
924 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 5, MAY 2001

Performance Analysis and Code Optimization of
Low Density Parity-Check Codes on Rayleigh Fading

Channels
Jilei Hou, Student Member, IEEE, Paul H. Siegel, Fellow, IEEE, and Laurence B. Milstein, Fellow, IEEE

Abstract—A numerical method has recently been presented to
determine the noise thresholds of low density parity-check (LDPC)
codes that employ the message passing decoding algorithm on the
additive white Gaussian noise (AWGN) channel. In this paper,
we apply the technique to the uncorrelated flat Rayleigh fading
channel. Using a nonlinear code optimization technique, we opti-
mize irregular LDPC codes for such a channel. The thresholds of
the optimized irregular LDPC codes are very close to the Shannon
limit for this channel. For example, at rate one-half, the optimized
irregular LDPC code has a threshold only 0.07 dB away from
the capacity of the channel. Furthermore, we compare simulated
performance of the optimized irregular LDPC codes and turbo
codes on a land mobile channel, and the results indicate that at a
block size of 3072, irregular LDPC codes can outperform turbo
codes over a wide range of mobile speeds.

Index Terms—Code optimization, density evolution, low-density
parity-check codes, Rayleigh fading channels.

I. INTRODUCTION

RECENT advances [1], [2] in error correcting codes
have shown that, using the message passing decoding

algorithm, irregular low density parity-check (LDPC) codes
can achieve reliable transmission at signal-to-noise ratios
(SNR) extremely close to the Shannon limit on the additive
white Gaussian noise (AWGN) channel, outperforming turbo
codes of the same block size and code rate. LDPC codes have
certain advantages, such as simple descriptions of their code
structure and fully parallelizable decoding implementations.
With iterative message passing decoders, LDPC codes exhibit
an interesting noise threshold effect [1]: if the noise level of the
channel is smaller than a certain noise threshold, the bit error
probability goes to zero as the block size goes to infinity; if the
noise level is above the noise threshold, the probability of error
is always bounded away from zero. Gallager [3] first presented
this result for regular LDPC codes for the binary symmetric
channel (BSC). Lubyet al. [4] showed that the noise threshold
effect also exists for irregular LDPC codes, and they designed
some irregular LDPC codes whose performance is very close
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to the Shannon limit on the erasure channel. Richardson,et
al. [1] generalized this idea to a variety of message passing
decoding algorithms, including the full version of the belief
propagation algorithm [5] which can be applied to a very
broad class of binary-input symmetric channels, such as the
AWGN channel. They developed a numerical technique, called
density evolution, to analyze the performance of the belief
propagation decoding algorithm, enabling the determination
of noise thresholds to any desired degree of accuracy. In this
paper, we apply this technique to the uncorrelated flat Rayleigh
fading channel.

The code optimization of irregular LDPC codes is a nonlinear
cost function minimization problem, a problem where differen-
tial evolution has been shown to be effective and robust [7]. This
technique has been successfully applied to the design of good
irregular LDPC codes for both the erasure channel [8] and the
AWGN channel [2]. We show that this technique is also effec-
tive in the code optimization of irregular LDPC codes for the
uncorrelated Rayleigh fading channel, and the threshold values
of the optimized codes are extremely close to the capacity of
this channel.

This paper is organized as follows. Section II briefly reviews
the basic concepts of LDPC codes. In Section III, we review the
decoding of LDPC codes and the technique of density evolu-
tion for threshold calculations on the AWGN channel. We then
extend and apply this method to the uncorrelated flat Rayleigh
fading channel. Section IV addresses two important properties
related to the convergence of density evolution: symmetry and
stability. We discuss the code optimization technique in Sec-
tion V. In Section VI, we present the threshold calculations and
code optimization results for the uncorrelated Rayleigh fading
channel. We also compare simulation results for the optimized
irregular LDPC codes and turbo codes on an uncorrelated, as
well as correlated, Rayleigh fading channel. In Section VII, we
present our conclusions.

II. L OW DENSITY PARITY-CHECK (LDPC) CODES

An LDPC code is a linear block code specified by a very
sparse parity-check matrix. As a linear block code, an LDPC
code can be represented by a bipartite graph. Suppose the low
density parity-check matrix has columns and rows (the
designed code rate ); the corresponding bipar-
tite graph consists of bit nodes, check nodes, and a certain
number of edges. Each bit node, called a “left node”, represents
a bit of the codeword. Each check node, called a “right node”,
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Fig. 1. Bipartite graph representations of LDPC codes.

represents a parity check of the code. An edge exists between a
bit node and a check node if and only if there is a 1 in the corre-
sponding entry in the parity-check matrix. We refer to the corre-
sponding bit node and check node as the left and right neighbor
nodes of the edge.

