable Initialization

Variables can be initialized during declaration. This can be done in compile-time or runtime.

