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Performance Analysis and Code Optimization of
Low Density Parity-Check Codes on Rayleigh Fading
Channels
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Abstract—A numerical method has recently been presented to to the Shannon limit on the erasure channel. Richardson,
determine the noise thresholds of low density parity-check (LDPC) al. [1] generalized this idea to a variety of message passing
codes that employ the message passing decoding algorithm on theyecoding algorithms, including the full version of the belief

additive white Gaussian noise (AWGN) channel. In this paper, Hi lgorithm 151 which b lied t
we apply the technique to the uncorrelated flat Rayleigh fading propagation algorithm [S] which can be applied to a very

channel. Using a nonlinear code optimization technique, we opti- Proad class of binary-input symmetric channels, such as the
mize irregular LDPC codes for such a channel. The thresholds of AWGN channel. They developed a numerical technique, called

the optimized irregular LDPC codes are very close to the Shannon density evolutionto analyze the performance of the belief
limit for this channel. For example, at rate one-half, the optimized propagation decoding algorithm, enabling the determination

irregular LDPC code has a threshold only 0.07 dB away from f noise thresholds t desired d f In thi
the capacity of the channel. Furthermore, we compare simulated ©' N0IS€ (Nresholds 1o any desired degree ot accuracy. In this

performance of the optimized irregular LDPC codes and turbo  Paper, we apply this technique to the uncorrelated flat Rayleigh
codes on a land mobile channel, and the results indicate that at a fading channel.

block size of 3072, irregular LDPC codes can outperform turbo  The code optimization of irregular LDPC codes is a nonlinear
codes over a wide range of mobile speeds. cost function minimization problem, a problem where differen-
Index Terms—Code optimization, density evolution, low-density tial evolution has been shown to be effective and robust [7]. This

parity-check codes, Rayleigh fading channels. technique has been successfully applied to the design of good
irregular LDPC codes for both the erasure channel [8] and the
I. INTRODUCTION AWGN channel [2]. We show that this technique is also effec-

) ) tive in the code optimization of irregular LDPC codes for the
R ECENT advances [1], [2] in error correcting codegncorrelated Rayleigh fading channel, and the threshold values

have shown that, using the message passing decod§ighe optimized codes are extremely close to the capacity of
algorithm, irregular low density parity-check (LDPC) codeg,is channel.
can achieve reliable transmission at signal-to-noise ratiosrhs paper is organized as follows. Section Il briefly reviews
(SNR) extremely close to the Shannon limit on the additivge pasic concepts of LDPC codes. In Section 111, we review the
white Gaussian noise (AWGN) channel, outperforming turb@,qding of LDPC codes and the technique of density evolu-
codes of the same block size and code rate. LDPC codes hgyg for threshold calculations on the AWGN channel. We then
certain advantages, such as simple descriptions of their cdgand and apply this method to the uncorrelated flat Rayleigh
structure and fully parallelizable decoding implementationg,ging channel. Section IV addresses two important properties
With iterative message passing decoders, LDPC codes exhiibteq to the convergence of density evolution: symmetry and
an mtere;tmg noise threshold effect [.1]: if the noise level pf t'”ﬁability. We discuss the code optimization technique in Sec-
channel is smaller than a certain noise threshold, the b't €T V. In Section VI, we present the threshold calculations and
probability goes to zero as the block size goes to infinity; if thegyge optimization results for the uncorrelated Rayleigh fading
noise level is above the noise threshold, the probability of ermehannel. wWe also compare simulation results for the optimized
is always bounded away from zero. Gallager [3] first present_qstrqzlt;}gut(,j‘r LDPC codes and turbo codes on an uncorrelated, as

this result for regular LDPC codes for the binary symmetrige| a5 correlated, Rayleigh fading channel. In Section VII, we
channel (BSC). Lubyt al.[4] showed that the noise thresholdpresent our conclusions.

effect also exists for irregular LDPC codes, and they designed

me irregular LDP wh rformance is very cl
some irreguia C codes whose performance is very close [I. Low DENSITY PARITY-CHECK (LDPC) CoDES
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Fig. 2. Message passing decoder of LDPC codes.

Fig. 1. Bipartite graph representations of LDPC codes.

. . ular LDPC code is shown in Fig. 1(b), whekg = 0.4, A3 =
represents a parity check O.f the code.'An edge eX|s_,ts betwe .0, p3 = 0.6, andp, = 0.4. The intuition behind the use of
bit node and a check node if and only if there is a 1 in the corre- . L . .

) . . . Ifregular LDPC codes is quite simple: in the decoding process
sponding entry in the parity-check matrix. We refer to the corre; .
: ; ; -~ of irregular LDPC codes, there exists a phenomenon called the
sponding bit node and check node as the left and right neighQor. ffect” herebv the bit nod ith hiah d d
nodes of the edge wave effect [4]3 whereby the bit nodes with high degrees ten
' . to approach their correct values very quickly, and in turn, they
Regular LDPC codes are those for which all nodes of the " . ) i
r8V|de more reliable information to the check nodes and sub-
same type have the same degree, where the degree of a rgoe € ently to the bit nodes with lower dearees
is the number of edges for which it is a neighbor nod€; A ) q y g '
regular LDPC code has a bipartite graph in which all bit nodes
have degreg and all check nodes have degfeeCorrespond-
ingly, in the parity-check matrixf, all the column weights are  The decoding algorithm for LDPC codes is based on the idea
J and all the row weights arke. Shown below is a parity-check of belief propagation [5]. As described in [2] and [9], for each
matrix of a(3,4) regular LDPC code. Fig. 1(a) shows its assaedge of the underlying bipartite graph, the decoding algorithm
ciated bipartite graph. iteratively updates two types of l@gposterioriprobability ratio