Regular LDPC codes are those for which all nodes of the
same type have the same degree, where the degree of a node
is the number of edges for which it is a neighbor node. A
regular LDPC code has a bipartite graph in which all bit nodes
have degree and all check nodes have degree. Correspond-
ingly, in the parity-check matrix , all the column weights are

and all the row weights are. Shown below is a parity-check
matrix of a regular LDPC code. Fig. 1(a) shows its asso-
ciated bipartite graph.

For irregular LDPC codes, the bit nodes (correspondingly the
check nodes) can have different degrees. We say an edge has left
(resp., right) degreeif its left (resp., right) neighbor node has
degree . An irregular LDPC code ensemble is specified by a
degree distribution pair or its corresponding generating
functions and ,
where (resp., ) is the fraction of edges with left (resp.,
right) degree and (resp., ) is the maximal left
(resp., right) degree of any edge. The bipartite graph for an irreg-

Fig. 2. Message passing decoder of LDPC codes.

ular LDPC code is shown in Fig. 1(b), where
, and . The intuition behind the use of

irregular LDPC codes is quite simple: in the decoding process
of irregular LDPC codes, there exists a phenomenon called the
“wave effect” [4], whereby the bit nodes with high degrees tend
to approach their correct values very quickly, and in turn, they
provide more reliable information to the check nodes and sub-
sequently to the bit nodes with lower degrees.

III. D ECODING ANALYSIS

The decoding algorithm for LDPC codes is based on the idea
of belief propagation [5]. As described in [2] and [9], for each
edge of the underlying bipartite graph, the decoding algorithm
iteratively updates two types of loga posterioriprobability ratio
(LAPPR) messages,and . The quantity is the message sent
from the bit node to the check node along a connecting edge
, which is expressed as ,

where denotes the value of the bit node, anddenotes all the
messages coming from the channel and the edges connected to
the bit node, other than edge. The quantity is the message
sent from the check node to the bit node along an edge, which
is defined as , where
denotes the messages coming from the edges connected to the
check node, other than edge. It is important to note that during
the message updating, the incoming message along edgeis ex-
cluded in determining the outgoing message along edge. That
is, similar to turbo decoding [10], onlyextrinsicinformation is
circulated, which turns out to be an important property of good
message passing decoders and which also makes the analysis of
the decoding algorithm feasible [1]. Fig. 2 illustrate the basic
operations in the decoding algorithm.

After such iterations, the algorithm would produce the exact
LAPPRs of all the bits if the bipartite graph defined by the
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parity-check matrix contains no loops of length up to[9].
If we assume that the graph is loop-free, we can analyze the
decoding algorithm directly because the incoming messages to
every node are independent. Also, by the general concentration
theorem of [1], for almost all the graphs in a code ensemble

and almost all inputs, the decoder performance will con-
verge to that of a corresponding loop-free graph as the codeword
length approaches infinity.

Based on the assumption above, the following decoding anal-
ysis tries to track theaveragefraction of incorrect messages that
is passed in each iteration of the decoding algorithm. Here, the
fraction of incorrect messages is averaged over all the bits of a
codeword.

First, we consider a regular LDPC code. Using the fact
that LDPC codes are linear block codes and both the channel and
the decoding algorithm considered are symmetric [1], we as-
sume that the all-zero codeword is sent. Assuming BPSK mod-
ulation , it is easy to see that the fraction of
incorrect messages that is passed is equal to the fraction of mes-
sages with negative signs. Considering the message passed from
the bit node to the check node, we have [2]

(1)

where is the initial message conditioned on the channel
output, and , are the incoming LAPPR
messages from all the incident edges, other than edge. Since

and are all random variables, the density function ofis
the convolution of the density functions of all the elements in
(1). This convolution can be efficiently computed in the Fourier
domain. Let denote the density of denote the density
of after iterations, and denote the density of after
iterations. Letting denote the Fourier transform operation

(2)

where can be set to , and is defined as 1 if
and if . We can write , where is sup-
ported on and is supported on . Therefore,
the fraction of incorrect messages afteriterations can be de-
fined as1

