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Abstract—In this paper, two simplified versions of the belief
propagation algorithm for fast iterative decoding of low-density
parity check codes on the additive white Gaussian noise channel
are proposed. Both versions are implemented with real addi-
tions only, which greatly simplifies the decoding complexity of
belief propagation in which products of probabilities have to be
computed. Also, these two algorithms do not require any knowl-
edge about the channel characteristics. Both algorithms yield
a good performance–complexity tradeoff and can be efficiently
implemented in software as well as in hardware, with possibly
quantized received values.

Index Terms—APP decoding, belief propagation, block codes,
four-density parity check codes, iterative decoding.

I. INTRODUCTION

L OW-DENSITY parity-check (LDPC) codes, proposed by
Gallager [1], [2], appear as a class of codes which

can yield very good performance on the binary symmetric
channel (BSC) as well as on the additive white Gaussian
noise (AWGN) channel. Recently, it was shown that the belief
propagation (BP) algorithm [3] provides a powerful tool for
iterative decoding of LDPC codes, by noting that the original
Gallager’s iterative probabilistic decoding of LDPC codes is
a particular BP-based decoding approach [5]–[8]. As in [4],
this probabilistic decoding algorithm is based on evaluating
the likelihood ratios associated with each information bit from
information provided by disjoint parity check equations. Iter-
ative decoding techniques in general have received significant
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attention recently and various results have been reported (see
[5]–[18], for example).

The aim of this paper is to develop an iterative decoding
algorithm for LDPC codes as an approximation of the stan-
dard BP decoding procedure, so that the modified algorithm
performs close to the standard BP but with a significant
reduction of complexity. Accordingly, a goal of this paper
is to obtain a good performance–complexity tradeoff. First,
a simplified version of the BP algorithm is considered. This
modified algorithm, which corresponds to the approach taken
in [12]–[14], is then further simplified so that it performs
real value additions only. This second simplification, which is
equivalent to the approximation presented in [19] for majority
logic decoding based on the APP algorithm of [4], simply
consists of expressing all the steps of the algorithm with
respect to logarithms of probabilities rather than probabili-
ties. The same standard approximation was used to derive
the Max-Log-MAP algorithm from the MAP algorithm [10],
[11]. This simple algorithm allows the processing of low-
complexity iterative decoding of LDPC codes, but at the
expense of about 1-dB degradation in error performance with
respect to the BP algorithm at the bit error rate (BER) 10.
A second simplified algorithm is then considered. For this
algorithm, the standard approximation is directly applied to
the BP algorithm. Although not as straightforward as in the
previous case, due to the fact that for the BP algorithm the
probability values considered at iteration-do not necessarily
correspond to the hard decisions made at iteration- , the
application of the standard approximation achieves a better
tradeoff between error performance and decoding complexity,
with real value additions only and a performance degradation
of few tenths of a decibel at the BER 10 for the LDPC
codes simulated.

The paper is organized as follows. The characteristics of
LDPC codes and their decoding based on BP are briefly
reviewed in Section II. Then the two reduced-complexity BP-
based decoding algorithms are described in Section III. Finally,
these algorithms are compared with BP in Section IV and
concluding remarks are given in Section V.
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II. BACKGROUND

A. Low-Density Parity Check Codes

LDPC codes are specified by a parity-check matrix contain-
ing mostly zeros and only a small number of ones. A binary

LDPC code has block length and a parity-check
matrix with exactly ones in each column and ones in
each row, assuming and . In the following,
we refer to the elements of an LDPC codeword as
bits, and the rows of the parity-check matrix ,
as checks. Accordingly, in a binary LDPC code, every code
bit is checked by precisely parity checks, and every parity
check involves precisely code bits. The typical minimum
distance of these codes increases linearly withfor a fixed
rate and fixed . For and a sufficiently low rate, a simple
decoding procedure exists such that the error rate decreases at
least exponentially with a root of the block length, assuming
a BSC [1], [2].

B. Standard Belief Propagation-Based Decoding

This section summarizes, according to [6] and [7], the itera-
tive decoding of LDPC codes based on the BP algorithm. The
decoding problem consists of finding the most likely vector
(represented as a column matrix) such that mod .
The likelihood of is given by , with ,
so that . We denote the set of bits that
participate in check by . Similarly,
we define the set of checks in which bit participates as

. We denote a set with bit
excluded by , and a set with parity check
excluded by . The cardinalities of the sets and

are denoted by and , respectively.
The iterative decoding algorithm has two alternating parts,

in which certain quantities and , associated with each
nonzero element in the matrix , are iteratively updated. The
quantity is meant to be the probability that bit of
is , given the information obtained via checks other than
check . The quantity is meant to be the probability
of check is satisfied if bit of is considered fixed at

and the other bits have a separable distribution given by
the probabilities . The algorithm would
produce the exact posterior probabilities of all the bits if the
bipartite graph1 defined by the matrix contained no cycles
[3].