(LAPPR) messageg,andr. The quantityy is the message sent

I1l. D ECODING ANALYSIS

o 01 0 0 1 1 1 0 0 0 07 . .
1 1001000000 1 from the bit node to the check node along a connecting edge
e, which is expressed ag = log(p(z = 0]t)/p(xz = 1]1)),
0 0 061 000 01110 .
010001100100 wherez denotes the value of the bit node, andenotes all the
. messages coming from the channel and the edges connected to
H=|1 01 0 0 0 0 1 0 0 1 0 . L.
the bit node, other than edge The quantityr is the message
0 0011 0001001 - .
100110100000 sent from the check node to the bit node along an eggdich
000001010011 is defined asr = log(p(z = 0|v)/p(z = 1|v)), wherev
011000007110 0] denotes the messages coming from the edges connected to the

check node, other than edgdt is important to note that during

For irregular LDPC codes, the bit nodes (correspondingly thiee message updating, the incoming message along-eslg®-
check nodes) can have different degrees. We say an edge haglafted in determining the outgoing message along ed@jbat
(resp., right) degreeif its left (resp., right) neighbor node hasis, similar to turbo decoding [10], onlgxtrinsicinformation is
degree:. An irregular LDPC code ensemble is specified by airculated, which turns out to be an important property of good
degree distribution paifA, ¢) or its corresponding generatingmessage passing decoders and which also makes the analysis of
functionsA(z) = Efl:‘;*”‘ Nri~tandp(z) = Ef;g‘“ pixi~t,  the decoding algorithm feasible [1]. Fig. 2 illustrate the basic
where \; (resp.,p;) is the fraction of edges with left (resp.,operations in the decoding algorithm.
right) degree: and dyax (resp.,d, max) IS the maximal left After [ such iterations, the algorithm would produce the exact
(resp., right) degree of any edge. The bipartite graph for an irrdgAPPRs of all the bits if the bipartite graph defined by the
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parity-check matrix contains no loops of length up2io[9]. we need to apply logarithm operations on both sides of (4) to
If we assume that the graph is loop-free, we can analyze ttigange the product into the pair of summations
decoding algorithm directly because the incoming messages to

every node are independent. Also, by the general concentration kol
theorem of [1], for almost all the graphs in a code ensemble selt, = ngnqi (mod 2)
(A, p) and almost all inputs, the decoder performance will con- =1

verge to that of a corresponding loop-free graph as the codewgﬂud
length approaches infinity.

Based on the assumption above, the following decoding anal- r s
ysis tries to track thaveragetraction of incorrect messages that tanh 5‘ - Z log
is passed in each iteration of the decoding algorithm. Here, the =t

fraction of incorrect messages is averaged over all the bits ofyere the sign functiosen,, = 0if > 0, andsgn,, = 1 other-

codeword. . . _ wise. Note that the summation for (5) is the mod-2 summation
First, we consider a regulgj, k) LDPC code. Using the fact of the sign parts and the real summation of the magnitude parts.

that LDPC codes are linear block codes and both the channel gighrefore, the density of can be computed in the Fourier do-

the decoding algorithm considered are symmetric [1], we a$min in a manner similar to the computation of the density of

sume that the all-zero codeword is sent. Assuming BPSK mqﬁ-(z)_

ulation (0 — 1,1 — —1), itis easy to see that the fraction of Thjs two-phase computation algorithm, called density evolu-

incorrect messages that is passed is equal to the fraction of mgs, makes it possible to track the fraction of incorrect mes-

sages with negative signs. Considering the message passed §8fespPe(1). At a certain noise level, we can run this algorithm

the bit node to the check node, we have [2] iteratively until the error probability’c(1) either goes to zero

or stops at a finite probability of error. The noise threshett,

denotes the supremum of all values of the noise levelich

thatlim;_., Pe(l) = 0, whereo is the standard deviation of

the noise.

where g, is the initial message conditioned on the channel The density evolution algorithm can be extended to the ir-

output, andr;,i = 1,...,4 — 1, are the incoming LAPPR regular LDPC codes with only minor modifications, taking into

messages from all the incident edges, other than ed§ece consideration the irregular degree distribution pair. For example,

go andr; are all random variables, the density functionydé  at a bit node, we have

the convolution of the density functions of all the elements in

(1). This convolution can be efficiently computed in the Fourier P =F Y F(P) - M(F(Ri_1))) (6)

domain. LetP, denote the density afy, F; denote the density ‘

of ¢ after{ iterations, andR; denote the density of after/ WhereA(z) = S"#5 \;2"~L is as defined above. In the fol-

iterations. Lettingt” denote the Fourier transform operation lowing, we briefly review the application of the algorithm above
to the AWGN channel, and then show how to apply it to the un-

P =F YF(P)(F(Ri_))Y 1) (2) correlated Rayleigh fading channel.

log

a4
tanh 5 ‘ (5)

j—1
=9 + Z 7 1)
i=1

whereRy(r) can be set td\o, andA, is defined as 1 it = 0 A. AWGN
ando if » # 0. We can writeP, = P} + P?, whereP} is sup-  If the code symbok is mapped into the signal point =
ported on(—oo, 0] and P? is supported o1f0, co). Therefore, (1-2x), the sampled matched filter outpubas the conditional
the fraction of incorrect messages aftaterations can be de- probability density function (pdf)
fined ag )