(3)

On the other hand, considering the messagepassed from the
check node to the bit node, we have [2]

(4)

where are the incoming LAPPRs from the
neighbor edges, other than edge. To use the same method as
described for the bit node to calculate the density function,

1In general, if density functionP has a point mass at zero, half of the mass
should be included intoPe(l).

we need to apply logarithm operations on both sides of (4) to
change the product into the pair of summations

and

(5)

where the sign function if , and other-
wise. Note that the summation for (5) is the mod-2 summation
of the sign parts and the real summation of the magnitude parts.
Therefore, the density of can be computed in the Fourier do-
main in a manner similar to the computation of the density of
in (2).

This two-phase computation algorithm, called density evolu-
tion, makes it possible to track the fraction of incorrect mes-
sages, . At a certain noise level, we can run this algorithm
iteratively until the error probability either goes to zero
or stops at a finite probability of error. The noise threshold,,
denotes the supremum of all values of the noise levelsuch
that , where is the standard deviation of
the noise.

The density evolution algorithm can be extended to the ir-
regular LDPC codes with only minor modifications, taking into
consideration the irregular degree distribution pair. For example,
at a bit node, we have

(6)

where is as defined above. In the fol-
lowing, we briefly review the application of the algorithm above
to the AWGN channel, and then show how to apply it to the un-
correlated Rayleigh fading channel.

A. AWGN

If the code symbol is mapped into the signal point
, the sampled matched filter outputhas the conditional

probability density function (pdf)

(7)

where is the variance of the noise, and
is the code rate. Assuming ,

the message observed from the channel can be expressed as

(8)

In the decoding analysis, since we assume the all-zero codeword
is sent, i.e., , a change of variable in (7) yields the density
function of

(9)
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which is a Gaussian density with mean and variance ,
and this density function can be used in the density evolution
analysis.

B. Uncorrelated Rayleigh Fading

For the uncorrelated Rayleigh fading channel, the conditional
pdf of the matched filter output is

(10)

where is the normalized Rayleigh fading factor with
and density function .
1) Ideal Side Information (SI):When we have ideal SI, the

initial message passed from the bit node to the check node is

(11)

In the decoding analysis, assuming has the condi-
tional density function

(12)

To get the unconditional density function of, we average (12)
over the density function of so that

(13)

2) No Side Information (No SI):When no SI is available,
following [11], we assume that is Gaussian distributed
in the region of the most probable, and we approximate as

(14)

where . The corresponding conditional density
function is

(15)

Averaging over the density function of, we get

(16)

where and .

IV. SYMMETRY AND STABILITY

Symmetry is an important property associated with the mes-
sage distribution in the density evolution of belief propagation.
As defined in [2], a density function on is sym-
metric if it satisfies for all , and
it is shown that the initial message distributions for all the bi-
nary-input symmetric channels discussed in [2] satisfy this con-
dition. For the initial message density function of the AWGN
channel, (9), it is easy to verify that

(17)

It was shown in [2] that the symmetry property is invariant
under density evolution, i.e., if is symmetric, then the density
functions of and calculated in density evolution are also
symmetric. It was next proved in [2] that if the density function
of is symmetric, the average fraction of incorrect messages
as defined in (3) is a nonincreasing function ofand will always
converge to a certain value, which might be zero.

In [2], the symmetry property is then used to prove another
important property of density evolution, which is summarized
as follows: There exists an such that if density evolution
is initialized with a symmetric message density satisfying

, the fraction of incorrect messages will con-
verge to zero under density evolution if

(18)

where the parameteris defined as

(19)

Conversely, if , then the fraction of incorrect
messages is strictly bounded away from 0.

In [2], (18) is referred to as the stability condition for the
channel with initial message density . For example, for the
AWGN channel, the stability condition is given by [2]

(20)



928 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 19, NO. 5, MAY 2001

We now show that the initial message density function of the
uncorrelated Rayleigh fading channel with SI also satisfies the
symmetry property, and then we derive the stability condition
for this channel. For the density function of the uncorrelated
Rayleigh fading channel with SI, as defined in (13), it is easily
verified that

(21)

That is, the initial message density function of the uncorre-
lated Rayleigh fading channel with SI satisfies the symmetry
condition. From (19) and (13), we have

(22)

i.e., the stability condition for the uncorrelated Rayleigh fading
channel with SI is

(23)

In the next section, we will numerically optimize the degree
distribution pair for this channel, and we will verify empiri-
cally that they fulfill condition (23). As to the Rayleigh fading
channel without SI, the initial density function (16) does not
have the symmetry property. This is because the expression (14)
for the message, , is only an approximation. Nevertheless,
as shown in the numerical results, the density evolution tech-
nique for determining the thresholds still works quite well for
this channel.

