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Abstract—In this paper, two simplified versions of the belief attention recently and various results have been reported (see
propagation algorithm for fast iterative decoding of low-density [5][18], for example).

parity check codes on the additive white Gaussian noise channel . . . . . .
are proposed. Both versions are implemented with real addi- The aim of this paper is to develop an iterative decoding

tions only, which greatly simplifies the decoding complexity of algorithm for LDPC codes as an approximation of the stan-
belief propagation in which products of probabilities have to be dard BP decoding procedure, so that the modified algorithm

computed. Also, these two algorithms do not require any knowl- performs close to the standard BP but with a significant

edge about the channel characteristics. Both algorithms yield ducti f lexity. A dinal | of thi
a good performance—complexity tradeoff and can be efficiently "€GUCHON OF compiexity. Accordingly, a goal of this paper

implemented in software as well as in hardware, with possibly iS to obtain a good performance—complexity tradeoff. First,

quantized received values. a simplified version of the BP algorithm is considered. This
Index Terms—APP decoding, belief propagation, block codes, Modified algorithm, which corresponds to the approach taken
four-density parity check codes, iterative decoding. in [12]-[14], is then further simplified so that it performs

real value additions only. This second simplification, which is
equivalent to the approximation presented in [19] for majority
logic decoding based on the APP algorithm of [4], simply
onsists of expressing all the steps of the algorithm with

I. INTRODUCTION

L OW-DENSITY parity-check (LDPC) codes, proposed b
Gallager [1], [2], appear as a class of codes whic

can yield very good performance on the binary Symmetr[éaspect to logarithms of probabilities rather than probabili-

channel (BSC) as well as on the additive white Gaussi les. The same standard approximation was used to derive

noise (AWGN) channel. Recently, it was shown that the beliafe Max_'LO@_"'V'AP algorlthm from the MAP algo_rlthm [10],
propagation (BP) algorithm [3] provides a powerful tool fotL1l- This simple algorithm allows the processing of low-
iterative decoding of LDPC codes, by noting that the origin§PMPplexity iterative decoding of LDPC codes, but at the
Gallager's iterative probabilistic decoding of LDPC codes i@XPense of about 1-dB degradation in error performance with
a particular BP-based decoding approach [5]-[8]. As in [4]espect to the BP algorithm at the bit error rate (BER)"10
this probabilistic decoding algorithm is based on evaluatirfy second simplified algorithm is then considered. For this
the likelihood ratios associated with each information bit froralgorithm, the standard approximation is directly applied to
information provided by disjoint parity check equations. Itethe BP algorithm. Although not as straightforward as in the
ative decoding technigues in general have received significanévious case, due to the fact that for the BP algorithm the
probability values considered at iteratiormlo not necessarily
correspond to the hard decisions made at iterationi), the
application of the standard approximation achieves a better
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Il. BACKGROUND

A. Low-Density Parity Check Codes

LDPC codes are specified by a parity-check matrix contain-
ing mostly zeros and only a small number of ones. A binary
(N, J, K) LDPC code has block lengtlV and a parity-check
matrix with exactly.J ones in each column anfl’ ones in
each row, assuming > 3 and K > .J. In the following,
we refer to the elements of an LDPC codeword= [x,] as
bits, and the rows of the parity-check matd = [H,,,],
as checks. Accordingly, in a binary LDPC code, every code
bit is checked by precisely parity checks, and every parity
check involves precisely< code bits. The typical minimum
distance of these codes increases linearly wviNttor a fixed
rate and fixed/. ForJ > 3 and a sufficiently low rate, a simple
decoding procedure exists such that the error rate decreases at
least exponentially with a root of the block length, assuming
a BSC [1], [2].

