Lecture Note 2 for “Programming Languages”

Instructor: Pangfeng Liu

Chapter 3 Describing Syntax and Semantics

3.1 Introduction

· A formal description of the language is essential in learning, writing, and implementing the language.

· The description must be precise and understandable.

· Syntax describes what the language looks like. Semantics determines what a particular construct actually does in a formal way.

· Syntax is much easier to describe than semantics.

3.2 The General Problem of Describing Syntax

· Sentences or statements are the valid strings of a language. It consists of valid alphabets sequenced in a way that is consistent with the grammar of the language.

· A lexeme is basic component of during lexical analysis. A lexeme consists of related alphabet from the language.

· A token is a category of related lexemes, and a lexeme is an instance of a token.

3.2.1 Language Recognizer

· A language can be generated or recognized. A recognizer of a language tells those strings that are within a language from those that are not.

· The lexical analyzer and the parser of a compiler are the recognizer of the language the compiler translates. The lexical analyzer recognizes tokens, and the parser recognizes the syntactic structure.

3.2.2 Language Generators

· A generator generates the valid sentences of a language.

· In some cases it is more useful than the recognizer since we can “watch and learn”.

3.3 Formal Methods of Describing Syntax

3.3.1 BNF and Context-Free Grammars

BNF is widely accepted way to describe the syntax of a programming language.

3.3.1.1 Context-Free Grammar

Regular expression and context-free grammar are useful in describing the syntax of a programming language. Regular expression describes how a token is made of alphabets, and context-free grammar determines how the tokens are put together as a valid sentence in the grammar.

3.3.1.2 Origins of BNF

John Backus and Peter Naur used BNF to describe ALGOL 58 and ALGOL 60, and BNF is nearly identical to context-free grammar.

3.3.1.3 BNF Fundamentals

· BNF is a metalanguage, i.e., a language that describes a language, which can describe a programming language.

· The BNF consists of rules (or productions). A rule has a left-hand side (LHS) as the abstraction, and a right-hand side (RHS) as the definition.

· The LHS is a non-terminal and the RHS could be terminal or non-terminal, just like in a tree.

· The rule indicates that whenever you see a token on the LHS, you can replace it with the RHS, just like expanding a non-terminal into its children inn a tree.

3.3.1.4 Describing Lists

Recursion is used in BNF to describe lists.

3.3.1.5 Grammars and Derivations

· BNF is a generator of the language. The sentences of a language can be generated from the start symbol by applying a series of rules on it. The process of starting from the start symbol to the final sentence is called a derivation.

· Replacing a non-terminal with different RHSs may derive different sentences.

· Each sentence during a derivation is a sentential form. If we replace every leftmost non-terminal of the sentential form, the derivation is leftmost. However, the set of sentences generated are not affected by the derivation order

3.3.1.6 Parse Trees

A derivation can be represented by a tree hierarchy called parse tree. The root of the tree is the start symbol and applying a derivation rule corresponds to expand a non-terminal in a tree into its children.

3.3.1.7 Ambiguity

A grammar is ambiguous if for a given sentence, there is more than one parser tree, i.e., there are two derivations that lead to the same sentence.

3.3.1.8 Operator Precedence

Operator precedence can be maintained by modifying a grammar so that operators with higher precedence are grouped earlier with its operands, so that they appear lower in the parse tree.

3.3.1.9 Associativity of Operators

· Despite the fact that associativity of some operators does not affect the final results in theory, in practice it must be preserved.

· Associativity can be enforced by using left or right recursion.

3.3.1.10 An Unambiguous Grammar for if-then-else

· The ambiguity of if statement comes from the dangling else, i.e., to which if-then construct an else statement belongs to.

· The general rule is to match an else to the nearest unmatched if-then.

· Modify the grammar to distinguish matched and unmatched if-then.

3.3.2 Extended BNF

· EBNF has the same expression power as BNF

· The addition includes optional constructs, repetition, and multiple choices, very much like regular expression.

3.3.3 Syntax Graphs

· Syntax graph is a directed graph with two special nodes – entry and exit, and a sentence corresponds to all the terminal symbols along a path from the entry symbol to the exit.

· A non-terminal corresponds to a subgraph with one entry and one exit.

3.4 Attribute Grammars

3.4.1 Static Semantics

· There are many restrictions on programming languages that are either difficult or impossible to describe in BNF, however, they can be described when we add attributes to the terminal/non-terminals in BNF.