V. CODE OPTIMIZATION: DIFFERENTIAL EVOLUTION

Since we can determine the threshold value for each LDPC
code ensemble defined by its degree distribution pair , we
try to find the degree distribution pair which yields the largest
possible noise threshold for a given channel. This problem is
a nonlinear cost function minimization problem with contin-
uous space parameters, a problem where differential evolution
has been shown to be effective and robust [7]. This technique
has been successfully applied to the design of good irregular
LDPC codes for both the erasure channel [8] and the AWGN
channel [2]. For the AWGN channel, Richardsonet al.[2] found
the best degree distribution pair for rate- codes, which has a
threshold within 0.06 dB of capacity! We now show that this
method is also very effective in the design of good irregular
LDPC codes for a Rayleigh fading channel with SI.

Before describing the differential evolution technique, we
need to remove the dependencies among the components of
the degree distribution pair. It is easy to verify that the degree
distribution pair satisfies the following constraint

(24)

where and is the code rate. Also, we have

(25)

Using (24) and (25) to solve for gives (26), shown at the
bottom of the page.

Next, let denote the number of free elements of the degree
distribution pair . The dependences (25) and (26), com-
bined with the fact that , show that

. We form an -dimensional parameter vector
, and our goal is to optimally

choose the elements of this vector so that the corresponding de-
gree distribution pair yields the largest noise threshold.

Differential evolution is a parallel direct search technique.
Starting from an initial set of vectors, the algorithm iteratively
updates each vector in the set simultaneously until a superior
vector is found which has the best cost function value. By up-
dating all the vectors of the set in parallel, the algorithm can
help the vectors escape local minima and prevent misconver-
gence. The differential evolution algorithm that we used in the
code optimization is based on [8] with minor modifications. In
the following, we briefly review it.

1) Initialization — We start with a certain noise level,
which is the standard deviation of the noise. For the first
generation , we randomly choose -dimen-
sional vectors , where

is a constant that remains fixed during the optimiza-
tion process [7]. For each vector , we run the den-

(26)
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sity evolution as discussed in Section III for a certain
number of iterations (e.g., 1000) and record its residual
error , i.e., the fraction of incorrect messages as de-
fined by (3). We label the vector with the smallest
as the best vector, .

2) Mutation — For the next generation, , new vec-
tors are generated according to the following mutation
scheme. For each , randomly choose
distinct integers and from , each
different from the index, and define

(27)

where is a real constant which controls the amplifica-
tion of the differential variation. We choose in
our optimization [8]. The use of two vector differences
increases the variation, thereby helping to prevent the al-
gorithm from getting into a local minimum. For each new
vector, we run the density evolution for the same number
of iterations and record its residual error, .

3) Selection — For each , com-
pare and . If is larger than

is set to . Otherwise,
is set to . We denote the vector with the smallest
residual error by .

4) Stopping criterion — If the residual error of
the vector is not zero (practically, if it is not
less than a very small value, e.g., ), return to step 2.
Otherwise, increase the noise levelslightly, and return
to step 1. If the noise level is increased to a value for which
the residual error of the best vector does not converge to
zero after a very long running time, the process is stopped.
We label the vector whose residual error goes to zero at
the highest possible noise level as the best vector, and the
corresponding noise level as the noise threshold.

VI. RESULTS

A. Threshold Calculation and Code Optimization

Using the density evolution technique discussed in Section
III, we can calculate the threshold values of LDPC codes for
both the AWGN channel and the uncorrelated Rayleigh fading
channel with or without SI. For convenience, in the following
results, we will express the threshold by bothand its cor-
responding (dB). Since ,
the threshold can also be defined as the smallest such
that . Fig. 3 compares the thresholds and
the simulation results of rate- regular LDPC codes
on both the AWGN channel and the uncorrelated Rayleigh
fading channel, where both ideal SI and no SI are considered.
As shown, the thresholds for regular LDPC codes on
the AWGN channel, the fading channel with SI, and the
fading channel with no SI, are 1.10 dB, 3.06 dB, and 4.06 dB,
respectively. The LDPC codes used in the simulations
are of block size2 and . The numerical threshold
results are very consistent with the simulation results, and we

2In the simulation results, the block size used is codeword block size.