B. Standard Belief Propagation-Based Decoding

This section summarizes, according to [6] and [7], the itera-
tive decoding of LDPC codes based on the BP algorithm. The
decoding problem consists of finding the most likely vector
(represented as a column matrix) such tht[mod2] = 0.
The likelihood ofx is given by[ [, fZ, with f? = P(x, = x),
so that f = 1 — f%. We denote the set of bita that
participate in checkn by N(m) = {n: H,,,,, = 1}. Similarly,
we define the set of checks in which bit participates as
M(n) = {m: H,,, = 1}. We denote a seN(m) with bit n
excluded byN(m)\n, and a setM (n) with parity checkm
excluded byM (n)\m. The cardinalities of the sef§(m) and
M(n) are denoted byN (m)| and |M(n)|, respectively.
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2) Step 2 For eachn andm, and forz = 0, 1, update
H Tfn’n (3)
m' CM(n)\m
wherea,,,, , is chosen such that,,, + ¢}, = 1.
For eachn andz = 0, 1, update the “pseudopos-
terior probabilities”’¢® and ¢} given by
g=cnfy I 7
mCM(n)
wherea,, is chosen such that) + ¢ = 1.
3) Step 3
a) createx = [#,] such thatz, = 1 if ¢& > 0.5,
andz, = 0 if ¢& < 0.5,
b) do the following:
—If Hx = 0 then the decoding algorithm halts,
andx is considered as a valid decoding result.
—Otherwise, the algorithm repeats from Step 1.
—A failure is declared if some maximum number

of iteration stages (e.g., 100) occurs without a
valid decoding.

T z
Tmn = anlen

(4)

lll. Two REDUCED-COMPLEXITY DECODING ALGORITHMS

In the following, we assume that the binaty, J, K)
LDPC codeC considered is used for error control over the
AWGN channel, with BPSK signaling. Let(C) represent
the image ofC under the usual componentwise mapping
from {0, 1} to {£1}. If x = [z,] is a codeword inC" and
s(x) = s = [s,] is the corresponding transmitted sequence,
then the received sequence ss+ w —
Yn = Sn +wy, Where forl < n < N, w,’s are statistically
independent Gaussian random variables with zero mean and

y = [yn], with

The iterative decoding algorithm has two alternating partgariance v, /2.

in which certain quantities,,,,, andr,,,,, associated with each
nonzero element in the matrH, are iteratively updated. The
quantity ¢7,, iS meant to be the probability that bit of x

A. APP-Based Decoding Algorithm

is z, given the information obtained via checks other than Define ¢, as thea priori probability that bitn is in error.

checkm. The quantityr®

mn

is meant to be the probability Then the probability-., that for check sumn € M(n), the

of checkm is satisfied if bitn of x is considered fixed at Sum of all bitsn” € N(m)\n mismatches the transmitted bit
= and the other bits have a separable distribution given ByiS given by [4, p. 53]

the probabilities{g,.,.: n’ € N(m)\n}. The algorithm would
produce the exact posterior probabilities of all the bits if the
bipartite graph defined by the matri¥I contained no cycles
[3].

The standard iterative decoding algorithm based on the
approach consists of the following main steps.

« Initialization: The variables;?,,, and ¢},,, are initialized

to the valuesf? and f}, respectively.
« |terative Processing
1) Step 1 Defineégmn = ¢°,,, — q.,,, and for eachn,
n, and forz = 0, 1, compute

Tmn = (1/2) 1 — (5)

I

n' CN(m)\n

(1 — 2(],,/)

l:lgrlla other wordsr,,,,, represents the probability of having an odd
number of errors in the hard decisions of the bitsviffn). For

m € M(n), defines,, as the result of check sum-evaluated
from the hard decisions corresponding ¢¢, andz,, as its
modulo-2 complement. Note that,, is computed based on
the whole symbol se(m). Furthermore, defing,, as thea
posteriori probability that bitn is in error based on the results

P H OGmn (1) of the check sums intersecting in positianit follows that
n’€N(m)\n N ] T ] .
P = (/21 + (= 1) 8rmn). @ 1-&_(lo®) 7 (1L il
(.;n dn Tmn 1-— Tmn

1A bipartite graph is defined as a graph whose vertices can be partitioned
into two subsetd’; andV: such that every edge @ joins Vi to Vs.

