VLSI IMPLEMENTATION FOR LOW DENSITY PARITY CHECK DECODER’

W. L. Lee and Angus Wu

Electronic Design Automation Center
Department of Electronic Engineering
City University of Hong Kong
Tat Chee Avenue, Kowloon Tong, Kowloon, Hong Kong.
Email: angus.wu@cityu.edu.hk, Tel: +852-27889391, Fax: +852-27887791

ABSTRACT: In this paper, a low complexity
digital Low Density Parity Check (LDPC) turbo code
decoder architecture for real-time cellular personal
communication application is presented. The proposed
VLSI decoder architecture alleviates the use of
complex operations such as combinational arithmetic,
exponent computations and reduce intermediate storage
as well as interleaving latency by incorporates in-place
algorithm, index look-up table and address counter.
Besides, output section and termination of iteration are
implemented by simple decision logic. The entire
decoder is designed and synthesized using Synopsys
VHDL computer aided design tool.

1. INTRODUCTION

Turbo codes are a new class of error correction codes
that were introduced along with a practical decoding
algorithm in [1]. The importance of turbo codes is that
they enable reliable communications with channel
capacity efficiencies close to the theoretical limit
predicted by Claude Shannon in [2]. This constituted a
significant gain in efficiency over other coding
techniques known at the time [3]. Low Density Parity
Check (LDPC) turbo code was discovered to represent
a significant breakthrough in coding over the past
several years because of its amazing error correcting
capability. Therefore, this type of code has been very
attractive for applications in real-time digital
communication. However, there are relatively lack of
basic papers discussing the architecture implementation
in this topic. This paper proposes a VLSI
implementation on the digital decoding part. To verify
its functionality, simulations and synthesis were
performed using Synopsys VHDL.

After a brief review on LDPC code decoding
algorithm in Section 2, the proposed VLSI
implementation of the decoder is described in Section
3. The simulation results are discussed in Section 4
followed by conclusion in Section 5.

2. LDPC DECODING ALGORITHM
Error correction coding scheme is a necessary part of
most real-time cable and wireless digital
communication systems nowadays. Figure 1 shows the

" This work is supported by CityU PAG grant 7100049,

0-7803-7057-0/01/$10.00 ©2001 IEEE.

overall functional block diagram of the communication
system. In the transmitter side, turbo encoder generates
a parity matrix P, = (pl(‘), ey p,n“)) with m rows
associated with an information matrix (or known as
dimension) D, = (dl,]('), e d,,,y,,m) with m rows and »
columns where p, = d,,, ® ... @ d,, Similarly,
another parity matrix P, = (p](z), . pm(z)) associated
with the interleaved dimension D, = (dm(z), ey d,,,,,,(z))
is generated where information bits in D, are the same
in D; with bit position shuffled. Until parity matrices
of all j dimensions are generated, matrices D; and P,
..., P; are assumed to be transmitted over an additive
white Gaussian noise (AWGN) channel.

In the receiver side, both coded information and
parity signal are inputted to the Analog-to-Digital-
Converter (ADC) at the very beginning. ADC provides
necessary process for the digitization before decoding
process. The corresponding received matrices after
digitized and quantized are Q = (q1,1, .- Gmn)s V1 =
MY, v, L V= 0@ ?, D).

Parity Likelihood Ratio (PLR) algorithm [4] is a fast
decoding method for LDPC codes. It is obtained by
changing the subtraction operation into division on the
probabilities in the original Sum Product Algorithm [5].
The equations for generating extrinsic information u,, ,
in PLR algorithm could be summerized as the
following steps:

. Initialization: Initially, the decoder assigns the
quantized information Q to dimension O, ..., Q; with
the same predefined shuffle rule as encoder. The
quantized parities will be V1, ..., V; accordingly.
U, =1 YV mnj

i=1

j=1
where i is the iteration number and j is the dimension
number.
e Updating: Calculate g,,, as

qm,n = qm,n / um,n

. Horizontal Forward Step:
intermediate variables z}m,n and ¢, as

Figure 1: Communication system.