0 Pyl w) = ——— eXP<—M> ™
Pdnz/‘}ﬂ@dz @) 2mo? 20

- whereo? = (1/2R - (E,/Np)) is the variance of the noise, and
Onthe other hand, considering the messagassed fromthe R is the code rate. Assumingr(z = 0) = Pr(z = 1) = 1/2,

check node to the bit node we have [2] the message observed from the channel can be expressed as
. k-l 4 Pz =0]y) 2
T . qi =log —— %~ = —y. 8
tanh 3= J:Il tanh 5 (4) qo = 10g Plz=1|y) o2 (8)

whereg;,i = 1,... k — 1 are the incoming LAPPRs from the.ln the decoding analysis, since we assume the all-zero codeword

neighbor edges, other than edgelo use the same method a%irslc?t?(;’r:.;w : 1, achange of variable in (7) yields the density
described for the bit node to calculate the density funcfign dor

0—2

2
B | o (20— 2)
1in general, if density functio®; has a point mass at zero, half of the mass Py(qo) = ——exp| ———F+— (9)
should be included intde(7). 2y 2w 2(4/0%)
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which is a Gaussian density with mezfv? and varianced /o2,  Averaging over the density function af we get
and this density function can be used in the density evolution

analysis. P _oA? A%o?gd
o) = 551 P\ ()2
B. Uncorrelated Rayleigh Fading 2 2
_ _ y 2 ATgp Ago [ —Ag
For the uncorrelated Rayleigh fading channel, the conditional x x P  8(E[a])? - E[a]Q 2E[a] ) |’

df of the matched filter output is
p I utpui | (16)

—w-aqa 2
ply|w,a) = # exp<—%) (10) whereA = \/02/(202 + 1) andQ(x) = (1/2) erfc(x/v/2).

IV. SYMMETRY AND STABILITY

wherea is the normalized Rayleigh fading factor wif{a?] = , ) . .
1 and density functiop(a) = 2a exp(—a?2). Symmetry is an important property associated with the mes-

1) Ideal Side Information (SI)When we have ideal SI, the S29€ distribution in the density evolution of belief propagation.

initial message passed from the bit node to the check node i€'S defined in [2], & density functiorf on [~oc, oc] is sym-
metric if it satisfiesf(x) = f(—=z)e” for all z € [0, ], and

Pz =0|y,a) 9 it is shown that the initial message distributions for all the bi-

g =log 5———"—+ = Sy-a (11) nary-input symmetric channels discussed in [2] satisfy this con-
Plx=1ly,a) o dition. For the initial message density function of the AWGN
channel, (9), it is easy to verify that
In the decoding analysis, assuming= 1, ¢o has the condi-
tional density function v (qO _ 1)2
Po(@) = —=exp| —~5 75—
N 2V2r 2(4/07)
Polgo|a) = — o %'_) (12) o (0 — 2)°
ol@|a)= —F—€exXp| ———(F—575— = A o)
2a \Y 27 8@2/0'2 2\/% exp< 2(4/0_2) ) exp(qo)
= Fo(—qo)e™. an

To get the unconditional density function®f, we average (12)
over the density function of, so that It was shown in [2] that the symmetry property is invariant
under density evolution, i.e., iy is symmetric, then the density

902\ 2 functions of F; and R, calculated in density evolution are also
© 5 90 — %) ) symmetric. It was next proved in [2] that if the density function
Po(go0) = /0 Vo KPPl — 72702 /o2 exp(=a”)da  of p is symmetric, the average fraction of incorrect messages
as defined in (3) is a nonincreasing functiord ahd will always
o (V20T F1-1) converge to a certain value, which might be zero.
= Ton exp 7 In [2], the symmetry property is then used to prove another
2 important property of density evolution, which is summarized
- (U_Zqo _ a\/mf as follows: There exists an> 0 such that if density evolution
% / exp| — 2a . da. isoinitialized with a symmgtric message denskty satisfying
0 20 J_.. Po(z) dz < e, the fraction of incorrect messages will con-

(13) verge to zero under density evolution if

N(©0)p'(1) < ¢’ (18)

2) No Side Information (No SI)When no Sl is available,

following [11], we assume tha®(y | w) is Gaussian distributed
in the region of the most probabie and we approximate, as

— o - —x/2
"o~ %y Bl ) s=—log <2/0 Po(z)e da:) ) (19)

where the parameteris defined as

] N . Conversely, ifA’(0)p'(1) > ¢®, then the fraction of incorrect
where E[a] = 0.8862. The corresponding conditional dens'tymessages is strictly bounded away from 0.

function is In [2], (18) is referred to as the stability condition for the

y channel with initial message densify. For example, for the
9o — %2[‘11) AWGN channel, the stability condition is given by [2]

Polaola) = —2—exp| -~ 2 | )
2E[a]V27 8(E[a])?/o N(0)0/ (1) < o (20)



928 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 5, MAY 2001

We now show that the initial message density function of the V. CODE OPTIMIZATION: DIFFERENTIAL EVOLUTION
uncorrelated Rayleigh fading channel with Sl also satisfies the
symmetry property, and then we derive the stability conditio
for this channel. For the density function of the uncorrelatet
Rayleigh fading channel with Sl, as defined in (13), it is eaSIIP‘0
verified that

Since we can determine the threshold value for each LDPC
de ensemble defined by its degree distribution paip), we

to find the degree distribution pair which yields the largest
ssible noise threshold for a given channel. This problem is
a nonlinear cost function minimization problem with contin-