meM(n)

(6)
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or equivalently 3) Step 3
- a) If z, <0, thenz, =z, & 1.
. 1—4q, 1= 7mn \*7 b) Set|y,| = |z.| and repeat Step 1 after the same
=11+ < In ) H <ﬁ> termination procedure as in Section II-B.

meMm) Since this algorithm does not depend &) and therefore

T, —1 K ... .
» < Tmn ) ) @) does not require ang priori information about the AWGN

1—rmm channel, it is referred to as thmmiformly most powerful (UMP)
. APP-based iterative decoding algorithithis algorithm can be
As proposed in [12]_[14_]’_ all check sums can be re-evaluatggl, o4 a5 an iterative implementation of the algorithm pre-
ba§ed on the hard deuspns corre;ppndmg to the Valles gonieq in [19], which uses the same standard approximation.
which are usgd as-newpnon.probab|ll|t|e5qn. qonsequentl_y, It also represents a simplified version of the iterative decoding
we obtain an iterative decoding algorithm, which as me”t'on%‘i’gorithm presented in [14] for the AWGN channel.
in [7], can be viewed as a simplified version of BP since

instead of (3), only (4) needs to be updated. . .
For the AWGN channel model considered, the probabilit%' BP-Based Decoding Algorithm

¢ can be expressed as In this section, we investigate how to Slmpllfy the BP
algorithm based on the same approximation as in Section llI-
e Lnl A. To this end, forz = 0, 1 we first rewriter?,, based on
= eIt ®) (1) and (2) as
where L,, = 4y,/Ny represents the log-likelihood ratio
associated with the hard decision value based,onBy ap-  +% = (1/2)| 14 (-1)" H (1 - zq}nn,) (14)
proximating ] [,,, ¢ n(m)(1 = 2¢w) = 1 = Zmax,renmyian n EN(m)\n

(5) becomes
which is of the same form as (5). Consequently, by considering
e (9) (3) and (14) in conjunction with (9), the same simplification
T 1+ ety lmin/No as in Section l1I-A seems possible. However, particular care
has to be brought to the following problem. In Section IlI-
A], all check sums described by (11) are evaluated at Step
f each iteration stage based on the same hard decision
luesx. On the other hand, after the first iteration stage, for a
givenn, the valuesy?,,, used by the BP algorithm to compute
(1) may define hard decision valugs,, different from the
1—g.\y 4 _ . value z,, corresponding tag;” for somem € M(n). In other
1n< ) “ No [l > @ = o) i words, it is possible to obtaip®,, < 0.5 and éﬁ )> 0.5, or
inversely, at the same iteration stage. As a result, the same
check summ may take different values depending on whether
for n € N(m), the hard decision values,,,, corresponding to
. . : _ - the values;;,,, or the hard decision values, corresponding
f~oII(.)W|ng algorithm for computing:,, = (No/4) In{(1 - ¢.)/ to the values;” are considered. At Step 3 of the UMP APP-
Gn); o o o based decoding algorithm, the valfig at theith stage of the
. In|t|aI|zat!o_n: The hard dec_nsmnﬁn are initialized to the jierative process (referred to as iteratiom the sequel of the
hard decisions of the received symbg]s and denote the paper) is updated based on the vaiyyeobtained at iteration-
a priori log-likelihood ratio of error byjr,,| = |y|. (i—1). Consequently, a different updating rule has to be chosen
* Iterative Processing in simplifying the BP decoding algorithm as for eaahthe
1) Step 1For eachrn and eachn € M(n), evaluate valuesz,,,, m € M(n), andz,, obtained at iteratiorfs — 1)
are not necessarily equal in general. Since iteration-1 is the

@ 4mn|min/No

where [4mn|min = Minenmpnnilyn|}. The effects of the
relative errors introduced by approximation (9) on the over
error performance become less and less significant as the SV
(i.e., 1/Np) increases. By substituting (9) into (6), we obtain

dn meM(n)