The standard iterative decoding algorithm based on the BP
approach consists of the following main steps.

• Initialization: The variables and are initialized
to the values and , respectively.

• Iterative Processing

1) Step 1: Define and for each ,
, and for , compute

(1)

(2)

1A bipartite graphG is defined as a graph whose vertices can be partitioned
into two subsetsV1 andV2 such that every edge ofG joins V1 to V2.

2) Step 2: For each and , and for , update

(3)

where is chosen such that .
For each and , update the “pseudopos-

terior probabilities” and given by

(4)

where is chosen such that .
3) Step 3:

a) create such that if ,
and if ,

b) do the following:

—If then the decoding algorithm halts,
and is considered as a valid decoding result.

—Otherwise, the algorithm repeats from Step 1.
—A failure is declared if some maximum number

of iteration stages (e.g., 100) occurs without a
valid decoding.

III. T WO REDUCED-COMPLEXITY DECODING ALGORITHMS

In the following, we assume that the binary
LDPC code considered is used for error control over the
AWGN channel, with BPSK signaling. Let represent
the image of under the usual componentwise mapping
from {0, 1} to { 1}. If is a codeword in and

is the corresponding transmitted sequence,
then the received sequence is , with

, where for , ’s are statistically
independent Gaussian random variables with zero mean and
variance .

A. APP-Based Decoding Algorithm

Define as thea priori probability that bit is in error.
Then the probability that for check sum , the
sum of all bits mismatches the transmitted bit

is given by [4, p. 53]

(5)

In other words, represents the probability of having an odd
number of errors in the hard decisions of the bits of . For

, define as the result of check sum-evaluated
from the hard decisions corresponding to, and as its
modulo-2 complement. Note that is computed based on
the whole symbol set . Furthermore, define as thea
posterioriprobability that bit is in error based on the results
of the check sums intersecting in position-. It follows that

(6)
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or equivalently

(7)

As proposed in [12]–[14], all check sums can be re-evaluated
based on the hard decisions corresponding to the values,
which are used as newa priori probabilities . Consequently,
we obtain an iterative decoding algorithm, which as mentioned
in [7], can be viewed as a simplified version of BP since
instead of (3), only (4) needs to be updated.

For the AWGN channel model considered, the probability
can be expressed as

e
e

(8)

where represents the log-likelihood ratio
associated with the hard decision value based on. By ap-
proximating ,
(5) becomes

e
e

(9)

where . The effects of the
relative errors introduced by approximation (9) on the overall
error performance become less and less significant as the SNR
(i.e., ) increases. By substituting (9) into (6), we obtain

(10)

After normalizing (10) by the factor , we derive the
following algorithm for computing

:

• Initialization: The hard decisions are initialized to the
hard decisions of the received symbols, and denote the
a priori log-likelihood ratio of error by .

• Iterative Processing

1) Step 1: For each and each , evaluate

mod (11)

and identify

(12)

2) Step 2: For each , compute

(13)

3) Step 3:

a) If , then .
b) Set and repeat Step 1 after the same

termination procedure as in Section II-B.

Since this algorithm does not depend on and therefore
does not require anya priori information about the AWGN
channel, it is referred to as theuniformly most powerful (UMP)
APP-based iterative decoding algorithm. This algorithm can be
viewed as an iterative implementation of the algorithm pre-
sented in [19], which uses the same standard approximation.
It also represents a simplified version of the iterative decoding
algorithm presented in [14] for the AWGN channel.

B. BP-Based Decoding Algorithm

In this section, we investigate how to simplify the BP
algorithm based on the same approximation as in Section III-
A. To this end, for we first rewrite based on
(1) and (2) as

(14)

which is of the same form as (5). Consequently, by considering
(3) and (14) in conjunction with (9), the same simplification
as in Section III-A seems possible. However, particular care
has to be brought to the following problem. In Section III-
A, all check sums described by (11) are evaluated at Step
1 of each iteration stage based on the same hard decision
values . On the other hand, after the first iteration stage, for a
given , the values used by the BP algorithm to compute
(1) may define hard decision values different from the
value corresponding to for some . In other
words, it is possible to obtain and , or
inversely, at the same iteration stage. As a result, the same
check sum may take different values depending on whether
for , the hard decision values corresponding to
the values or the hard decision values corresponding
to the values are considered. At Step 3 of the UMP APP-
based decoding algorithm, the value at the th stage of the
iterative process (referred to as iteration-in the sequel of the
paper) is updated based on the valueobtained at iteration-