· These added attribute and their computation could be computed at compile-time, thus the name static semantics.

3.4.2 Basic Concepts

An attribute grammar consists of, in addition to its BNF rules, the attributes of grammar symbols, a set of attribute computation functions (or semantic functions), and predicate functions that determine whether a rule could be applied. The latter two functions are associated with the grammar rules.

3.4.3 Attribute Grammar Definition

· Attributes are classified into synthesized attributes and inherited attributes.

· The synthesized attributes of a parse tree node are computed from its children. The inherited attributes of a node are computed from its parent and siblings.

· A parse tree is fully attributed if the attributes of all its nodes are computed.

3.4.4 Intrinsic Attributes

The synthesized attributes of parse tree leaves that are determined by input.

3.4.5 An Example

See the textbook for this detailed example on the type checking on an assignment statement.

3.5 Dynamic Semantics

· Dynamic semantic determines the meanings of programming constructs during their execution.

· Programmers need to know the exact meaning what they are writing about. Compiler implementers need to know how to translate the exact meaning into object code, and the program proving mechanisms need the precise definitions in order to prove the correctness.

3.5.1 Operational Semantics

Operational semantics define the meaning of a programming construct by translating it into a better-understood, supposedly lower-level, programming language, which can be executed by real hardware or simulated by a software simulator.

3.5.1.1 The Basic Process

· The interpretation of operational semantics is usually done by a software simulator instead of real hardware, since the latter involves detailed implementation details and operating systems, and the simulation is not portable.

· Two items are needed for operational semantics – a translator that translates the language for which we are defining the semantics, into the language that we understand better, and an interpreter that executes the translated code exactly as specified by the definition.

· The semantics are defined along with the translation process, and the reader can “execute” the translated code.

3.5.1.2 Evaluation

Operational semantics describe the meanings by algorithm.

3.5.2 Axiomatic Semantics

Axiomatic semantic was developed along with the need to prove program correctness. The state of the program is described by Boolean expression or predicate calculus. The semantic builds on the foundation of mathematical logics.

3.5.2.1 Assertion

· Assertions (or predicate) describe the state of a running program. We can define, for each statement, a pre and post condition to describe the status before or after the execution of that statement.

· Given a postcondition, sometimes we can compute its pre-condition, which specifies the condition what we should have in order to derive the postcondition.

3.5.2.2 Weakest Precondition

· Weakest precondition is the least restrictive precondition that can still derive a given postcondition.

· We compute the weakest precondition in reverse order of program execution so that we can prove a program by computing the weakest precondition for the given output, and compare it with the input.

· The process of computing the weakest precondition can be described either by an axiom or an inference rule.

3.5.2.3 Assignment

· The process of computing the weakest precondition for an assignment can be described by an axiom, which simply says that “replace the occurrence of LHS in the postcondition by the RHS”.

· If both the precondition and the postcondition are given for an assignment, then it becomes a theorem, i.e., does the precondition imply the postcondition after the assignment?

3.5.2.4 Sequences

The process of computing the weakest precondition for a compound statement can be described by an inference rule, which says that “Find the precondition for the given postcondition of the last statement, and then use the computed precondition as the postcondition of the second to the last statement”.

3.5.2.5 Selection

The process of computing the weakest precondition for an if statement can be described by an inference rule, which says that “Find the precondition for the given postcondition that does not depend on which way the program goes”.

3.5.2.6 Logical Pretest Loops

· To compute the precondition we find the loop invariant first. A loop invariant is a Boolean expression that will not change through the loops, much like the induction hypothesis in mathematical induction.

· A loop invariant must be true before the loop (implied by the precondition), remains true after executing the loop controlling condition, remain true after the execution of the loop body if the loop controlling condition is true, and implies the postcondition if the loop controlling condition fails.

· Note that using a loop invariant as the precondition does not necessarily give a weakest precondition, but does give a precondition.

· See the textbook for more examples.

3.5.3 Denotational Semantics

Denotational semantics define a mathematical object for each language entity, and a function that maps the mathematical object to a value for manipulation, i.e., we use mathematic objects to “denote” the language entities.

3.5.3.1 Examples

See the textbook.

3.5.3.2 The State of a Program

3.5.3.2.1 The state of a running program is similar to the operational semantics, however, operational semantics change the state by algorithms, and denotational semantics change the state by mathematical functions.

3.5.3.3 Expression

3.5.3.4 Assignment

3.5.3.5 Logical Pretest Loops

All see the textbook for examples.

