Lecture Note 9 for “Programming Languages”

Instructor: Pangfeng Liu
Chapter 11 Abstract Data Types

11.1 The Concept of Abstraction

· Abstraction concentrates on the significant features that differentiate different yet similar entities.

· The abstraction can be viewed from two aspects – features that are common to all entities among a group (subordinate attributes), or features that can tell them apart (essential attributes).

· A subprogram is a good example of process abstraction, e.g., a sorting subroutine is specified by what it does, not how it does it.

11.2 Encapsulation

· The purpose of encapsulation is to keep the programs “intellectually manageable”.

· Programs are organized into modules, which are logically independent and well-defined units for dedicated purposes. The process of organize programs into modules is modularization.

· Encapsulation groups subprograms and the data they manipulate together as a self-contained construct.

· ALGOL groups subprograms together by a hierarchy, and use static scoping to limit the subprogram usage.

· C uses files to organize subprograms, and support file-scope for subprogram/data access control.

· Fortran90 and ADA produce library from compilation and keep essential interface information within the library for separate compilation.

11.3 Introduction to Data Abstraction

· An abstract data type encapsulates ONE data type and its operation as a logical unit.

· The instance of an abstract data type is called an object.

11.3.1 Floating-Point as an ADT

Floating point data type demonstrates information hiding in ADT, since the actual format and the operation is hidden from the users.

11.3.2 User-Defined Abstract Data Types

· An ADT has the following properties.

· A type definition.

· A set of operations.

· An ADT must do the following.

· Encapsulates the data definition and the operation as a syntactic unit (encapsulation).

· Hides the data definition and the operation details from the users (information hiding).

· Encapsulation allows the modification of data and operation in a single place, and information hiding enables these changes to remain within the ADT, without affecting its users.

11.3.3 An Example

· The same old stack example – if we use the interface only, the client program does not need to change when the stack ADT is changed.

11.4 Design Issues

· The ADT type and functions must be visible to its client.

· Basic operations must be provided, e.g., comparison and assignment.

· More advanced functions may be required, e.g., iterator, constructor, and destructor.

· Direct/indirect encapsulation support.

· What can be abstracted?

· Can ADT be parameterized?

· Access control.

11.5 Language Examples

11.5.1 SIMULA 67

11.5.1.1 Encapsulation

· Objects are dynamically from the heap, and can be access only through pointers.

· First introduction of encapsulation.

11.5.1.2 Information Hiding

· Object can be accessed from functions or directly by names – no information hiding.

11.5.1.3 Evaluation

· Encapsulation, yes, but Information hiding, no.

11.5.2 ADA

11.5.2.1 Encapsulation

· Encapsulation through package. A package can be a specification package, or a body package, or both.

· Package can be used by clients via names.

11.5.2.2 Information Hiding

· Everything can be exported from a package, or only the specification.

· There are two sections in a specification package – a public section that is visible from the outside, and a private section (specified by a private keyword) that is not.

· The compiler needs to calculate the storage requirement; therefore the representation of a data type must be present in the specification package.

· Another “limited private type” provides no built-in functions – they are used when the default built-in function does not match the special requirements of the ADT.

11.5.2.3 An Example

· The with statement imports the package.

· The use statement eases the notation by implicitly identifying the data/function within a package.

11.5.3 C++

· C++ classes are types and ADA packages are not.

11.5.3.1 Encapsulation

11.5.3.1.1 A C++ class has data members and member functions.

11.5.3.1.2 A member function can appear with the class, and implicit inlining is implied, or outside of the class definition.

11.5.3.1.3 Constructor and destructor can be specified by users.

11.5.3.2 Information Hiding

11.5.3.2.1 The private and public keywords provide information hiding.

11.5.3.3 An Example

11.5.3.4 Evaluation

11.5.3.4.1 C++ provides true ADT support as a data type.

11.5.3.4.2 Assigning an operation to one ADT, as in C++, may cause inconvenience when the operation manipulates on multiple and related objects, e.g., the matrix multiplication example.

11.5.3.5 Java

11.5.3.5.1 All user-defined ADT must be allocated from heap, and accessed by reference – no pointer is required.

11.5.3.5.2 Methods must be defined within the class (compare this with C++).

11.5.3.5.3 Java has both class and package. A package can have several classes. The instances of different classes of the same package can access each other, if no access keyword is given (called package scope).

11.6 Parameterized Abstract data Types

11.6.1 Can we give parameter (could be a data type) to an ADT generator so that different ADTs can be obtained?

11.6.2 ADA

· Generic package can take parameters and produce a customized package.

11.6.3 C++

· C++ class template can produce ADT by the given parameters. 