Fig. 3. Comparison of thresholds and simulation results for rate-1=2; (3; 6)
regular LDPC codes on the AWGN channel, and the uncorrelated Rayleigh
fading channels with or without SI. The codes used in simulations are of block
size10 and10 .

conjecture that as the block size goes to infinity, the simulation
results will converge to the thresholds. If the conjecture is
true, the threshold can be considered as the capacity of the
corresponding code parameters, i.e., the best performance that
such an LDPC code can achieve with the message passing
decoder. The results show that the regular LDPC code
suffers a loss of nearly 2 dB and 3 dB, respectively, in the
fading channels with SI and without SI, relative to the AWGN
channel.

Combining the density evolution and differential evolution
techniques as described above, we searched for good degree dis-
tribution pairs with constraints on the maximal left degree
for the uncorrelated Rayleigh fading channel with SI. Similar
to what has been observed for the erasure channel [8] and the
AWGN channel [2], we found that for the fading channel with
SI, good degree distribution pairs exist with only a few nonzero
terms. Therefore, in the results shown, we use only three con-
secutive nonzero right degrees and limit the nonzero degrees on
the left to the degrees 2, 3, , and several carefully chosen
degrees in-between, which greatly reduces the search space and
consequently saves on search time.

The resulting degree distribution pairs of rate- codes for
the Rayleigh fading channel with SI are shown in Table I for

, and . Each column corresponds to one
particular degree distribution pair. For each degree distribution
pair, the coefficients of and are given, as well as the noise
threshold , and the corresponding in dB. Also
listed is , the maximal value of satisfying the stability
condition (23). As can be seen, for every degree
distribution pair in the table, which confirms that these degree
distribution pairs satisfy the stability condition. Also, the higher
the maximal left degree, the better the performance of the code.

Similar to the results that Richardsonet al.[2] obtained for the
AWGN channel, the thresholds of the degree distribution pairs
optimized for the fading channel with SI are very close to the ca-
pacity of this channel (the capacity can be calculated following
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TABLE I
GOOD DEGREEDISTRIBUTION PAIRS OF RATE-1=2 FOR THEUNCORRELATED

RAYLEIGH FADING CHANNELS WITH SI AND WITH CONSTRAINTS ON THE

MAXIMAL LEFT DEGREESd = 10; 20;30 AND 50. FOR EACH

DISTRIBUTION PAIR THE NOISE THRESHOLD VALUE � AND THE

CORRESPONDING(E =N ) (dB) ARE GIVEN. THE MAXIMAL VALUE OF

� SATISFYING CONDITION (23),� , IS GIVEN FOR � = � AND THE

GIVEN � (1). NOTE THAT THE CAPACITY FOR THIS CHANNEL AT CODE

RATE 1=2 IS 1.830 dB

the method introduced in [12]). At rate , the capacity of the
fading channel with SI is 1.830 dB. The degree distribution pair
with has the threshold of 1.900 dB, which is only
0.07 dB away from the capacity! Compared to the regular
LDPC code whose threshold on this channel is 3.06 dB, opti-
mized irregular LDPC codes have much better thresholds.

It is interesting to see how the degree distribution pairs op-
timized for the fading channel with SI perform on the AWGN
channel, and vice-versa. We compare the rate-degree distri-
bution pairs optimized for the AWGN channel (refer to [2] for
the detailed degree distribution pairs) and the degree distribution
pairs optimized for the fading channel with SI in Figs. 4 and 5.
In Fig. 4, for each degree distribution pair, we show the gap be-
tween its threshold value for the AWGN channel and the AWGN
channel capacity for rate . In Fig. 5, for each degree distri-
bution pair, we show the gap between its threshold value for the
fading channel with SI and the capacity for that channel for rate

. It can be seen that the degree distribution pairs optimized
for the fading channel with SI are also very good distribution
pairs on the AWGN channel, e.g., considering the degree distri-
bution pair with optimized for the fading channel
with SI, its threshold value for the AWGN channel is only 0.18
dB away from the channel capacity. Similar results can be ob-
served from Fig. 5 for the converse situation. As suggested in
[4], in the construction of block codes, it is better to have high
degree for the bit nodes, since the more information a bit node

Fig. 4. Comparison of the threshold values on the AWGN channel of the
rate-1=2 degree distribution pairs optimized for the AWGN channel and the
fading channel with SI. For each distribution pair, the gap between its threshold
value for the AWGN channel and the capacity of this channel is shown. Note
that the capacity for the AWGN channel at rate1=2 is 0.1870 dB.

