Lecture Note 10 for “Programming Languages”

Instructor: Pangfeng Liu

Chapter 12 Support for Object-Oriented Programming
12.1 Introduction

· Many modern programming languages support object-oriented programming, in addition to data-oriented, procedure-oriented, and functional programming.

· There are three key concepts in Object-oriented programming.

· Abstract data types

· Inheritance

· Dynamic binding

12.2 Design Issues for Object-Oriented Languages

12.2.1 Introduction

· Procedure-oriented programming emphasizes on subprograms and their interactions.

· Data-oriented programming focuses on the abstract data types. Computation is carries out by the methods that are associated with the data that we would like to process.

· Data-oriented languages are often called data-based languages.

12.2.2 Inheritance

· Software reuse increases productivity.

· The first problem of reusing abstract data types in data-oriented languages is that ADT often requires modification to fit into new requirements. The modification is time-consuming and error-prone.

· The second problem of abstract data types is that they are at the same level and it is difficult to specify the relation among them.

· Inheritance distinguishes object-oriented programming from data-oriented programming by building the relation among ADTs, and tries to maintain their relation in a systematic way to reduce the costs in reusing ADTs.

· ADTs are called classes in many object-oriented languages.

· If a class is obtained by refining an existing class, then it is the derived (or sub) class of the existing class, called base class or super class.

· The operations that can be applied on a class is called methods, and the collection of these methods are message protocol, or message interface.

· A message is passed from an object to another. A message indicates that the received object must perform certain methods.

· A message has two parts – the destination and the operation.

· Access control limits the usage of entities a class inherited from its parent.

· A derived class can add new attributes (data or function members) to the class. If the added method has the same signature as one that it inherits from the parent, the old one is overridden.

· A class instance has instance methods and variable, and the class as a whole has class methods and class variables.

· If a class can have only one parent class, then it is single inheritance.

· The inheritance hierarchy determines the dependency among classes. Classes must be declared one by one according to the hierarchy.

12.2.3 Polymorphism and Dynamic Binding

· Polymorphism means the binding of the message to the actual methods that will be evoked is determined dynamically, according to the data type of the destination of the message.

· Polymorphism through dynamic binding is possible only when the pointer of reference of a parent can refer to objects that are the instances of its subclasses.

· Without polymorphism, the binding from a message to a method must be determined by user code in order to mimic the effect that an object can exhibit different behaviors according to its data type.

· Some classes in inheritance hierarchy is not concrete enough to produce instance, rather they define generic behavior for their descendents. These methods are called virtual methods and these classes are virtual classes.

12.2.4 Computing with an Object-Oriented Language

· Object-oriented methodology uses objects to mimic the real-world entities, and uses messages to simulate their interactions.

12.3 Design Issues for Object-Oriented Languages

12.3.1 The Exclusivity of Objects

· Use object only. Can provide clean and pure model for programming.

· Supports object-oriented programming, in additional to whatever the language supports.

· Uses imperative-style data model for primitive data types, and supports object-oriented model for user defined data types.

12.3.2 Are subclasses Subtypes? 

· Can a data from a derived class appear in wherever the base class is allowed? That is, is a derived class data a base class data?

· If the answer is “yes”, then the derived class is a “subtype” of the base class. This requires that the derived class adds only data and method that are “compatible” with whatever they override in the base class.

12.3.3 Implementation and Interface Inheritance

· A derived class inherits only interface, not implementation, in an interface inheritance. On the other hand, it can view the implementation details of its base class in an implementation inheritance.

· Keeping the implementation details from the subclass ensures the independency from having to modify client codes, but may incur inefficiency.

12.3.4 Type Checking and Polymorphism

· The parameter and the return type of the method must be checked. However, when the method to be called is determined dynamically, the issue becomes very complicated.

· If the type checking is to be done at compile time, then the overridden function must be of the same signature as the one in the descendent classes.

· Alternatively, the type checking can be checked at runtime, with higher flexibility and overheads.

12.3.5 Single and Multiple Inheritance

· Multiple inheritance introduces unnecessary complexity.

· Allocation and Deallocation of Objects

· Objects can be allocated at the heap, the stack, or statically.

· Allocation and deallocation can be explicit or implicit, which is related to dangling pointer and garbage collection issues.

12.3.6 Dynamic and Static Binding

· Are all the bindings dynamic? Could we have static binding to improve efficiency?

12.4 Overview of Smalltalk

12.5 Introduction to the Smalltalk Language

12.6 Smalltalk Example Programs

12.7 Large-Scale Features of Smalltalk

12.8 Evaluation of Smalltalk

12.9 Support for Object-Oriented Programming in C++

12.9.1 General Characteristics

· C++ is backward compatible with C, so it must support procedural programming, as well as OOP.

· A constructor is implicitly defined and called when an object is created.

· A destructor is implicitly called when an object is removed.

12.9.2 Inheritance

· Access control

· Private

· Public

· Protected

· Derivation

· Public

· Private

12.9.3 Dynamic Binding

· Virtual functions are dynamically bound, while others are statically bound.

· A pure virtual function does not have implementation – it merely places the function in the specification of every of its derived classes.

· A class is abstract if any of its function is pure virtual, which means that it cannot have class instance.

12.9.4 Evaluation

· Provides multiple inheritance.

· Provides both static and dynamic binding.

· Static type checking for even dynamically bound methods.

· A comprise between C and OO.

12.10 Support for Object-Oriented Programming in Java

12.10.1 General Characteristics

· Imperative-style primitive data types and object-oriented user data types.

· Needs to convert primitive type into objects in some situations (not very orthogonal).

· All classes must be descendents of the “root” class.

· All objects are allocated from the heap, and accessed by reference variables.

12.10.2 Inheritance

· Java only supports single heritance, but it can support multiple “interfaces”, which are specification of what a class can do. For example, a user-written applet is a subclass of Applet, but it can also implement a Runnable interface.

· A final method cannot be overridden.

12.10.3 Dynamic Binding

· A final method is statically bound.

12.10.4 Encapsulation

· Encapsulation through class and package.

· The default access control mode for a method or variable is package scope.

· Package scope provides C++ friend capability within a package.

12.10.5 Evaluation

· Unlike C++, dynamic binding is the norm.

12.11 Support for Object-Oriented Programming in Ada 95

12.12 Support for Object-Oriented Programming in Eiffel

12.13 The Object Model of JavaScript

12.14 Implementation of Object-Oriented Constructs

12.14.1 Instance Data Storage

· The class instance record (CIR) maintains the attributes of a class instance, including the data and the methods.

· The structure of CIR is static since the compiler can determine what should be kept in a class instance (object) – the new data added by the derived class is added into CIR.

12.14.2 Dynamic Binding of Messages to Methods

· CIR only deals with the methods that are dynamically bound.

· Each CIR can have a pointer to the dynamically bound method, but this is not efficient. Instead these pointers can be placed in a virtual method table (VBT), since a class only needs one VBT.