. Consequently, a different updating rule has to be chosen
in simplifying the BP decoding algorithm as for each, the
values , and obtained at iteration-
are not necessarily equal in general. Since iteration-1 is the
only iteration stage for which all check sums are evaluated
based on the same hard decisions, the hard decision values
and have to be updated at iteration-based on the initial
hard decisions corresponding to for all

. Hence, iteration-1 becomes the reference for all
subsequent iteration stages. Based on this important remark,
we derive the following algorithm:

• Initialization: For all and each , the hard
decisions and are initialized to the hard decisions
of the received symbols and recorded by ; also

and for each , .
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Fig. 1. Error performance for iterative decoding of the (504, 252) LDPC codewith BP, UMP BP-based, and UMP APP-based decoding algorithms,
and at most 50 and 200 iterations.

• Iterative Processing

1) Step 1: For each and each , evaluate
the check sums

mod (15)

, and identify

(16)

2) Step 2: For each and each , compute

(17)

For each , compute

(18)

3) Step 3:

a) Create such that if ,
and if .

b) For each , create such
that if , and
if .

c) For each , set and re-
peat Step 1 after the same termination procedure
as in Section II-B.

Note that in (15), the initial decision is always used to
evaluate . Although surprising, this is easily justified by
the fact that once all with , evaluated at the
previous iteration stage are correct, if is initially
in error. In that case, (17) and (18) can be rewritten as

(19)

(20)

respectively. It follows that the hard decisions and
evaluated at Step 3 from (19) and (20) are correct, unless the
reliability associated with the initial decision about bit is
still larger than the sum of the reliabilities associated with
each check sum intersecting on bit.

As in Section III-A, since this algorithm does not depend on
, it is referred to as theUMP BP-based iterative decoding

algorithm. The UMP property is advantageous since in [20], it
is shown that a poor estimate of the noise characteristics may
result in some performance degradation for the BP algorithm.

IV. COMPARISONS WITH THEBP ALGORITHM

In this section, we compare the two algorithms presented in
Section III with the BP algorithm with respect to the tradeoff
between error performance and decoding complexity.

A. Error Performance

In the following, simulation results for the (504, 252) and
(1008, 504) LDPC codes taken from [7] are presented. Figs. 1
and 2 depict the bit error performance for iterative decoding
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Fig. 2. Error performance for iterative decoding of the (1008, 504) LDPC codewith BP, UMP BP-based, and UMP APP-based decoding algorithms,
and at most 50 and 200 iterations.

Fig. 3. Error performance after the first, third, and fifth iterations for iterative decoding of the (1008, 504) LDPC code with BP and UMP BP-based
decoding algorithms.

of the (504, 252) and (1008, 504) LDPC codes, respectively,
with the BP, UMP BP-based, and UMP APP-based decoding
algorithms, and at most 50 and 200 iterations. The results are
obtained by Monte Carlo simulations, with at least 1000 bit
errors for each recorded point. For both codes, we observe that
at the BER 10 , the UMP APP-based algorithm performs at
least 1 dB worse than the BP algorithm. On the other hand,
for both 50 and 200 iterations, only about 0.15 and 0.25 dB

separate the error performance curves of the BP and UMP BP-
based algorithms for the (504, 252) and (1008, 504) LPDC
codes, respectively, at the BER 10. Finally, we observe
that while for both the BP and UMP BP-based algorithms,
a nonnegligible error performance improvement is achieved
at medium to high SNR values by increasing the maximum
number of iterations from 50 to 200, approximatively no
improvement is made for the UMP APP-based algorithm.
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Fig. 4. Average number of iterations for iterative decoding of the (1008, 504) LDPC code with BP and UMP BP-based decoding algorithms, and at
most 50 and 200 iterations.

Fig. 3 depicts the error performance after the first, third, and
fifth iterations for iterative decoding of the (1008, 504) LDPC
code with BP and UMP BP-based decoding algorithms. A
similar figure was obtained for the (504, 252) LDPC code.
Based on this figure, we observe that at very low SNR
values, the error performance of the BP algorithm improves
as the number of iterations increases, while it becomes worse
for the UMP BP-based algorithm. Due to these different
behaviors, the gap in error performance increases with the
number of iterations considered in this figure at SNR values
corresponding to BER values used in practice. Finally, for
the same number of iterations, both curves seem to converge
at high SNR values. Based on these observations, a slower
convergence (or equivalently a higher number of iterations)
is expected for the UMP BP-based algorithm with respect to
the BP algorithm. On the other hand, the decoding complexity
associated with each iteration of the UMP BP-based algorithm
is significantly smaller than that of the BP algorithm, as shown
next.

