

Ming-Sui (Amy) Lee Mar. 8, 2007

Announcement

Class Information

- Class website
 - www.csie.ntu.edu.tw/~mslee (temporary)
 - Syllabus/Lecture #1/Lecture #2
 - Homework #1/sample codes/submission guidelines

o Teaching Assistant

- 陳映睿 Room 306 <u>dip@csie.ntu.edu.tw</u>
- Office Hour: TBA
- Exams
 - Midterm \rightarrow 4/19
 - Final \rightarrow 6/21

Homework Related

- Submission guideline
 - Electronic version \rightarrow email to TA
 - Written report \rightarrow submit in class
 - Due by noon on the due date
- Note
 - may discuss/no duplicating
 - all in English
 - TA's not responsible for debugging

Announcement

Others

Professor C.-C. Jay Kuo
University of Southern California
"Techniques for Blind Audio Source Separation"
Time: March 13 (Tuesday), 4:00~5:00 pm
Place: CSIE Building, Room #110

Application of DIP

Industry

- Digital camera, camcoder, scanner,...
- o LCD TV, Plasma TV, …

Medical Imaging & Image Analysis

- o CT, MRI, X-ray
- Bioinformatics for drug design

Others

Satellite imaging, resource analysis, national defense

Categorize Images via Source

Electromagnetic (EM) Spectrum

Others

 Acoustic Imaging, Electron Microscopy, Synthetic Imaging

Examples

Gamma

Optical

Infrared

Radio

Ultrasound

SEM

synthetic

Image Enhancement

 Improve image contrast by adjusting its histogram

Image Restoration

 Remove the degradation effects to recover an image to its original condition

Image Transformation

Image Segmentation

Digital Image Fundamentals

Image Quality

Objective/ subjective

- Machine/human beings
- Mathematical and Probabilistic/ human intuition and perception

Structure of the Human Eye

Position on Retina

Human Visual Perception

Perceived brightness is NOT a simple function of intensity

Human Visual Perception

Optical Illusion

Image Sensing and Acquisition

Illumination Source

- EM energy, ultrasound, synthesized, ...
- Scene Element
 - Objects, human organs, buried mineral,...
- Sensing Material
 - Single sensor: photodiode
 - Sensor strips: require extensive processing
 - Sensor arrays: CCD & CMOS

Image Sensing and Acquisition

Scene element

Image Formation Model

An image \rightarrow 2D function $0 < f(x, y) < \infty$ where x and y are spatial coordinates

- Categorized by two components f(x, y) = i(x, y)r(x, y)
 - Illumination: $0 < i(x, y) < \infty$
 - **Reflectance:** 0 < r(x, y) < 1

black velvet, flat-white wall paint, snow, silver-plated metal
0.1
0.8
0.93
0.9

Image Sampling & Quantization

Image Sampling & Quantization

Digital Image Representation

Dynamic Range

• The range of values spanned by the gray scale $\{0, 1, ..., L-1\}$ $L = 2^k$

Image Size

• for a square image,
$$M = N$$

total number of bits required to store the image: $b = N^2 \cdot k$

N/k	1(L = 2)	2(L = 4)	3(L = 8)	4(L = 16)	5(L = 32)	6(L = 64)	7 (L = 128)	8 (L = 256)
32	1,024	2,048	3,072	4,096	5,120	6,144	7,168	8,192
64	4,096	8,192	12,288	16,384	20,480	24,576	28,672	32,768
128	16,384	32,768	49,152	65,536	81,920	98,304	114,688	131,072
256	65,536	131,072	196,608	262,144	327,680	393,216	458,752	524,288
512	262,144	524,288	786,432	1,048,576	1,310,720	1,572,864	1,835,008	2,097,152
1024	1,048,576	2,097,152	3,145,728	4,194,304	5,242,880	6,291,456	7,340,032	8,388,608
2048	4,194,304	8,388,608	12,582,912	16,777,216	20,971,520	25,165,824	29,369,128	33,554,432
4096	16,777,216	33,554,432	50,331,648	67,108,864	83,886,080	100,663,296	117,440,512	134,217,728
8192	67,108,864	134,217,728	201,326,592	268,435,456	335,544,320	402,653,184	469,762,048	536,870,912

$1024x1024 \rightarrow 32x32$

Downsampled by a factor of 2

Re-Sampling

Zero-Order-Hold Method (ZOH) O Row and column duplication

L=256,128,64,32,16,8,4,2

Digital Image Representation

8-bit image is commonly used

- Storage
- Human perception

64 steps (6 bits) in gray level

Image Enhancement

Goal of Image Enhancement

- make images more appealing
- no theory, ad-hoc rules, derived with insights

Two Approaches

- Contrast Manipulation
- Histogram Modification

Transfer Function

- Linear
- Nonlinear
- o piecewise

Continuous Image

Quantized Image

Linear scaling and clipping

G(j,k) = T[F(j,k)]

(a) Original

(b) Original histogram

(c) Transfer function

(d) Contrast stretched

Power-Law

$G(j,k) = \left[F(j,k)\right]^p \quad 0 \le F(j,k) \le 1$

Power-Law

$G(j,k) = \begin{bmatrix} F(j,k) \end{bmatrix}^p \quad 0 \le F(j,k) \le 1$

Rubber Band Transfer Function

- Piecewise linear transformation
- Inflection point (control point)

Can choose the area where we want to stretch or reduce the contrast

Logarithmic Point Transformation $G(j,k) = \frac{\log_e \{1 + aF(j,k)\}}{\log_e \{2.0\}} \quad 0 \le F(j,k) \le 1$

Useful for scaling image arrays with a very wide dynamic range

Reverse Function

$G(j,k) = 1 - F(j,k) \quad 0 \le F(j,k) \le 1$

(a) Reverse function

(b) Reverse function output

Able to see more detail in dark areas of an image

Inverse Function

(c) Inverse function

(d) Inverse function output

Amplitude-Level Slicing (Gray-Level Slicing)

Histogram Modification

Goal

 Rescale the original image so that the histogram of the enhanced image follows some desired form

Histogram Modification

Histogram Equalization

- make the output histogram to be uniformly distributed
 - Transfer function
 - Bucket filling

Histogram Equalization

Transfer Function

Histogram Equalization

- Transfer Function
 - Output histogram not really uniformly distributed
 - Still keep the shape
 - More flat than the original histogram

Histogram Equalization

Bucket Filling

arbitrary

F(j,k)	# of pixels
0	1
1	2
2	5
•	•
255	3

uniform				
G(j,k)	# of pixels			
0	N/256			
1	N/256			
2	N/256			
•	:			
255	N/256			

N: # of total pixels

- Not 1-1 mapping
- Accumulated probability may not end exactly at the boundary of a bin → split it out