Compute the

am,n:f(qm,l»--~aqm,ks~-'sqm,n) fork;tn

&m =f(qm,la~-~:qm,n)
where £ is the current column number.
. Vertical Backward Step: Update a,, as

Vi ifi=l,m=M
|V ifi#zLj=J,m=M
IV f G Y i i jE S m= M
Voo S G ,a,(,:;i’j)) otherwise

where M and J is the last row in each dimension and
last dimension in each iteration respectively.
. Vertical Forward Step: Update b,, as

vm"}m l'fj=1,m=1
by = Vm'f(émab,(,iljl_])) if j#lLm=1
Vi [(G, 08 otherwise

. Horizontal Backward Step:

intermediate variables v,, as

Compute the

if m=1

otherwise

5 = {bm
" @by
Extrinsic Information: Calculate uy,, as
U =Dy S G o> V)

m,n

Output: At completion,
iy, >1

{0
um,n = .
1 otherwise

In the above equations, the Parity Likelihood Ratio
function f'is defined by fix, y) = (1 + x y) / (x + y).
Among these steps, except initialization and output
step, are carried out recursively in dimension and then
iteratively. That is the first dimension attempts to
calculate the extrinsic information which would be
interleaved and be applied to the second dimension.
Then, second dimension will compute another extrinsic
information matrix and so on, until the j extrinsic
information matrix is obtained. For the next iteration,
the j™ extrinsic information block is deinterleaved and
passed to the first dimension for calculation.

3. LDPC DECODER IMPLEMENTATION

Figure 2 shows architecture of the proposed decoder.
After the ADC process, the information and parities are
quantized into 64 levels with base 2. To avoid complex
floating point calculation, the decoder is operated in
logarithmic domain using 6-bit sign-magnitude
representing level index +0, +1, ..., £31. During
calculation of PLR, a 64 x 64 look-up table on level
indices is used. This method is very fast since it saves
a lot of calculation step and simplifies horizontal steps
to only involve table searching.

This decoder has 4 dimensions (f = 4) of each 256
rows (m 256) and 4 columns (n 4) with 16
iterations (i 16). The reason for choosing this
combination of parameters is that it requires less
resources and can achieve bit error rate (BER) the
closest to unquantized decoding scheme [4].

1224

Input N

]
|

Dimension

Controller

Dimension
Controller

ROM

Iteration Controller

Dimension
Controller

ciog]

Timing Controller

Dimension
Controller

Qutput_

Figure 2: Block diagram of LDPC decoder.

3.1 Input section

Level index of information and parity matrices are
assumed to be inputted in the first iteration at a period
of 64 clock cycles. This is because once data are
inputted from ADC to decoder, the updating step and
the horizontal forward step can be carried out
simultaneously.

3.2 Memory modules

The proposed memory design are tailored for
efficient handling of input and calculation concurrently.
The algorithm can be categorized into three similar
operations:
¢ Division on input data g,,; and extrinsic information
Unm s, the result is put back to g, 4.
¢ Apply f-function on ¢, and c?m’k , the result is put
back to g, ; -

e Apply f-function on g, and g,,, the result is put
back to ¢,, -

These three operations can be performed in parallel
due to their similar nature with same input data g,,.
Moreover, an in-place algorithm is applied. In-place is
an algorithm that destination of result occupied the
same storage locations as source data. Therefore, no
additional memory is required for temporarily storing
the intermediate value of gy, Gy, and g, .

RAM 1 RAM 2 RAM 3
column 1__column2 column 3 column 4
phase 1 [| A=Aluy, A A A A
{column 1
stored)
phase 2 | B=B/u,, B B=f(B,A) | B=f(B,A) | B=f(B,A)
(column 2
stored)
phase 3 [| C=C/u,,3 | C=f(C,B) { C=f(C,A) C=f(C,B) | C=f(C,B)
(column 3 (data 4
stored) stored)
phase 4 || D=D/u,4 || D=f(D,C) | D=f(D,C) | D=f(D,B) D=f(D,C)
(column 4|| (data 1 (data 2 (data 3 (data
stored) stored) | stored) stored) stored)

Figure 3: Operation timing of the memory module.

q q q 1% a b {1 Uu
T 71
Stage 1 R/W | R/W | R/W | R
Stage 2 R R _[RW][RW
[
Stage 3 R | R | W
Stage 4 R) R W

Figure 4: Timing of dimension updating.