N2 uous space parameters, a problem where differential evolution
o qo — 20% has been shown to be effective and robust [7]. This technique
Fo(q0) =/ Virhad ey exp(—a®)da  has been successfully applied to the design of good irregular
0 T LDPC codes for both the erasure channel [8] and the AWGN
pa channel [2]. For the AWGN channel, Richardsaral.[2] found
= exp(qo) / \/—— the best degree distribution pair for ratg2 codes, which has a
0 9 threshold within 0.06 dB of capacity! We now show that this
(—q 2;2 ) method is also very effective in the design of good irregular
X exp _W exp(—a”) da LDPC codes for a Rayleigh fading channel with SI.
Before describing the differential evolution technique, we
= Po(—qo) exp(qo). (21) need to remove the dependencies among the components of

the degree distribution pair. It is easy to verify that the degree

That is, the initial message density function of the uncorr(g—IStrIbUtlon pair(, p) satisfies the following constraint

lated Rayleigh fading channel with Sl satisfies the symmetry Z% _ KZ %

condition. From (19) and (13), we have (24)

oo whereK =1 — R andR is the code rate. Also, we have
e = 2/ Po(qo)e_’IO/2 dqo d
0 max - max

= g A2—1—ZAZ, p2—1—sz (25)

d
A CL\/%C
2 Using (24) and (25) to solve foy, .. gives (26), shown at the
o (q - ?) —g0/2 bottom of the page.
X exp| ———F575 | ¢ 972 dgo
o 8a2 /a2 Next, let L denote the number of free elements of the degree
distribution pair(\, p). The dependences (25) and (26), com-

=2

_ /°° 9 eXp(_ <1 4 L) a2> da bined with the fact thah; =p= _0, show thatl, = dj pax +
0 252 d, max — 9. We form anL-dimensional parameter vectpr=
1 A3y s Ady =1, P35 - - -5 Pd...... )» @Nd OUr goal is to optimally
1 /<1 + ﬁ) (22)  choose the elements of this vector so that the corresponding de-

gree distribution pair yields the largest noise threshold.
Differential evolution is a parallel direct search technique.
arting from an initial set of vectors, the algorithm iteratively
updates each vector in the set simultaneously until a superior
1 vector is found which has the best cost function value. By up-
252" (23) dating all the vectors of the set in parallel, the algorithm can
help the vectors escape local minima and prevent misconver-
In the next section, we will numerically optimize the degregence. The differential evolution algorithm that we used in the
distribution pair for this channel, and we will verify empiri-code optimization is based on [8] with minor modifications. In
cally that they fulfill condition (23). As to the Rayleigh fadingthe following, we briefly review it.
channel without SI, the initial density function (16) does not 1) Initialization — We start with a certain noise leve|
have the symmetry property. This is because the expression (14) which is the standard deviation of the noise. For the first

i.e., the stability condition for the uncorrelated Rayleigh fading
channel with Sl is t

N(0)p'(1) <1+

for the messagey, is only an approximation. Nevertheless, generation7 = 0, we randomly choosé&/' P L-dimen-

as shown in the numerical results, the density evolution tech-  sional vectorp,; ¢,4 =0,1,...,NP — 1, whereNP =
nigue for determining the thresholds still works quite well for 10L is a constant that remains fixed during the optimiza-
this channel. tion process [7]. For each vectgs , we run the den-

S e (G- y) KT (B d)

)‘dz max
( dimax )

(26)
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sity evolution as discussed in Section Ill for a certair 107

number of iterations (e.g., 1000) and record its residu
error Pe; ¢, i.e., the fraction of incorrect messages as de
fined by (3). We label the vector with the smallé3t;

as the best vectoppest, - 4

2) Mutation — For the next generatios + 1, new vec- 10
tors are generated according to the following mutatiol
scheme. Foreach=0,1,..., NP—1, randomly choose % B R
distinct integers1, 72, 73 andr4 from [0, N P — 1], each » :::’;”SQI IR RIS o N
different from the index, and define 107 :

Vi, G+1
= Prest, + F(Pr1i,¢ — Pr2,c + Pra,g — Prag) (27)

wheref" is a real constant which controls the amplifica- ;551! E ; ; N I ;
tion of the differential variation. We choogé = 0.5 in 11 15 2 2.5 3l 35 al 45
our optimization [8]. The use of two vector differences ~ Thesnold ED/NO(dB) - Trveshola Threshold

increases the vanation, thereby helping to prevent the é!é 3. Comparison of thresholds and simulation results for tgfe-(3, 6)

gorithm from getting int(_) alocal minimum. For each neWegyjar LDPC codes on the AWGN channel, and the uncorrelated Rayleigh
vector, we run the density evolution for the same numbéiding channels with or without SI. The codes used in simulations are of block

of iterations and record its residual erréty; ¢ 1. size10” and10°.
3) Selection — For each = 0,1,...,NP — 1, com-
pare Pe; g and Puvigy1. If Pei is larger than conjecture that as the block size goes to infinity, the simulation
Pvicy1,Pig+1 is set tov; gy, Otherwise,p; a1 results will converge to the thresholds. If the conjecture is
is set top; . We denote the vector with the smallestrye, the threshold can be considered as the capacity of the
residual error byphest,G+1- corresponding code parameters, i.e., the best performance that
4) Stopping criterion — If the residual errétenes,c+1 0f  such an LDPC code can achieve with the message passing
the vectorpyest,c+1 is not zero (practically, if it is not decoder. The results show that the regytars) LDPC code
less than a very small value, e.40,®), return to step 2. suffers a loss of nearly 2 dB and 3 dB, respectively, in the
Otherwise, increase the noise leveslightly, and return fading channels with SI and without S, relative to the AWGN
to step 1. If the noise level is increased to a value for whigthannel.
the residual error of the best vector does not converge tocombining the density evolution and differential evolution
zero after a very long running time, the process is stopp&gchniques as described above, we searched for good degree dis-
We label the vector whose residual error goes to zerohuytion pairs with constraints on the maximal left degigga
the highest possible noise level as the best vector, and {8 the uncorrelated Rayleigh fading channel with SI. Similar

corresponding noise level as the noise threshald to what has been observed for the erasure channel [8] and the
AWGN channel [2], we found that for the fading channel with
VI. RESULTS SI, good degree distribution pairs exist with only a few nonzero
A. Threshold Calculation and Code Optimization terms. Therefore, in the results shown, we use only three con-

