Lecture Note 8 for “Programming Languages”

Instructor: Pangfeng Liu

Chapter 10 Implementing Subprograms
10.1 The General Semantics of Calls and Returns

· The subprogram calls and returns are called subprogram linkage.

· Subprogram call includes

· Parameter passing

· Storage allocation and binding for local variables.

· Save the execution status.

· Provide access method to non-locals.

· Transfer control.

· Subprogram return includes

· Copy values back to out and in-out mode Parameter.

· Deallocate local variables.

· Restore execution status.

· Return function value.

· Restore non-local accessing environment before subprogram call.

· Return control to the next statement after the subprogram call.

10.2 Implementing FORTRAN 77 Subprograms

· Refer non-local through COMMON blocks.

· Cannot be recursive.

· An activation record stores all the information about subprogram calls.

· In Fortran an activation record contains functional value, local variables, parameters, and return address.

· A FORTRAN subprogram consists of executable code and the activation record.

· Separately compiled program must be linked together before execution.

10.3 Implementing Subprograms in ALGOL-like Languages

Two methods – static chains or display.

10.3.1 More Complex Activation Records

· Activation record becomes complex due to the following.

· Different parameter passing methods.

· Dynamically allocated local variables.

· Recursion.

· Access to non-local variables.

· The activation record format can be determined at compile time for static scoping languages, but the size may vary.

· An activation records stores the following data (in the following order).

· Return address

· Static link – to the static parent (where the subprogram is declared).

· Dynamic link – to the caller of this subprogram.

· Parameters

· Local variables.

· Scalar data are stored directly and structure data are stored as a pointer leading to the actual storage.

· Activation records can be conveniently stored in the runtime stack (LIFO).

10.3.2 No Recursion or Non-locals

· No non-local access so static links are useless.

· The calling sequence constitutes a dynamic chain (or call chain).

· Local variables are accessed by local offsets.

10.3.3 With Recursion

· A function value is added for recursive function return value.

· Dynamic link is important in keeping track of the current activation record and the local variables within it.

10.3.4 Non-local Reference

· To access the non-local variables in the runtime stack requires two steps – first, find the correct activation records, second, find the correct local offset.

· Since only those variables that are declared in the static ancestors are visible, and a procedure is callable only if when all of its static ancestors are active, one can always find the desired variable in the runtime stack.

· One can find the data by searching the activation records towards the bottom of the runtime stack.

10.3.4.1 Static Chain

· Maintain a chain of static links for the current active subprogram.

· Each subprogram can determine (at compile time) its nesting depth (or chain offset). The static scoping will bind a name to the variable with the largest nesting depth.

· When a subprogram is called we must locate its static ancestor. We can either go down the dynamic chain until we find the first activation record with the correct level (which is time consuming), or go up the static link from the caller until we encounter the static parent of the subprogram we want to call (which must appear in the chain).

· The non-local access is expensive.

10.3.4.2 Displays

· Use a pointer array to store the activation records along the static chain.

· Fast access for non-local but may be complicated to maintain.

· Calling a subprogram in the same level – simply replace and restore.

· Calling a subprogram in the higher level – add an entry and may need to save the old pointers.

· Calling a subprogram in the lower level – shrink the pointer and restore it when the subprogram returns.

10.4 Blocks

· A user-specified local scope that can declare variables.

· Can be implemented as subprogram without parameters and return values.

· A more efficient implementation would be to put together all the blocks as a union, and locals within blocks are referenced by offsets.

10.5 Implementing Dynamic Scoping

10.5.1 Deep Access

· Searching through the dynamic link for a specified name.

· May search deep into the runtime stack, hence the name.

· Poor performance due to the following.

· Does not have predictable access time since it all depends on the runtime environment.

· The variable names must be stored in the activation records for identifying purpose.

10.5.2 Shallow Access

· Separate stack approach

· Have a stack for each name. When a subprogram is called, its local variables are placed on the top of the stack.

· Fast access to variables but costly to maintain.

· Central table approach

· Have a table that contains entries for different names.

· An active bit indicates that a name currently has a valid binding.

· Require complicated maintenance during subprogram calls and returns.

· Can be implemented by a “hidden stack” that keeps those names that are hidden by the current active subprogram.

· The hidden variables can also be placed in the current activation record.

10.6 Implementing Parameters That Are Subprograms

10.6.1 Static Chaining

· A subprogram that passes another subprogram P as a parameter must have the static ancestor of P in its static ancestor chain.

· The subprogram P simply uses the static ancestor of P found above as its static link.

10.6.2 Displays

· Will not work when subprograms can be passed as parameters.

· The entire displays may need to be copied since the static environment of subprogram that was passed as a parameter may not have a similar referencing environment to the subprogram where it is called.

10.6.3 Confusing Reference Environment

See the textbook example.