In Figure 3, the operations performed on the three
memories are indicated for a sequence of four phases,
where four phasés represent the processing of four
incoming index A, B, C, D inputted to one row of the
three RAMs. They are RAM 1 for storing ¢,,,, RAM 2
for storing ¢,,, and RAM 3 for storing ¢,, .

From updating step to extrinsic information step, the
whole operation applied to a dimension can be divided
into four stages as shown in Figure 4. The R/W section
in the figure are implemented as in-place algorithm.
After the four phases finished in a dimension, stage 1
completed. Next, other 3 intermediate values a,, b,
and p, will be calculated simultaneously. The

extrinsic information can start calculation in stage 4
once intermediate values are completely calculated in
stage 2 and 3. Thus, only 16 stages are required for
updating all four dimensions in one iteration.

The key to the sequential nature of memory location
access is the address generator in dimension controller.
The generator is designed as a 14-bit binary counter.
An address generated can be seen as concatenation of
four segments, dimension number (2 bits), stage
number (2 bits), row number (8 bits) and column
number (2 bits). It should be noted that in stage 3, a,,
values are processed in reverse order. The inverted row
number segment of the address eliminates the
additional down counting logic in reverse address order
generation.

3.3 Interleavers and deinterleaver

It has been proven that, at least for high SNR, the best
performances are obtained with randomly generated
interleaving patterns [6]. This means the required
sequence of addresses cannot be obtained through
simple computations, but quite large read-only
memories (ROMs) must be allocated [6].

Therefore, the ROM size can be expressed in terms of
the interleaving word length. In Figure 5, ROM
address represents destination address for writing data
in present dimension while ROM data stores shuffled
address for reading data from previous dimension. In
updating step, when reading in shuffled extrinsic
information from last dimension, the RAM address is
read from ROM data and the ROM address is read from
address generator. This decreases the latency problem
due to data interleaving since a long duration stage for
data shuffle process is eliminated. This operations are
then repeated alternating between ROM and RAMs.

1225

S e o e P T e . S o T o T —
Dimension controller
I Address generator J
5

w3 w1y
Interleaver
[design usin
ROM
Ao 10/
YYVYy AA
Q MUX
sl
14
14 14
y
R’} RAM of Rl RAMof
Wl present Wiyl previous
dimension dimension
6 6
r data bus y

Figure 5: Structure of memory modules, interleaver,
dimension controller and address generator unit.

3.4 Control unit

Besides address generation, dimension controller also
plays an important role in memory read-write
controlling. Because of the need to continuously
applying f-function to the received data following the
order of phase and stage within a dimension, memories
and look-up tables require a lot of read-write and chip-
select signals. A dimension controller incorporating a
big finite state machine is introduced so that all control
signals employed are being well matched and
synchronized. A small portion of its state table is
shown in Table 1.

The function of iteration controller is to activate one
necessary dimension controller at a time and pass
iteration number for dimension controller to use. The
architecture incorporates simple decision logic that uses
a sign-controlled signal from the timing controller to
indicate the first and final iteration of a data block.

Table 1: Sequence of control signal generated by
dimension _controller in Figure 5.

Control signal generated Meaning of state in

dimension controller

sel | R [Wi] R | Wj | Operation | Memary accessed

1 0 1 1 1 Read from [Prior dimension
jwith predefined
shuffle address
IPresent dimension
ith normal
counting address
[Present dimension
ith normal
counting address
h’resem dimension
fwith normal
lcounting address

Write to

Read from

Write to

According to the clock signal inputted as shown in
Figure 2, timing controller will generate clock signals
with clock period is the multiple of power-of-2.
Among these signals, there are three main synchronize
clock signals in the architecture. One is equivalent to
the input clock signal. It has the highest clock rate and
is used to control the state sequence time. Another
clock signal with period 64 times input clock is the
same as input data frequency. It is for address
generation in each dimension. The other clock signals
are for iteration number and dimension number
generation.