(10)

After normalizing (10) by the factoiVy/4, we derive the

Om = Z 2y [Mmod2] (11) only iteration stage for which all check sums are evaluated
n'eN(m) based on the same hard decisions, the hard decision vglues
] ) andz,,, have to be updated at iteratiorbased on the initial
and identify hard decisiong:,, = &, corresponding t@?,,, = f* for all
) m € M(n). Hence, iteration-1 becomes the reference for all
(Y [min = n,eglgg)\nﬂyn% (12)  subsequent iteration stages. Based on this important remark,
we derive the following algorithm:
2) Step 2 For eachn, compute « Initialization: For all n and eachm € M(n), the hard
decisionsz,,,, andz,, are initialized to the hard decisions
Zn = |rn| + Z (@m = om)|[Ymnmin.  (13) of the received symbolg, and recorded by’ = ,,; also

meM(n) 7| = |yn| and for eachm € M(n), |Ymn| = |¥nl-
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Fig. 1. Error performance

and at most 50 and 200 iterations.

* lterative Processing

1) Step 1 For eachn and eachm € M(n), evaluate
the check sums

Omn =25 @ [ D dma [mod2] | (15)
n’€N(m)\n
Ern,n = Omn D 1, and |dent|fy
|yrn,n|1nin = min {|yrn,n’ |} (16)

n’EN(m)\n

2) Step 2 For eachn and eachn € M(n), compute

>

m’ E]\l(n)\rn

Zmn = |7n| + (Ern’n - anl’ﬂ)|yrn’n|min- (17)

For eachn, compute

Zn = |7n| + Z (Ernn - 0nln)|ynln|11lin- (18)
meM(n)
3) Step 3
a) Createx = [%,] such thatz, = &7 if 2, > 0,

andz, =z, & 1if z, <O0.

b) For eachmn € M(n), createx,, = [£,.»] Such
that £,,,, = 2}, If 2y > 0, ANA 21, = 25, B 1
if 2y < 0.

c) For eachm € M(n), set|ymn| = |#mn| and re-

for iterative decoding of the (504, 252) LDPC codewith BP, UMP BP-based, and

UMP APP-based decoding algorithms,

Note that in (15), the initial decisior] is always used to

evaluates,,,,. Although surprising, this is easily justified by
the fact that once alt,,,,,» with n’ € N(m)\n, evaluated at the

previous iteration stage are corregt,,, = 1 if Z7, is initially

in error. In that case, (17) and (18) can be rewritten as

Zmn = |7n| - Z |yrn’n|min (19)
m' EM(n)\m
Zn = |7n| - Z |ymn|min (20)

rnE]\l(n)

respectively. It follows that the hard decisiotis,,, and z,,
evaluated at Step 3 from (19) and (20) are correct, unless the
reliability associated with the initial decision about bitis
still larger than the sum of the reliabilities associated with
each check sum intersecting on hit

As in Section llI-A, since this algorithm does not depend on
Ny, it is referred to as th&/MP BP-based iterative decoding
algorithm The UMP property is advantageous since in [20], it
is shown that a poor estimate of the noise characteristics may
result in some performance degradation for the BP algorithm.

IV. COMPARISONS WITH THEBP ALGORITHM

In this section, we compare the two algorithms presented in
Section 11l with the BP algorithm with respect to the tradeoff
between error performance and decoding complexity.

A. Error Performance
In the following, simulation results for the (504, 252) and

peat Step 1 after the same termination procedut®008, 504) LDPC codes taken from [7] are presented. Figs. 1

as in Section 1I-B.

and 2 depict the bit error performance for iterative decoding
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and at most 50 and 200 iterations.