Fig. 5. Comparison of the threshold values on the fading channel with SI of
the rate-1=2 degree distribution pairs optimized for the AWGN channel and the
fading channel with SI. For each distribution pair, the gap between its threshold
value for the fading channel with SI and the capacity of this channel is shown.
Note that the capacity for the fading channel with SI at rate1=2 is 1.830 dB.

gets from its check nodes, the more reliably it can provide its
own correct value. On the other hand, it is better for a check
node to have low degree, in order to provide more accurate infor-
mation to its bit nodes. These two competing requirements will
have different balances for different channels. The degree distri-
bution pair with optimized for the AWGN channel
[2] has average right degree 10.24. However, the degree distribu-
tion pair with optimized for the fading channel with
SI has average right degree 9.66. The results suggest that, com-
pared to the AWGN channel, the fading channel with SI favors
lower average right degree. The same relations can be observed
for the degree distribution pairs with , and .

Tables II and III give the rate- degree distribution pairs we
optimized for the AWGN channel and the uncorrelated Rayleigh
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TABLE II
GOOD DEGREEDISTRIBUTION PAIRS OF RATE-1=3 FOR THE AWGN

CHANNELS AND WITH CONSTRAINTS ON THEMAXIMAL LEFT DEGREES

d = 10; 16; 30 AND 50. FOR EACH DISTRIBUTION PAIR THE NOISE

THRESHOLDVALUE � AND THE CORRESPONDING(E =N ) (dB) ARE

GIVEN. THE MAXIMAL VALUE OF � SATISFYING CONDITION (20),� , IS
GIVEN FOR� = � AND THE GIVEN � (1). NOTE THAT THE CAPACITY FOR

THIS CHANNEL AT CODE RATE 1=3 IS�0:4954 dB.

fading channel with SI. Similar to the rate- case, the thresh-
olds of the degree distribution pairs approach the corresponding
channel capacities. The threshold of the degree distribution pair
optimized for the AWGN channel with is only
0.07 dB away from the channel capacity. The threshold of the
degree distribution pair with optimized for the
fading channel with SI is only 0.08 dB away from the capacity
of the corresponding channel. Again, we compare both classes
of rate- degree distribution pairs on the AWGN channel and
the fading channel with SI in Figs. 6 and 7, respectively. It turns
out that, as for rate- degree distribution pairs, the rate-
degree distribution pairs optimized for the fading channel with
SI are also very good distribution pairs for the AWGN channel
and vice-versa.

B. BER Simulation Results

As shown in Fig. 3, the threshold values precisely predict the
asymptotic performance as the block length of the LDPC codes
approaches infinity. We are also interested in the performance
of the optimized irregular LDPC codes when finite block size is
considered. In the following results, we considered four rate-
LDPC codes at a block size of 3072. The first one, LDPC ir1,
is constructed according to the degree distribution pair with

optimized for the AWGN channel, as shown in
Table II. The degree distribution pair has thresholds of
dB and 0.78 dB on the AWGN channel and the fading channel
with SI, respectively. Note that the capacities for these two chan-
nels are dB and 0.488 dB, respectively. The second one,

TABLE III
GOOD DEGREEDISTRIBUTION PAIRS OF RATE-1=3 FOR THEUNCORRELATED

RAYLEIGH FADING CHANNEL WITH SI AND WITH CONSTRAINTS ON THE

MAXIMAL LEFT DEGREESd = 10;16;30 AND 50. FOR EACH

DISTRIBUTION PAIR THE NOISE THRESHOLD VALUE � AND THE

CORRESPONDING(E =N ) (dB) ARE GIVEN. THE MAXIMAL VALUE of
� SATISFYING CONDITION (23),� , IS GIVEN FOR � = � AND THE

GIVEN � (1). NOTE THAT THE CAPACITY FOR THIS CHANNEL AT CODE

RATE 1=3 IS 0.4885 dB.