3.5 Output Section

The output step will process when the signal of final
iteration is asserted. Resulting value will be outputted
at stage 4 of the last dimension in the last iteration with
data rate the same as decoder input. The resulting
values can be reduced by only taking the most
significant bit. This design reduces the exponent

computation to convert the index back from
logarithmic domain.
4, SIMULATION RESULTS

The proposed design are simulated with Synopsys
CAD tools using 0.35um CMOS standard cell library at
the supply voltage of 3.0V. From the synthesis, the
worst case operating frequency is 85MHz. Since time
for processing the whole data block is 16777216 clock
cycles, the data rate inputted to*the decoder should be
1.328125 MHz. Then, the time for decoding a data
block becomes 0.197 seconds which is less than 0.2
seconds and is feasible in real-time application.

5. CONCLUSION

Turbo codes represent an important advancement in
the area of real time communications. The
extraordinary performance of Low Density Parity
Check (LDPC) turbo code is due to the combination of
parallel concatenated coding, recursive encoders,
pseudo-random interleaving, and iterative decoder
structure. However, there are some drawbacks
associated with such decoders for practical VLSI
implementation. The main drawback is that the
decoding algorithms are very complicated because they
typically require many complex operations such as
combinational arithmetic, exponent and logarithmic
calculus as well as an extensive iterative process [8].
Furthermore, a very long duration of data interleaving
processes is needed for achieving the performance as
advertised [7]. In addition, the decoders typically
require a large memory for intermediate storage which
implies requiring a large silicon chip area [8].

To achieve real time application in a feasible
implementation, the complexity of architecture should
be reduced. This paper proposed a low-complexity
decoder architecture which incorporates address
counter and index table look-up to simplify

1226

combinational arithmetic. Besides, it takes the most
significant bit in output section to eliminate exponent

calculation. In addition, synchronous power-of-2
timing signal reduces iteration decision logic.
Nevertheless, in-place algorithm utilise memory

modules. Also, the use of ROM as an interleaver can
solve latency problem due to interleaving process.
Even though many simplifications have been made, the
size of chip is still significantly large due to the
memory requirement and the big finite state machine.
The size is the main drawback of the turbo code
decoder for practical VLSI chip implementation.

Future work on this subject includes the design of a
parallel architecture decoder with small chip area
constraint. In this case, the architecture will be
performed using reconfigurable FPGAs. The
technology will progress from dynamic to the more
demanding on-the-fly reconfiguration necessary for the
next generation of intelligent and adaptive hardware.

6. REFERENCES
[1] C. Berrou, A. Glavieux and P. Thitimasjshima,
“Near Shannon Limit Error-correcting Coding and
Decoding: Turbo-codes (1),” Proc. of the IEEE Int.
Conf. on Communications, Geneva, Switzerland, vol. 2,
May 1993, pp. 1064-1070.
[2] Claude. E. Shannon, “A Mathematical Theory of
Communication,” Bell Sys. Tech. J., vol. 27, 1948, pp.
379-423 and 623-656.
[3] Matthew C. Valenti, “Turbo Codes and Iterative
Processing,” Proc. of the IEEE Int. Conf. on
Communications, Geneva, Switzerland, vol. 2, May
1993, pp. 944-968.
[4] Ping Li and W. K. Leung, “Decoding the Low
Density Parity Check Code with Finite Quantization
Bits,” IEEE Communications Letters, vol. 4, no. 2,
Feburary 2000, pp. 62-64.
[S] R. G. Gallager, “Low Density Parity Check
Codes,” IRE Tran. on Information Theory, 1T-8, 1962,
pp.21-28.
[6] Guido Masera, Gianluca Piccinini, Massimo Ruo
Roch and Maurizio Zamboni, “VLSI Architectures for
Turbo codes,” IEEE Tran. on Very Large Scale
Integration (VLSI) Systems, vol. 7, no. 3, September
1999, pp. 369-379.
{71 Sangjin Hong, Joonhwan Yi and Wayne E. Stark,
“VLSI Design and Implementation of Low-complexity
Adaptive Turbo-code Encoder and Decoder for
Wireless Mobile Communication Applications,” [EEE
Workshop on Signal Processing Systems, 1998, pp.
233-242.
[8] Sangjin Hong and Wayne E. Stark, “VLSI Circuit
Complexity and Decoding Performance Analysis for
Low-power RSC Turbo-code and Iterative Block
Decoders Design,” Proc. of the IEEE Military
Communications Conf., vol. 3, 1998, pp. 708-712.

