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Efficient Encoding of Low-Density Parity-Check
Codes

Thomas J. Richardson and Rudiger L. Urbanke

Abstract—ow-density parity-check (LDPC) codes can be capacity on a BEC. It was then shown in [11] that similar
considered serious competitors to turbo codes in terms of perfor- analytic tools can be used to study the asymptotic behavior of
mance and complexity and they are based on a similar philosophy: a very broad class of message-passing algorithms for a wide

;?gnosrti;ﬁ:ngj random code ensembles and iterative decoding class of channels and it was demonstrated in [12] that LDPC

In this paper, we consider the encoding problem for LDPC codes. codes can come extremely close to capacity on many channels.
More generally, we consider theencodingproblem for codes spec- Inmanyways, LDPC codes canbe considered serious competi-

ified by sparse parity-check matrices. We show how to exploit the tors to turbo codes. In particular, LDPC codes exhibit an asymp-
sparseness of the parity-check matrix to obtain efficient encoders. totically better performance than turbo codes and they admit a

For the (3, 6)-regular LDPC code, for example, the complexity of . -
encoding is essentially quadratic in the block length. However, we Wid€ range of tradeoffs between performance and decoding com-

show that the associated coefficient can be made quite small, so thatplexity. One major criticism concerning LDPC codes has been
encoding codes even of length ~ 100 000 is still quite practical.  their apparent higlencodingcomplexity. Whereas turbo codes

More importantly, we will show that “optimized” codes actually  can be encoded in linear time, a straightforward encoder imple-
admit linear time encoding. mentation for an LDPC code has complexity quadratic in the

Index Terms—Binary erasure channel, decoding, encoding, block length. Several authors have addressed this issue.

parity check, random graphs, sparse matrices, turbo codes. .
1) Itwas suggestedin[13]and[9]to use cascaded ratherthan

bipartite graphs. By choosing the number of stages and the
relative size of each stage carefully one can constructcodes
which are encodable and decodable in linear time. One
drawback of this approach lies in the fact that each stage
(whichactslikeasubcode) hasalengthwhichis,ingeneral,
considerably smaller than the length of the overall code.
This results, in general, in a performance loss compared to
a standard LDPC code with the same overall length.

I. INTRODUCTION

OW-DENSITY parity-check (LDPC) codes were orig-

inally invented and investigated by Gallager [1]. The
crucial innovation was Gallager’s introduction of iterative
decoding algorithms (or message-passing decoders) which he
showed to be capable of achieving a significant fraction of
channel capacity at low complexity. Except for the papers by
Zyablov and Pinsker [2], Margulis [3], and Tanner [4] the field 2) In[14]itwas suggested to force the parity-check matrix to
then lay dormant for the next 30 years. Interest in LDPC codes have (almost) lower triangular form, i.e., the ensemble of
was rekindled in the wake of the discovery of turbo codes  codesisrestrictednotonlybythedegree constraintsbutalso
and LDPC codes were independently rediscovered by both by the constraint that the parity-check matrix have lower
MacKay and Neal [5] and Wiberg [6]. The past few years triangular shape. This restriction guarantees a linear time
have brought many new developments in this area. First, in  encoding complexity but, in general, italso results in some
several papers Luby, Mitzenmacher, Shokrollahi, Spielman, loss of performance.

and Stemann introduced new tools for the investigation of MeS-ti the aim ofthis paper to showthat, evenwithout cascade con-
sage-passing decoders for the binary-erasure channel (BEE)ctions or restrictions on the shape of the parity-check matrix,
and the binary-symmetric channel (BSC) (under hard-decisigi, encoding complexity is quite manageable in most cases and
message-passing decoding) [9], [10], and they extended Gglsyaply linear in many cases. More precisely, fd6a6)-reg-
lager's definition of LDPC codes to includigegular codes (see |5y code of length: the encoding complexity seems indeed to
also [5]). The same authors also exhibited sequences of COgsyt ordern? but the actual number of operations required is
which, asymptotically in the block length, provably achieve, more thar 017252 + O(n), and, because of the extremely
Manuscript received December 15,1999; revised October 10, 2000. This wetall constant factor, even large block lengths admit practically