Error performance for iterative decoding of the (1008, 504) LDPC codewith BP, UMP BP-based, and UMP APP-based decoding algorithms,
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Fig. 3. Error performance after the first, third, and fifth iterations for iterative decoding of the (1008, 504) LDPC code with BP and UMP BP-based

decoding algorithms.

of the (504, 252) and (1008, 504) LDPC codes, respectivebgparate the error performance curves of the BP and UMP BP-
with the BP, UMP BP-based, and UMP APP-based decodibgsed algorithms for the (504, 252) and (1008, 504) LPDC
algorithms, and at most 50 and 200 iterations. The results amdes, respectively, at the BER 10 Finally, we observe
obtained by Monte Carlo simulations, with at least 1000 bibat while for both the BP and UMP BP-based algorithms,
errors for each recorded point. For both codes, we observe thatonnegligible error performance improvement is achieved
at the BER 10°, the UMP APP-based algorithm performs aat medium to high SNR values by increasing the maximum
least 1 dB worse than the BP algorithm. On the other hamymber of iterations from 50 to 200, approximatively no
for both 50 and 200 iterations, only about 0.15 and 0.25 dBiprovement is made for the UMP APP-based algorithm.
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Fig. 4. Average number of iterations for iterative decoding of the (1008, 504) LDPC code with BP and UMP BP-based decoding algorithms, and at
most 50 and 200 iterations.

Fig. 3 depicts the error performance after the first, third, and TABLE |
fifth iterations for iterative decoding of the (1008, 504) LDPC DECOAD'NG COMPLEXITY FF&R ONEII'ZTER{}T']ONOOIF T_HIZI)EIECP ('?OECOD'NG
code with BP and UMP BP-based decoding algorithms. A LOORITHM AND A RATE—L/2 ('], 27) PE

similar figure was obtained for the (504, 252) LDPC code Op;“““ N“H‘be\j;f g;wmatm
. . Gmn b additions
Based on this figure, we observe that at very low SNR 5 (forward and backward recursions 7] 3N{J — 1) multiplications |
values, the error performance of the BP algorithm improves Mo : . VJ edditions |
) . . o So 1, 2., (forward and backward recursions [7]) 2N(3J — 4) multiplications

as the number of iterations increases, while it becomes worse - N additions and VJ divisions
for the UMP BP-based algorithm. Due to these different e _ L “‘““ﬁ“i:‘g?“ﬁ

. . . . 'n IV al 1110118 and [V diviSions
behaviors, the gap in error performance increases with the c 2N multiplications |
number of iterations considered in this figure at SNR values
corresponding to BER values used in practice. Finally, for TABLE I

eDECODING COMPLEXITY FOR ONE ITERATION OF THE UMP APP-BASED

the same number of iterations, both curves seem to converg DECODING ALGORITHM AND A RATE__1/2 (V' /. 27) LDPC GobE

at high SNR values. Based on these observations, a slower

convergence (or equivalently a higher number of iterations) I Operstion =}~ Nurberof Compithtian |
. . . || minge { [ymee [} [21] [| N/2 (27 + [logy 2J] — 2) additions |
is expected for the UMP BP-based algorithm with respect to N7 additions

the BP algorithm. On the other hand, the decoding complexity

associated with each iteration of the UMP BP-based algorithm TABLE Il

is significantly smaller than that of the BP algorithm, as shown DEcoDING COMPLEXITY FOR ONE ITERATION OF THE UMP BP-Basep
DECODING ALGORITHM AND A RATE—1/2 (N, J, 2.J) LDPC CobEe

next.
[ " Operation - [ Number of Computations |
i mift | |yma |} [21] [ N2 (2] + [log, 2] — 2) additions
Zmn and z, (forward and backward recursions ) - mﬁ-;\'[.} — 1) additions |