B. Decoding Complexity

The decoding complexities associated with the BP, the UMP
APP-based, and the UMP BP-based decoding algorithms are
summarized in Tables I–III, respectively. In these tables, all
operations associated with modulo-2 arithmetic have been
neglected as conventionally done. The decoding complexity
associated with BP is evaluated based on the clever forward
and backward recursions proposed in [7] to compute both

and for . Based on Table I, for a rate-
1/2 LDPC code, the total complexity associated
with one iteration of BP consists of real mul-
tiplications, real divisions, and real

TABLE I
DECODING COMPLEXITY FOR ONE ITERATION OF THE BP DECODING

ALGORITHM AND A RATE—1/2 (N ,J , 2J) LDPC CODE

TABLE II
DECODING COMPLEXITY FOR ONE ITERATION OF THE UMP APP-BASED

DECODING ALGORITHM AND A RATE—1/2 (N , J , 2J) LDPC CODE

TABLE III
DECODING COMPLEXITY FOR ONE ITERATION OF THE UMP BP-BASED

DECODING ALGORITHM AND A RATE—1/2 (N , J , 2J) LDPC CODE

additions. This is larger than the complexity proposed
in [7], which can be achieved by computing only either

(instead of both and ), or equivalently, the
probabilities of each bit being in error (as described in Section
III-A), so that no normalization by is needed. However,
it is not clear at that time whether this modified algorithm
will perform as well as the algorithm considered in Section
II-B and [7], especially when the probabilities are limited to
prevent overflow problems.

The minimum values associated
with each check sum- of both the UMP APP-based and
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the UMP BP-based decoding algorithms can be determined
by identifying the two minimum values corresponding to this
check sum. This method is more efficient than ordering the
entire set of reliability values for small values of and
can be achieved in a straightforward manner with at most

comparisons, or with at most
comparisons with the help of a binary tree, as described in
[21]. Note finally that if quantized values are considered,
then the cost for ordering becomes negligible [22]. Then the
decoding complexity associated with the UMP APP-based
directly follows from the description of the algorithm given
in Section III-A. Consequently, this algorithm requires at
most real additions,as shown
in Table II. For the UMP BP-based decoding algorithm, the
values and are evaluated simultaneously based on
the forward and backward recursions of [7]. Consequently,
as summarized in Table III, the UMP BP-based decoding
algorithm is performed with at most

real additions.Based on these tables, it follows that
both algorithms described in Section III require real additions
only and, therefore, achieve significant computations savings
with respect to the BP algorithm. Also, the UMP BP-based
decoding algorithm requires only about twice as many real
additions as the UMP APP-based algorithm as well as about
twice the decoding delay of the UMP APP-based algorithm
due to the forward and backward recursions associated with
each check sum.

Fig. 4 depicts the average number of iterations for itera-
tive decoding of the (1008, 504) LDPC code with BP and
UMP BP-based decoding algorithms, and at most 50 and
200 iterations. Again, a similar figure was obtained for the
(504, 252) LDPC code. Based on this figure, we conclude
that the UMP BP-based algorithm requires significantly more
iterations (of smaller decoding cost) than the BP algorithm,
especially at medium SNR values. This conclusion confirms
the observations made in Section IV-A.

V. CONCLUSION

In this paper, two simple iterative algorithms for decoding
LDPC codes have been proposed. Both algorithms require
real additions only, and therefore achieve a good tradeoff
between error performance and decoding complexity as well
as fit hardware implementation with quantized received values.
In particular, for the LDPC codes considered, the UMP BP-
based decoding algorithm performs within a few tenths of
a decibel of the BP algorithm at the BER 10. Based on
these results, we conclude that the UMP BP-based decoding
algorithm provides an attractive solution to implement iterative
decoding of LDPC codes.

The UMP BP-based decoding algorithm has been derived
from the BP algorithm by considering only the dominant
contribution when evaluating the reliability associated with
each check sum. Therefore, the performance of this algorithm
can be further enhanced by adding correction values, as
described in [23]–[25] for MAP-based decoding algorithms.
Furthermore, since for an LDPC code, each check
sum consists of bits, with small, this approach provides

an alternative way to implement the BP algorithm as at most
correcting values have to be added. This method

becomes attractive for hardware implementation of the BP
algorithm since the corrective terms can be stored in a ROM
[23]–[25].
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