was performed while both authors were at Bell Labs, Lucent Technologi§agsible encoders. We will also show that “optimized” irregular
Murray Hill, NJ 07974 USA.
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ggmi’;‘#:ri?f‘ets]dlggn%ﬁg g%g'{ga&‘%‘ggi;o'%‘%"&; be made precise shortly, the “distance” of the given parity-check
' matrix to a lower triangular matrix. In Section Ill, we then dis-
1similar concepts have also appeared in the physics literature [7],[8].  CUSS several greedy algorithms to triangulate matrices and we
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show that for these algorithms, when applied to elements of a
given ensemble, the gap concentrates around its expected valu
with high probability. As mentioned above, for i@, 6)-reg-
ular code the best greedy algorithm which we discuss results in
an expected gap 6f017n. Finally, in Section IV, we prove that
for all known “optimized” codes the expected gap is actually of
order less thar/n, resulting in the promised linear encoding
complexity. In practice, the gap is usually a small constant. The X
+/n bound can be improved but it would require a significantly . 9

. Variable Nodes
more complex presentation.

We finish this section with a brief review of some basic no-
tation and properties concerning LDPC codes. For a more thor-
ough discussion we refer the reader to [1], [11], [12].

LDPC codes are linear codes. Hence, they can be expresse(
as the null space offaarity-checkmatrix #, i.e.,z is a codeword
if and only if

Check Nodes

Hz' =0".
The modifier “low-density” applies téf; the matrixH should
be sparse. For example,if has dimensior; x n, wheren is  Fig. 1. Graphical representation of & 6)-regular LDPC code of length?.
even, then we might requit to have threé’s per column and The left nodes represent the variable nodes whereas the right nodes represent
six 1’s per row. Conditioned on these constraints, we chddse ""® check nodes.

at random as discussed in more detail below. We refer to the Sy example, for the degree distribution pé&if, =), which

sociated code as(8, 6)-regular LDPC code. The sparseness %forresponds to thés, 6)-regular LDPC code, the rate s

H enables efficient (suboptimal) decoding, while the random-GiVen a pair(), p) of degree distributions and a natural

ness ensures (in the probabilistic sense) a good code [1]. numbern, we define arensemblef bipartite graph€™ (A, p)
Example 1. [Parity-Check Matrix of3, 6)-Regular Code of in the following way. All graphs in the ensemid&(, p) will
Length12]: The following matrixH will serve as an example. haveleft nodes which are associatedtandright nodes which

111 001100010 are associated tp. More precisely, assume that
111110000001 )\(a:):z}\ia:i_l
g_|000001 110111 ) =
100100011101 and
010110111000 p(z) =Y pir'.
0 01 011001110 i>1
[0 We can convert these degree distributions mide perspective
In the theory of LDPC codes it is customary and useful ngty defining . s p;
to focus on particular codes but to consider ensembles of codes. Ai = Lf_z)\ and p; == Lf_zp

These ensembles are usually defined in terms of ensembles.of N 5 i
bipartite graphs[13], [15]. For example, the bipartite graph?:_‘r’lch graph i€ (A, p) hasn); left nodes of degregand(1 —

which represents the code defined in Example 1 is shownﬁ%‘.’ p))npi right nodes of degree The order of these nodes is
Fig. 1. Theleft set of nodes represents thariableswhereas arbitrary but fixed. Here, to simplify notation, we assume that

theright set of nodes represents thenstraints An ensemble (A, p) andn are chosen in such a way that all these quantities

of bipartite graphs is defined in terms of a pairdeigree distri- age Integer. AtnOdZ tor: degre‘dwkafi;g:kst_?‘rr]om WT"ihltt?]ei
butions A degree distributiony(z) = >, v&*~! is simply a cedges emanate and fnese socketeaiered Thus, In fotatthere

. . . - . . are

polynqm|al with nonnegative rea] coefficients §at|sfy11(g) = B o N on_ (I=r(\p)n

1. Typically, v; denotes the fraction of edges in a graph which s := Z inA; = Z nﬁ = ﬁ = f—

are incident to a node (variable or constraint node as the case i>1 i>1 p

may be) of degree. In the sequel, we will use the shorthand =(1=7r(\ p)) Z P (1 =7\, p)) Z inp;