LDPC ir2, is constructed according to the degree distribution
pair with optimized for the fading channel with
SI, as shown in Table III, with thresholds of dB and 0.68
dB on the AWGN and fading channel with SI, respectively. The
third one, LDPC ir3, is constructed according to a degree distri-
bution pair3 with , which has thresholds of
dB and 0.96 dB on the AWGN and fading channel with SI, re-
spectively. The last one, a quasi-regular4 LDPC code R with all
bit nodes degree-3, half of the check nodes degree-4, and half of
the check nodes degree-5, has thresholds of 0.85 dB and 2.13 dB
on the AWGN channel and the fading channel with SI, respec-
tively. Among the four codes, ir1, ir2, and ir3 are all very good
codes on both the AWGN channel and the fading channel with
SI, whereas ir1 has the best threshold on the AWGN channel and
ir2 has the best threshold on the fading channel with SI. In the
construction of the parity-check matrices for the three irregular
LDPC codes, we made all the degree-2 nodes loop-free and all
of them correspond to nonsystematic bits. For all four codes, we

3This degree distribution pair was taken from Sae-Young Chung’s web site:
http://truth.mit.edu/~sychung/gaopt.html, which is an irregular LDPC codes de-
sign applet for design of good LDPC codes on an AWGN channel. The design
method assumes Gaussian message densities, which is suboptimal since it is not
true for the messages passed from check nodes to bit nodes. However, it turns
out that this approximation makes the design much faster, yet still very effec-
tive. Refer to [6] for details.

4For rate-1=3 (j; k) regular LDPC codes, if we choosej = 3, we cannot
makek to be an integer by the constraints of (24). Therefore, we choose half of
the check nodes degree-4 and half of the check nodes degree-5. We denote this
code as a rate-1=3 quasi-regularLDPC code.
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Fig. 6. Comparison of the threshold values on the AWGN channel of the
rate-1=3 degree distribution pairs optimized for the AWGN channel and the
fading channel with SI. For each distribution pair, the gap between its threshold
value for the AWGN channel and the capacity of this channel is shown. Note
that the capacity for the AWGN channel at rate1=3 is�0:4954 dB.

Fig. 7. Comparison of the threshold values on the fading channel with SI of
the rate-1=3 degree distribution pairs optimized for the AWGN channel and the
fading channel with SI. For each distribution pair, the gap between its threshold
value for the fading channel with SI and the capacity of this channel is shown.
Note that the capacity for the fading channel with SI at rate1=3 is 0.4885 dB.

avoided length-4 loops in the parity-check matrices. For the ir-
regular codes, the bit error rates (BER) are given for systematic
bits only. For the regular code, the BER is given for all bits.

Fig. 8 compares the simulation results of these four LDPC
codes on both an AWGN channel and an uncorrelated Rayleigh
fading channel with SI. It is shown that all three irregular LDPC
codes achieve excellent performance on both channels. Note
that the simulation results reflect the same relative performance
as predicted by the computed threshold values. Furthermore, the
irregular codes perform much better than the regular code. For
example, at a BER of , ir2 outperforms the regular
LDPC code on the AWGN channel and fading channel with SI
by about 0.7 dB and 1.0 dB, respectively.

Fig. 8. Simulation of rate-1=3, block size 3072, quasi-regular LDPC code
R, irregular LDPC codes ir1, ir2, and ir3 on both an AWGN channel and an
uncorrelated Rayleigh fading channel with SI.

Fig. 9. Simulation of rate-1=3, block size 3072, Turbo code, irregular LDPC
codes ir1 and ir2 on both an AWGN channel and an uncorrelated Rayleigh
fading channel with SI.

In Fig. 9, ir1 and ir2 are compared to a
turbo code [13] of the same block size and the same code rate
on both an AWGN channel and an uncorrelated fading channel
with SI. We can see that ir1 and ir2 achieve virtually the same
performance as the turbo code. On the AWGN channel, ir1 is
slightly better than the other two codes, while on the fading
channel with SI, ir2 is slightly better.