.secutive nonzero right degrees and limit the nonzero degrees on

Using the density evolution technique discussed in Sectna;;]e left to the degrees 2, 3, and several carefully chosen
lll, we can calculate the threshold values of LDPC codes for I

) egrees in-between, which greatly reduces the search space and
both the AWGN channel and the uncorrelated Rayleigh fad"}%gsequently saves on sea?ch tirze P
channel with or without SI. For convenience, in the following '

results, we will express the threshold by botrand its cor- The resulting degree distribution pairs of rdt& codes for

; . the Rayleigh fading channel with Sl are shown in Table | for
responding(£;, /No) (dB). Sinceo® = (1/2R - (E,/No)), dimax = 10,20,30, and50. Each column corresponds to one

:Eettlhresholtlchaln a_|S% b,S- de;med as the f‘hmaff$wﬁ ‘T‘;Ch articular degree distribution pair. For each degree distribution
atlim;., Pe(l) = 0. Fig. 3 compares the thresholds angair, the coefficients ok andp are given, as well as the noise

the simulation results of rate/2 regular(3,6) LDPC codes.t resholda™, and the correspondingEy /No)* in dB. Also
on both the AWGN channel and the uncorrelated Raylelq%ted is \%, the maximal value of, satisfying the stability

fading channel, where both ideal Sl and no Sl are consider%
As shown, the thresholds for regulé3,6) LDPC codes on

the AWGN channel, the fading channel with SI, and th
fading channel with no SI, are 1.10 dB, 3.06 dB, and 4.06 d

respectively. The3,6) LDPC codes used in the simulations Similar to the results that Richardsetal.[2] obtained for the

. R o :
are of block size 19 and 1.0 ' Th? num_encal threshold AWGN channel, the thresholds of the degree distribution pairs
results are very consistent with the simulation results, and we .~ . : .

optimized for the fading channel with Sl are very close to the ca-

2In the simulation results, the block size used is codeword block size.  pacity of this channel (the capacity can be calculated following

hdition (23). As can be seenp < A; for every degree
distribution pair in the table, which confirms that these degree
istribution pairs satisfy the stability condition. Also, the higher
e maximal left degree, the better the performance of the code.



930 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 5, MAY 2001

TABLE | 04 1 ; % @ : ; §
GooD DEGREEDISTRIBUTION PAIRS OF RATE-1/2 FOR THE UNCORRELATED : : : : : : :
RAYLEIGH FADING CHANNELS WITH SI AND WITH CONSTRAINTS ON THE
MAXIMAL LEFT DEGREESd; max = 10,20,30 AND 50. FOR EACH
DISTRIBUTION PAIR THE NOISE THRESHOLD VALUE ¢* AND THE
CORRESPONDING( E;, /Ng)* (dB) ARE GIVEN. THE MAXIMAL VALUE OF
A2 SATISFYING CONDITION (23), A5, IS GIVEN FORo = ¢* AND THE
GIVEN p’(1). NOTE THAT THE CAPACITY FOR THIS CHANNEL AT CODE

e

w

a
T

- - codes ;'thimized for AWGN .channel )
—o— codes optimized for fading channel with SI

o
w

0.2

the method introduced in [12]). At ratie’2, the capacity of the
fading channel with Sl is 1.830 dB. The degree distribution pa’s

with d; .x = 50 has the threshold of 1.900 dB, which is only“g 0.1

]

0.07 dB away from the capacity! Compared to the reg(aé) © ; ;
LDPC code whose threshold on this channel is 3.06 dB, op s i i

0.15

g
&
£
z
2
S
o
RATE 1/2 15 1.830 dB 5o.25
2
dlmaz [ 10 | 20 I 30 { 50 :g- 0.2}
A3 0.300932 | 0.253856 | 0.229439 | 0.204885 g
Az 0.292439 | 0.246544 | 0.220033 | 0.194255 §
A3 0.253636 | 0.230609 | 0.222611 | 0.206322 £ 0.15
A4 0.060454 | 0.002045 | 0.000100 | 0.000111 j
A6 0.046487 | 0.000919 § 0.1
A7 0.150161 | 0.069962 | 0.092232
g 0.035344 | 0.201925 | 0.111427 005 : ; : ; ; ; ;
Ag 0.031610 0.014172 Mo 15 20 25 30 35 40 45 50
)\10 0.361861 Maximum left degree
A1s 0.000531 | 0.113788 Fig. 4. Comparison of the threshold values on the AWGN channel of the
Ao 0.004812 rated /2 degree distribution pairs optimized for the AWGN channel and the
Azo 0.283998 fading channel with SI. For each distribution pair, the gap between its threshold
Azg 0.001791 value for the AWGN channel and the capacity of this channel is shown. Note
Aso 0.282128 | 0.001514 that the capacity for the AWGN channel at rat€ is 0.1870 dB.
Adg 0.003503
Aso 0.262676 0.4 T T T T T T
Pe 0.007254 o - —— - -
S : des optimized for AWGN channel :
P 0.979220 | 0.000952 @ 038P~ SRR = iﬁdii 22:E$!§Zd fg:fading c?ma?mr:;?wnh Sl [t
08 0.013526 | 0.951871 | 0.254080 :j; : : : : : : :
Do 0.047177 | 0.739388 | 0.346906 £ o3
P10 0.006532 | 0.645429 e
P11 0.007665 _‘E“
7 0.7869 | 0.7962 | 0.8013 | 0.8035 §°-25‘
(£)aB | 2082 | 1980 | 1924 | 1.900 K]
z
j5)
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8
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mized irregular LDPC codes have much better thresholds. 10 1 2 2 Mtaximum ot degrezs 0 * %
It is interesting to see how the degree distribution pairs op-

timized for the fading channel with SI perform on the AWGNFig. 5. Comparison of the threshold values on the fading channel with SI of