[ ~ to denote is1 Jr i>1

1 ordered sockets on the left as well as on the right.4.&e a

Z ﬁ = / y(z) dz. permutation or[s] := {1, ..., s}. We can associate a graph
is1 ¢ 0 to such a permutation by connecting tile socket on the left

. L . 0 theo(¢)th socket on the right. Letting run over the set of
This quantity gives the inverse of the average node degree. &rmutations ofs] generates a set of graphs. Endowed with the
sociated to a degree distribution pdik, p) is therate (A, p)

! uniform probability distribution this is the ensemil&(\, p).
defined as Therefore, if in the future we choose a graph at random from the
O, p)i=1— f_ @ ensembl&™(\, p) then the underlying probability distribution
A P) = S is the uniform one.

R~
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It remains to associate a code to every elemert'dh, p). This decoder can equivalently be formulated as a message-
We will do so by associating a parity-check matrix to eacpassing decoder. Messages are from thg@et } with a0 in-
graph. At first glance, it seems natural to define the paritglicating that the corresponding bit has not been determined yet
check matrix associated to a given elementCit(\, p) as (along the given edge). We will callamessage aerasure mes-
that {0, 1}-matrix which has a nonzero entry at raivand sage At a variable node, the outgoing message along an edge
column j if and only if (iff) the ith right node is connected is the erasure message if the received message associated to this
to the jth left node. Unfortunately, the possible presence aiode is an erasure and if all incoming messages (excluding the
multiple edges between pairs of nodes requires a more carefidoming message along edgeare erasure messages, other-
definition. Since the encoding is done over the field@f; we wise, the outgoing message i$.8At a check node, the outgoing
define the parity-check matrif as the{0, 1} matrix which message along an edgis the erasure message if at least one of
has a nonzero entry at rowand columnj iff the ith right the incoming messages (excluding the incoming message along
node is connected to thgh left node arodd number of times. edgee) is the erasure message, andatherwise. If we declare
As we will see, the encoding is accomplished in two steps.tlaat an originally erased variable node becokm®e®wvnas soon
preprocessingtep, which is an offline calculation performedas it has at least one incoming message which is not an erasure
once only for the given code, and the actual encoding stden one can check that at any time the set of known variable
which is the only data-dependent part. For the preprocessimggdes is indeed identical under both descriptions.
step it is more natural to work with matrices which contain the It was shown in [16] that (asymptotically im) the expected
multiplicities of edges and, therefore, we define théended fraction«, of erasure messages after #ie decoding round is
parity-check matrixd as that matrix which has an entdyat given by
row ¢ and columnj iff the ith right node is connected to the
jth left node byd edges. ClearlyH is equal tod modulo?2. ar = aA(l = p(1 — o-1)) 3)

In _the sequel, we will also refer to the_se two matri_ces as tW"nereao = «. Leta* (A, p), called thethresholdof the degree
adjacency matrixand theextended adjacency matrixf the distribution pair. be defined as

bipartite graph. Since for every graph there is an associatea pai,

code, we will use these two terms interchangeably so we will] (A, p) := sup {0 <a<loga) ‘=0 where
e.g., refer to codes as element<’6{ )\, p).

Most often, LDPC codes are used in conjunction witas- (@) = aX(l = p(l — a-1)); a0 = O‘} - @)
sage- passi_ng decoder@ecall_ that there is a re_ceived MeSNote first that the functiorf (z, y) := yA(1 — p(1 — z)) is in-
sage associated to eaf:h vgnable node which is the resu_"cRiasing in both its arguments for y € [0, 1]. It follows by
passing the corresponding bit of the codeword through the 9iveN: « induction that ifere () (200 thenag(a’) 290 for any

channel. The dechmg algorithm procgedscmnds At each o’ < a. If we choosen < a*(), p), then the asymptotic ex-
round, a message is sent from each variable node to each neigh=
o
i

boring check node, indicating some estimate of the associa (gted fraction of erasure messages converges to zero. Conse-
9 ' 9 ntly, the decoder will be successful with high probability in
i