B. Decoding Complexity

The decoding complexities associated with the BP, the UMiRIditions This is larger than th&éN.J complexity proposed
APP-based, and the UMP BP-based decoding algorithms #re[7], which can be achieved by computing only either
summarized in Tables I-lll, respectively. In these tables, aff,, (instead of bothg?,, and ¢,,.), or equivalently, the
operations associated with modulo-2 arithmetic have beprobabilities of each bit being in error (as described in Section
neglected as conventionally done. The decoding complexity-A), so that no normalization byy,,,, is needed. However,
associated with BP is evaluated based on the clever forwdlrds not clear at that time whether this modified algorithm
and backward recursions proposed in [7] to compute boill perform as well as the algorithm considered in Section
ormn and gz, for x = 0, 1. Based on Table |, for a rate-1I-B and [7], especially when the probabilities are limited to
1/2 (N, J, 2J) LDPC code, the total complexity associategrevent overflow problems.
with one iteration of BP consists ofl NJ — 9N real mul- The minimum valuesmin,cx(m\nt|¥mn|} associated
tiplications, N(J + 1) real divisions, andN(3.J + 1) real with each check sum: of both the UMP APP-based and
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the UMP BP-based decoding algorithms can be determinad alternative way to implement the BP algorithm as at most
by identifying the two minimum values corresponding to thig — 1 correcting values have to be added. This method
check sum. This method is more efficient than ordering theecomes attractive for hardware implementation of the BP
entire set of reliability values for small values @& and algorithm since the corrective terms can be stored in a ROM

can be achieved in a straightforward manner with at mo&3]-[25].

4J — 3 comparisons, or with at mostJ + [log, 2J] — 2
comparisons with the help of a binary tree, as described in
[21]. Note finally that if quantized values are considered,
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then the cost for ordering becomes negligible [22]. Then the The authors wish to thank D. J. C. MacKay for providing
decoding complexity associated with the UMP APP-baséble generator matrices of the LDPC codes used in this paper
directly follows from the description of the algorithm giverby allowing access to his website, as well as the reviewers for
in Section IlI-A. Consequently, this algorithm requires aimproving the presentation of the paper.

most 2N.J + N/2[log, 2J] — N real additions,as shown
in Table Il. For the UMP BP-based decoding algorithm, the
values z,,,, and z, are evaluated simultaneously based on
the forward and backward recursions of [7]. Consequentlyll]
as summarized in Table I, the UMP BP-based decoding,
algorithm is performed with at mostN(J — 1)+ N/2
Mog, 2.J] real additions.Based on these tables, it follows that (]
both algorithms described in Section Il require real additiongy;
only and, therefore, achieve significant computations savin%s
with respect to the BP algorithm. Also, the UMP BP-base
decoding algorithm requires only about twice as many real
additions as the UMP APP-based algorithm as well as abolf!
twice the decoding delay of the UMP APP-based algorithm
due to the forward and backward recursions associated witf]
each check sum. i8]
Fig. 4 depicts the average number of iterations for itera-
tive decoding of the (1008, 504) LDPC code with BP and
UMP BP-based decoding algorithms, and at most 50 ang
200 iterations. Again, a similar figure was obtained for thgoj
(504, 252) LDPC code. Based on this figure, we conclude
that the UMP BP-based algorithm requires significantly morey;
iterations (of smaller decoding cost) than the BP algorithm,
especially at medium SNR values. This conclusion confirnt&!
the observations made in Section IV-A.

(13]
V. CONCLUSION 14l
In this paper, two simple iterative algorithms for decoding
LDPC codes have been proposed. Both algorithms requiie;
real additions only, and therefore achieve a good tradeoff
between error performance and decoding complexity as WE_%]
as fit hardware implementation with quantized received values.
In particular, for the LDPC codes considered, the UMP BP-
based decoding algorithm performs within a few tenths o
a decibel of the BP algorithm at the BER 10 Based on [18]
these results, we conclude that the UMP BP-based decoc\i'}gg

algorithm provides an attractive solution to implement iterati
decoding of LDPC codes. [20]
The UMP BP-based decoding algorithm has been derived
from the BP algorithm by considering only the dominangazj
contribution when evaluating the reliability associated with
each check sum. Therefore, the performance of this algoritl'[ga]
can be further enhanced by adding correction values, as
described in [23]-[25] for MAP-based decoding algorithm%.ZS]
Furthermore, since for afV, J, K) LDPC code, each check
sum consists of{ bits, with K small, this approach provides
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