. . .. theratel/2 degree distribution pairs optimized for the AWGN channel and the
channel, and vice-versa. We compare the ndtbdegree distri- fading channel with SlI. For each distribution pair, the gap between its threshold

bution pairs optimized for the AWGN channel (refer to [2] foralue for the fading channel with SI and the capacity of this channel is shown.
the detailed degree distribution pairs) and the degree distributfdgie that the capacity for the fading channel with Sl at g2 is 1.830 dB.

pairs optimized for the fading channel with Sl in Figs. 4 and 5.

In Fig. 4, for each degree distribution pair, we show the gap bgets from its check nodes, the more reliably it can provide its
tween its threshold value for the AWGN channel and the AWGblwn correct value. On the other hand, it is better for a check
channel capacity for rate/2. In Fig. 5, for each degree distri- node to have low degree, in order to provide more accurate infor-
bution pair, we show the gap between its threshold value for th&tion to its bit nodes. These two competing requirements will
fading channel with S| and the capacity for that channel for rat@ve different balances for different channels. The degree distri-
1/2. It can be seen that the degree distribution pairs optimizédtion pair withd; ,.,.,. = 50 optimized for the AWGN channel

for the fading channel with Sl are also very good distributiof?] has average right degree 10.24. However, the degree distribu-
pairs on the AWGN channel, e.g., considering the degree distien pair withd; .,,ox = 50 optimized for the fading channel with
bution pair withd; ,,.. = 50 optimized for the fading channel S| has average right degree 9.66. The results suggest that, com-
with Sl, its threshold value for the AWGN channel is only 0.1®ared to the AWGN channel, the fading channel with S| favors
dB away from the channel capacity. Similar results can be dlewer average right degree. The same relations can be observed
served from Fig. 5 for the converse situation. As suggestedfar the degree distribution pairs with ,,,,. = 10, 20, and30.

[4], in the construction of block codes, it is better to have high Tables Il and Il give the raté/3 degree distribution pairs we
degree for the bit nodes, since the more information a bit nodptimized for the AWGN channel and the uncorrelated Rayleigh
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TABLE I TABLE Il
GooD DEGREEDISTRIBUTION PAIRS OF RATE-1/3 FOR THEAWGN GooD DEGREEDISTRIBUTION PAIRS OF RATE-1/3 FOR THE UNCORRELATED
CHANNELS AND WITH CONSTRAINTS ON THEMAXIMAL LEFT DEGREES RAYLEIGH FADING CHANNEL WITH SI AND WITH CONSTRAINTS ON THE
dimax = 10,16,30 AND 50. FOR EACH DISTRIBUTION PAIR THE NOISE MAXIMAL LEFT DEGREESd; max = 10,16,30 AND 50. FOR EACH
THRESHOLD VALUE ¢* AND THE CORRESPONDING(E}, /No)* (dB) ARE DISTRIBUTION PAIR THE NOISE THRESHOLD VALUE ¢* AND THE
GIVEN. THE MAXIMAL VALUE OF A5 SATISFYING CONDITION (20), A;, IS CORRESPONDING{ E;, /N )* (dB) ARE GIVEN. THE MAXIMAL VALUE of
GIVEN FOR o = ¢* AND THE GIVEN p’(1). NOTE THAT THE CAPACITY FOR A2 SATISFYING CONDITION (23), A, ISGIVEN FORo = o* AND THE
THIS CHANNEL AT CODE RATE 1/3 IS —0.4954 dB. GIVEN p’(1). NOTE THAT THE CAPACITY FOR THIS CHANNEL AT CODE
RATE 1/3 150.4885 dB.
dmaz | 10 | 16 [ 30 [ 50
Y 0.342056 | 0.208223 | 0.264470 | 0.237207 dmaz | 10 ] 16 | 30 [ 30
A2 0.329076 | 0.287567 | 0.256988 | 0.225792 A3 0.351321 | 0.312740 | 0.279123 | 0.248068
A3 0.261590 | 0.230039 | 0.217847 | 0.207865 Az 0.328411 | 0.298433 | 0.267474 | 0.237738
Aq 0.048686 | 0.002147 0.012662 A3 0.300171 | 0.245016 | 0.228605 | 0.200028
As 0.068969 As 0.001721 0.026700
A6 0.095590 A5 0.007173
A7 0.163553 | 0.107496 A 0.001274 | 0.167659
A 0.019108 | 0.061250 | 0.064003 A7 0.140199 | 0.094505
Ao 0.044084 | 0.032510 Ag 0.054426 | 0.050632
A1o 0.360648 0.001780 | 0.012288 Ag 0.000662 0.063206 | 0.028717
A5 0.100307 Alo 0.367760 0.006163 | 0.060597
A6 0.296580 A1s 0.057204
A2g 0.002474 Ale 0.281719
Aso 0.252024 | 0.030314 A29 0.029347
Aso 0.206763 Aso 0.210580 | 0.053621
Pa 0.000294 | 0.003426 Ago 0.174248
ps 0.998683 | 0.424437 Aso 0.016010
P6 0.001023 | 0.572137 | 0.882069 | 0.349540 Pa 0.024056 | 0.004024
7 0.114372 | 0.598609 05 0.974961 | 0.547412 | 0.049352
Ps 0.003559 | 0.051851 Pe 0.000983 | 0.448564 | 0.949897 | 0.538274
o 1.2625 1.2714 1.2837 | 1.2858 o1 0.000751 g?ggggg
Ep ) P8 .
(£) dB | -0.2637 | -03247 | -0.4084 | -0.4225 - e
(&) aB | o611 | oes17 | 05924 | 05712