case. If, on the other hand, we choase a*(A, p) then,
thrhigh probability, the decoding process will not succeed. We

wifl see shortly that, correctly interpreted, this decoding proce-

extrinsicinformation, i.e., the c_)utgomg message along a IVilire constitutes the basis for all preprocessing algorithms that
edge must not depend on the incoming message along the same

edge. As we will see, the preprocessing step for the encodin(‘gvie consi(ilerzin tgis6paF12per. lar CodelL
closely related to the message-passing decoder for the BEC. V\%xamp € 2. [(3, 6)-Regular Code] ef
will therefore review this particular decoder in more detail. (A(@), px)) = (a?, °).

Assume we are given a codedft(), p) and assume that we Thenr(z?, 2°) = L. The exact threshold* (22, °) was de-
use this code to transmit over a BEC with an erasure probabiligtmined in [17] and can be expressed as followssLa¢ given
of a. Therefore, an expected fractiorof the variable nodes will py,
be erasuresand the remaining fractiofil — «) will be known - . e
We first formulate the iterative decoder not as a message-passing 1 \/% —a+b \/@ +a—b+ 29161/ 25 —atb
decoder but in alanguage which is more suitable for our currefit= 35 +

bit's value. In turn, each check node collects its incoming me

sages and, based on this information, sends messages bagN
the incident variable nodes. Care must be taken to send out on

2 2
purpose, see [9]. where
Decoder for the Binary Erasure Channel. 29 , 2 3
0. [Intialization] =57 <—85 1 324465 465)
1. [Stop or Extend] Ifthere is no known variable node and nand
check node of degree one then output the (partial) code- 1 /5 3
word and stop. Otherwise, all known variable nodes and b= 27 <§ (_85 +3v2d 465))
all their adjacent edges are deleted. Then
2. [Declare Variables as Known] Any variable node which 1
is connected to a degree one check node is declared to be ot (x?, 20) = o 5 ~ 0.42944 |

known. Goto 1. (1-0?)
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Fig. 2. An equivalent parity-check matrix in lower triangular form. Fig. 3. The parity-check matrix in approximate lower triangular form.

Il. EFFICIENT ENCODERSBASED ON APPROXIMATE LOwer ~ n” term is typically very small so that the encoding complexity
TRIANGULATIONS stays manageable up to very large block lengths.

. . . Our proposed encoder is motivated by the above example.
In this section, we shall develop an algorithm for con; prop y b

. - ..~ Assume that byerforming row and column permutations only
structing efficient encoders for LDPC codes. The efficiency . .. bring the parity-check matrix into the form indicated in

of th_e encoder arises frpm the sparseness of the parity-chgf . 3. We say thaH{ is in approximate lower triangular form
mairix H and the algorithm can be applied to any (sparsﬁote that since this transformation was accomplished solely by

H. Although our example is bmary, the algonthm app“eBermutations,the matrix is still sparse. More precisely, assume
generally to matriced/ whose entries belong to a field. We that we bring the matrix in the form

assume throughout that the rowsHbfare linearly independent.
If the rows are linearly dependent, then the algorithm which
i . A B T
constructs the encoder will detect the dependency and either H=
) . C D FE
one can choose a different matik or one can eliminate the
redundant rows fron#{ in the encoding process.
Assume we are given an x n parity-check matrixd overr'.
By definition, the associated code consists of the setiiples
x over F' such that

®)

whereA is (m—g)x(n—m), B is (m—g)xg, T is (m—g)x(m—g),
Cis gx(n—m), Dis gxg, and, finally,E is gx(m—g). Further,
all these matrices are spatsadl’ is lower triangular with ones
along the diagonal. Multiplying this matrix from the left by

HzT =07,

1 0

6
Probably the most straightforward way of constructing an en- <—ET1 I ) ©)
coder for such a code is the following. By means of Gaussian
elimination bringH into an equivalent lower triangular form get
as shown in Fig. 2. Split the vectarinto asystematigart s, A B T
s € ™™™ and aparity partp, p € I'™, such that: = (s, p). < 1 1 ) .
Construct asystematicencoder as follows: i) Fills with the —EITA+C —ETTB+D 0
(n — m) desired information symbols. ii) Determine the
parity-check symbols usingack-substitutionMore precisely,
for I € [m] calculate