Since both LDPC codes and turbo codes have excellent
performance, they are being considered as potential candidates
for mobile communications systems. The following results
consider one such scenario—a land mobile channel with a
delay constraint [13]. We assume the carrier frequency is 900
MHz, the source rate is 9.6 kb/s, the code rate is, and the
codeword block size is 3072. Therefore, the delay of the system
is 106.7 ms. Three typical mobile speeds are considered: 4 m/h,
30 m/h, and 70 m/h; the corresponding normalized Doppler
shifts are , and ,
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Fig. 10. Simulation of rate-1=3, block size 3072, turbo code with interleaver,
irregular LDPC codes ir2 with and without interleaver on the correlated
Rayleigh fading channel with SI, speed= 4; 30 and70 mph.

respectively. Here, is the Doppler shift, and is the coded
symbol duration. In our simulation work, a modified Jakes
model [14] is used as the channel model. In the decoding of
turbo codes, every bit needs to make use of the information
of its neighbor bits to update its own likelihood information.
Therefore, a channel block interleaver is introduced to break
up the correlation of channel fades among the consecutive
bits for the turbo coding schemes. However, in the decoding
of LDPC codes, when bit updates its related information
from a parity check, e.g., check , it only makes use of the
information from those bits participating in check. Because
the parity-check matrix of the LDPC code is randomly
constructed, the probability that these bits will be the neighbors
of bit is very small. Therefore, when bit is in a deep fade,
it is very likely that some of these bits will not be in a deep
fade and they can provide more reliable information for bit.
The random construction of the parity-check matrix and its
sparseness property suggest that the decoder of LDPC codes
has a built-in “interleaver,” implying that LDPC codes should
achieve very good performance on correlated fading channels
even without using a channel interleaver.

In Fig. 10, three coding schemes are considered: a
turbo code with a channel block interleaver, and LDPC

code ir2 with and without a channel block interleaver. The same
block interleaver is used for both codes, where the encoded sym-
bols are read in row-by-row and read out column-by-column. At
a speed of 70 m/h, the ir2 code with the interleaver performs the
best. Interestingly, the ir2 code without the interleaver shows the
same performance as the turbo code, and only suffers a loss of
about 0.25 dB relative to the ir2 code with the interleaver. At
a speed of 30 m/h, the ir2 code with the interleaver performs
better than the turbo code by about 0.6 dB over a wide range
of BER, and even the ir2 code without the interleaver shows
slightly better results than the turbo code. When the speed of the
mobile slows down to 4 m/h, the performance gap between the
ir2 code with the interleaver and the turbo code becomes wider.
At a BER of , the ir2 code with the interleaver has as much

Fig. 11. Simulation of rate-1=3, block size 3072, irregular LDPC codes ir2
and ir3, both with and without interleaver on the correlated Rayleigh fading
channels with SI, speed= 4; 30 and70 mph.

as a 1.2 dB gain over the turbo code. The ir2 code without the
interleaver still performs slightly better than the turbo code.

All these results demonstrate that, implicitly, there is a built-in
“interleaver” in the parity-check matrix . In principle, it is
possible to design this “interleaver,” i.e., to design the matrix

such that all the nonzero entries in are distributed so as
to achieve the maximal “interleaver” gain. Another conclusion
drawn from these comparisons is that for fading channels with
moderate-to-slow variations, that is, where less time diversity
can be exploited from the coding schemes compared to the un-
correlated fading channel, the irregular LDPC codes can per-
form better than the turbo codes.

In Fig. 11, four coding schemes are compared: LDPC code
ir2 with and without a channel block interleaver, and LDPC
code ir3 with and without a channel block interleaver. As can be
seen, the ir2 code with the interleaver always has a gain about

dB over the ir3 code with the interleaver at any mo-
bile speed considered here. Similar results can be observed for
the ir2 code without the interleaver compared to the ir3 code
without the interleaver. The results show that the LDPC codes
which have better thresholds in the uncorrelated fading channel
achieve better simulation performance in the correlated fading
channels as well.

VII. CONCLUSION

In this paper, we have shown that the numerical analysis tech-
nique for calculating the threshold of the LDPC codes for the
AWGN channel can be applied to the uncorrelated flat Rayleigh
fading channel. In addition, using the nonlinear optimization
technique of differential evolution, we optimized the degree dis-
tribution pairs for the uncorrelated Rayleigh fading channel and
showed that their threshold values are extremely close to the
capacity of this channel. Simulation results for moderate block
size showed that the optimized LDPC codes can achieve excel-
lent performance on the Rayleigh fading channel, and can out-
perform turbo codes on the correlated Rayleigh fading channels.
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We also demonstrated that even without a channel interleaver,
the LDPC codes still can achieve very good performance on cor-
related fading channels. This phenomenon may be a reflection
of the built-in “interleaver” in the parity-check matrix .
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