fading channel with SI. Similar to the ratg’2 case, the thresh-

olds of the degree distribution pairs approach the correspondingpc ir2, is constructed according to the degree distribution
channel capacities. The threshold of the degree distribution pgiiir with d; ,... = 16 optimized for the fading channel with
optimized for the AWGN channel With; . = 50 is only 5| as shown in Table IlI, with thresholds e0.25 dB and 0.68
0.07 dB away from the channel capacity. The threshold of th on the AWGN and fading channel with SI, respectively. The
degree distribution pair witll; na.x = 50 optimized for the third one, LDPC ir3, is constructed according to a degree distri-
fading channel with Sl is only 0.08 dB away from the capacityytion paif with d; . = 16, which has thresholds 6£0.18

of the corresponding channel. Again, we compare both clasgg$and 0.96 dB on the AWGN and fading channel with SI, re-
of rate- /3 degree distribution pairs on the AWGN channel angpectively. The last one, a quasi-regélaDPC code R with all

the fading channel with Slin Figs. 6 and 7, respectively. It tumst nodes degree-3, half of the check nodes degree-4, and half of
out that, as for rate;/2 degree distribution pairs, the rat¢3 tne check nodes degree-5, has thresholds of 0.85 dB and 2.13 dB
degree distribution pairs optimized for the fading channel withy, the AWGN channel and the fading channel with SI, respec-
Sl are also very good distribution pairs for the AWGN channglely. Among the four codes, irl, ir2, and ir3 are all very good

and vice-versa. codes on both the AWGN channel and the fading channel with
_ _ Sl, whereas irl has the best threshold on the AWGN channel and
B. BER Simulation Results ir2 has the best threshold on the fading channel with SI. In the

As shown in Fig. 3, the threshold values precisely predict tig@nstruction of the parity-check matrices for the three irregular
asymptotic performance as the block length of the LDPC codeBPC codes, we made all the degree-2 nodes loop-free and all
approaches infinity. We are also interested in the performar@ithem correspond to nonsystematic bits. For all four codes, we
of the_ optimized |rregula_r LDPC codes Wher? finite block size is SThis degree distribution pair was taken from Sae-Young Chung'’s web site:
considered. In the following results, we considered four t&te- http://truth.mit.edu/~sychung/gaopt.html, which is an irregular LDPC codes de-
LDPC codes at a block size of 3072. The first one, LDPC ir&ign applet for design of good LDPC codes on an AWGN channel. The design

. . bl . -method assumes Gaussian message densities, which is suboptimal since it is not
is constructed according to the degree distribution pair wi ue for the messages passed from check nodes to bit nodes. However, it turns

dimax = 16 optimized for the AWGN channel, as shown irout that this approximation makes the design much faster, yet still very effec-
Table Il. The degree distribution pair has thresholds-6f32  tive. Refer to [6] for details.
dB and 0.78 dB on the AWGN channel and the fading channefFor ratei/3 (j, k) regular LDPC codes, if we chooge= 3, we cannot

. . o makek to be an integer by the constraints of (24). Therefore, we choose half of
with Si, respectively. Note that the capacities for these two chgfz check nodes degree-4 and half of the check nodes degree-5. We denote this

nels are-0.495 dB and 0.488 dB, respectively. The second onegde as a raté¢/3 quasi-regularLDPC code.
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. . Fig. 8. Simulation of ratd-/3, block size 3072, quasi-regular LDPC code
Fig. 6. Comparl;on_ of _the th_resholq \_/alues on the AWGN channel of ﬂ?f, irregular LDPC codes irl, ir2, and ir3 on both an AWGN channel and an
rate1/3 degree distribution pairs optimized for the AWGN channel and th& orrelated Rayleigh fading channel with S

fading channel with SI. For each distribution pair, the gap between its threshold” ’

value for the AWGN channel and the capacity of this channel is shown. Note

that the capacity for the AWGN channel at rag3 is —0.4954 dB. 107"
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0053 1'5 20 2'5 3'0 3'5 4'0 415, so Fig. 9. Simulation of ratd-/3, block size 3072, Turbo code, irregular LDPC
Maximum left degree codes irl and ir2 on both an AWGN channel and an uncorrelated Rayleigh

fading channel with SI.
Fig. 7. Comparison of the threshold values on the fading channel with SI of
the ratel /3 degree distribution pairs optimized for the AWGN channel and the

fading channel with SI. For each distribution pair, the gap between its thresholdIn Fig. 9, irl and ir2 are compared to(&, 33/31, 33/31)

value for the fading channel with Sl and the capacity of this channel is sho i

Note that the capa%ity for the fading channel wi‘:h Slyat igté is 0.4885 dB. V\Shr:%% tc;:)gﬁ ,[Ox:l\-/:\g/]GOI\fl ?ﬁazigeagg);ﬁ ilisoipedlatthe ed ?:;Tr?gcgf?sn;aetle
with SI. We can see that irl and ir2 achieve virtually the same

avoided length-4 loops in the parity-check matrices. For the performance as the turbo code. On the AWGN channel, irl is

regular codes, the bit error rates (BER) are given for systemadightly better than the other two codes, while on the fading

bits only. For the regular code, the BER is given for all bits. channel with SI, ir2 is slightly better.