()

Letz = (s, p1, p2) Wheres denotes the systematic papt,
andp, combined denote the parity papt, has lengthy, andp-
has length(m — g). The defining equatiodz” = 07 splits
naturally into two equations, namely

n—m -1
P = Hi js5+ Hi jin—mpj.
jz::l o ; rnmm AT + By +TpF =0 (8)

and
What is the complexity of such an encoding scheme? Bringing (~ET™ A+ O)sT + (~ET~*B + D)p¥ =0. (9)
the matrixH into the desired form requirg3(n?) operations of
preprocessingThe actual encoding then requi@$n?) opera- Define ¢ .= —ET~'B + D and assume for the moment that

tions since, in general, after the preprocessing the matrix will 9 o nsingular. We will discuss the general case shortly. Then
longer be sparse. More precisely, we expect that we need aqulﬂ;n (9) we conclude that

n2@ XOR operations to accomplish this encoding, where
is the rate of the code. T 1 1 T
. L . . = - —ET A+ C)s .
Given that the original parity-check matri is sparse, one Py ¢ +0)s
might wonder if encoding can be accomplishedifn). As we Hence, once the x (n —m) matrix —¢—~(—ET—*A+C)

will show, typically for codes which allow transmission at rateﬁ s been precomputed. the determination.ofan be accom-
close to capacity, linear time encoding is indeed possible. Anﬁsheol inpcomple?(ityO(,g X (n—m)) simr?l;ll by performing

for those codes for which our encoding scheme still leads %
quadratic encoding complexity the constant factor in front of the2more precisely, each matrix contains at meXt:) elements.
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TABLE |
EFFICIENT COMPUTATION OF p' = —¢p Y (—ET 1A + C)s7

Operation Comment Complexity

AsT Multiplication by sparse matrix O(n)

T71 [AsT] T71[AsT] =yT & [AsT] = TyT O(n)

-F [T"lAsT] Multiplication by sparse matrix O(n)

CsT Multiplication by sparse matrix O(n)

[-ET71AsT] + [OsT) Addition O(n)

—¢71 [-ET1AsT + CsT] Multiplication by dense g x g matrix 0(g?)

TABLE I
EFFICIENT COMPUTATION OF p' = —T~*(As™ + BpT)

Operation Comment, Complexity
AsT Multiplication by sparse matrix O(n)
BpT Multiplication by sparse matrix O(n)
[4sT] + [Bp]] Addition O(n)
—T71[AsT + BpT] —T-1[AsT + BpY| = yT < — [AsT + BpY| = TyT O(n)

a multiplication with this (generically dense) matrix. Thignatrix into an approximate lower triangular form wigh= 2
complexity can be further reduced as shown in Table I. Rather

than precomputing-¢—(—E7~1 A+C) and then multiplying A B r

with sT we can determing; by breaking the computation into C D E

several smaller steps, each of which is efficiently computable.

To this end, we first determinds?, which has complexity 111001 10 1000
O(n) since A is sparse. Next, we multiply the result Gy!. 111110 00 0100
SinceT1[As?] = 4T is equivalent to the systefipls?] = (000001 11 1110
Ty* this can also be accomplished @(n) by back-substitu- =11t 00100 01 01 11
tion, sincel’ is lower triangular and also sparse. The remaining 0101 10 1 0 00 1 1
steps are fairly straightforward. It follows that the overall com- 0010 1 1 0 1 10 0 1
plexity of determiningp; is O(n + ¢?). In a similar manner, (10)