Fig. 8 compares the simulation results of these four LDPC Since both LDPC codes and turbo codes have excellent
codes on both an AWGN channel and an uncorrelated Rayleiggrformance, they are being considered as potential candidates
fading channel with Sl. Itis shown that all three irregular LDP®@r mobile communications systems. The following results
codes achieve excellent performance on both channels. Notasider one such scenario—a land mobile channel with a
that the simulation results reflect the same relative performandelay constraint [13]. We assume the carrier frequency is 900
as predicted by the computed threshold values. Furthermore, kfidz, the source rate is 9.6 kb/s, the code raté/i3, and the
irregular codes perform much better than the regular code. Fmdeword block size is 3072. Therefore, the delay of the system
example, at a BER of x 10~%, ir2 outperforms the regular is 106.7 ms. Three typical mobile speeds are considered: 4 m/h,
LDPC code on the AWGN channel and fading channel with SI0 m/h, and 70 m/h; the corresponding normalized Doppler
by about 0.7 dB and 1.0 dB, respectively. shifts f,T, are1.85 x 1074,1.39 x 10732, and3.24 x 1073,
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i —— Turbo code,interleaver
—— LDPCir2, interleaver |:
—— ]_DPC ir_2, no interleaver B

i ~—— LDPCir2, interleaver |\
-+ - LDPC ir2, no interleaver |
| —e— LDPCir3, interleaver
-0~ LDPC ir3, no interleaver

2 4 6 8

10 ' :
Eb/NO(dB) 2 4 6 8 Eb/h]g(dB) 12 14 16 18

Fig. 10. Simulation of ratd/3, block size 3072, turbo code with interleaver,Fig. 11. Simulation of rate-/3, block size 3072, irregular LDPC codes ir2
irregular LDPC codes ir2 with and without interleaver on the correlatesind ir3, both with and without interleaver on the correlated Rayleigh fading
Rayleigh fading channel with SI, speed4, 30 and70 mph. channels with Sl, speeg 4,30 and70 mph.

respectively. Heref, is the Doppler shift, and’; is the coded as a 1.2 dB gain over the turbo code. The ir2 code without the
symbol duration. In our simulation work, a modified Jakemmterleaver still performs slightly better than the turbo code.
model [14] is used as the channel model. In the decoding ofAllthese results demonstrate that, implicitly, there is a built-in
turbo codes, every bit needs to make use of the informatitinterleaver” in the parity-check matri¥f. In principle, it is
of its neighbor bits to update its own likelihood informationpossible to design this “interleaver,” i.e., to design the matrix
Therefore, a channel block interleaver is introduced to bre@k such that all the nonzero entries i are distributed so as
up the correlation of channel fades among the consecuti¢eachieve the maximal “interleaver” gain. Another conclusion
bits for the turbo coding schemes. However, in the decodigawn from these comparisons is that for fading channels with
of LDPC codes, when bit updates its related informationmoderate-to-slow variations, that is, where less time diversity
from a parity check, e.g., check, it only makes use of the can be exploited from the coding schemes compared to the un-
information from those bits participating in chegk Because correlated fading channel, the irregular LDPC codes can per-
the parity-check matrixd of the LDPC code is randomly form better than the turbo codes.
constructed, the probability that these bits will be the neighborsin Fig. 11, four coding schemes are compared: LDPC code
of bit »n is very small. Therefore, when bitis in a deep fade, ir2 with and without a channel block interleaver, and LDPC
it is very likely that some of these bits will not be in a deegode ir3 with and without a channel block interleaver. As can be
fade and they can provide more reliable information for/bit seen, the ir2 code with the interleaver always has a gain about
The random construction of the parity-check matrix and g2 ~ 0.3 dB over the ir3 code with the interleaver at any mo-
sparseness property suggest that the decoder of LDPC cdgigsspeed considered here. Similar results can be observed for
has a built-in “interleaver,” implying that LDPC codes shouldhe ir2 code without the interleaver compared to the ir3 code
achieve very good performance on correlated fading channefishout the interleaver. The results show that the LDPC codes
even without using a channel interleaver. which have better thresholds in the uncorrelated fading channel
In Fig. 10, three coding schemes are consideré; 33/31, achieve better simulation performance in the correlated fading
33/31) turbo code with a channel block interleaver, and LDPChannels as well.
code ir2 with and without a channel block interleaver. The same
block interleaver is used for both codes, where the encoded sym-
bols are read in row-by-row and read out column-by-column. At
a speed of 70 m/h, the ir2 code with the interleaver performs theln this paper, we have shown that the numerical analysis tech-
best. Interestingly, the ir2 code without the interleaver shows thigjue for calculating the threshold of the LDPC codes for the
same performance as the turbo code, and only suffers a los®\dfGN channel can be applied to the uncorrelated flat Rayleigh
about 0.25 dB relative to the ir2 code with the interleaver. Aading channel. In addition, using the nonlinear optimization
a speed of 30 m/h, the ir2 code with the interleaver perforneschnique of differential evolution, we optimized the degree dis-
better than the turbo code by about 0.6 dB over a wide rang#ution pairs for the uncorrelated Rayleigh fading channel and
of BER, and even the ir2 code without the interleaver shovghowed that their threshold values are extremely close to the
slightly better results than the turbo code. When the speed of ttapacity of this channel. Simulation results for moderate block
mobile slows down to 4 m/h, the performance gap between tsize showed that the optimized LDPC codes can achieve excel-
ir2 code with the interleaver and the turbo code becomes widiemt performance on the Rayleigh fading channel, and can out-
At aBER of1073, the ir2 code with the interleaver has as muchperform turbo codes on the correlated Rayleigh fading channels.

VIlI. CONCLUSION
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We also demonstrated that even without a channel interleay
the LDPC codes still can achieve very good performance on ci
related fading channels. This phenomenon may be a reflect
of the built-in “interleaver” in the parity-check matri .
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