H T _ —1 va va - ) .. . . .
nqtlng from (8) thatu? N _T. (As +_Bp1 ), We can accom We now use Gaussian elimination to cléarThis results in
plish the determination gf; in complexityO(n) as shown step

by step in Table II. 111 00 1 10 1 0 00

A summary of the proposed encoding procedure is givenin |1 1 1 1 1.0 10 0 0 1 0 0
Table Il1. It entails two steps. Areprocessingtep and the ac- 000001 11 1110
tual encodingstep. In the preprocessing step, we firstperform |1 0 0 1 .0 0 | 0 1 1 0 1 1 1
row and col_umn permutations to bring the_ parity-check matrix 001100 1 1 0 0 0 0
into approximate lower triangular form with as small a gap 101110 11 00 0 0

as possible. We will see, in subsequent sections, how this GR8 see thats := —ET-'B+D = (} 1) is singular. This
be accomplished efficiently. We also need to check Wheth&ﬁgularity caﬁ be removed if we exchanlge e.q cqur.nn 5 with
¢ := —ET™' B+ Dis nonsingular. Rather than premultiplying " 'a" hich gives = (1 9).Interms of the (.),riginal order
by the matrix( _p. 7). this task can be accomplished effi o) cojumn order is then 1, 2, 3, 4, 10, 6, 7, 5, 11, 12, 8, 9
ciently by Gaussian elimination. If, after clearing the matkix and the resulting equivalent pa’rit;/—c'he'ck rﬁa,trb; is, e
the resulting matrixp is seen to be singular we can simply per-
form further column permutations to remove this singularity. / A B T
This is always possible wheff is not rank deficient, as as- ( )
a

sumed. The actual encoding then entails the steps listed in T D £

bles I and II. 111001 10 1 0 00
We will now demonstrate this procedure by means of our run- 1111000110100
ning example. 0 0 00 11 1 0 1 1 1 0
=11 0 0 1 1 O 0 0 01 1 1

Example 3. [Parity Check Matrix of3, 6)-Regular Code of
Length12]: For this example if we simply reorder the columns
such that, according to the original order, we have the ordering
1,2,3,4,56,7,10, 11, 12, 8, 9, then we put the parity-check (12)

o
=
o
=
o
o
=
=
o
o
=
=

o
o
=
o
=
=
o
=
=
o
o
=
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SUMMARY OF THE PROPOSEDENCODING PROCEDURE IT ENTAILS TWO STEPS A PREPROCESSINGSTEP AND THE ACTUAL ENCODING STEP

TABLE Il

Preprocessing: Input: Non-singular parity-check matrix H. Output: An equivalent parity check

matrix of the form <

A BT

¢ DE ) such that —ET~!B + D is non-singular.

1. [Triangulation] Perform row and column permutations to bring the parity check matrix H

into approximate lower triangular form
A BT
H= ( C D E )

with as small a gap g as possible. We will see in subsequent sections how this can be accom-
plished efficiently.

. [Check Rank] Use Gaussian elimination to effectively perform the pre-multiplication

I 0\(A BT)_ A B T (12)
ET* 1)\ ¢ D E)T\ -ET'A+C —-ET"'B+D 0

in order to check that —~ET !B+ D is non-singular, performing further column permutations
if necessary to ensure this property. (Singularity of H can be detected at this point.)

643

Encoding: Input: Parity-check matrix of the form (

A B T

—ET-1 ;
c D E)suchthat ET-'B+ D is

non-singular and a vector s € F*~™. Qutput: The vector z = (s,p1,p2), p1 € F?, p2 € F™79, such

that HzT = 07.
1. Determine p; as shown in Table 1.

2. Determine p; as shown in Table 2.

Assume now we choose= (1, 0, 0, 0, 0, 0). To determing),
we follow the steps listed in Table I. We get

AsT =(1, 1,0, D)

45T = (1, 1,0, 0)
—E[ 1AsT]—(0, nT
= (0, 0)"
[-ET~ 1A3T]+[03T] (0, HT

and
¢ H—ET tAsT + Cst) = (0, )T =pT.

angulation. Hence, for a given parity-check matrix we are in-
terested in finding an approximate lower triangulation with as
small a gap as possible. Given that we are interested in large
block lengths, there is little hope of finding the optimal row and
column permutation which results in the minimum gap. So we
will limit ourselves togreedyalgorithms. As discussed in the
previous section, the following greedy algorithms work on the
extended adjacency matrices since these are, except for the or-
dering of the sockets, in one-to-one correspondence with the un-
derlying graphs.

To describe the algorithms we first need to extend some of
our previous definitions. Recall that for a given pgit, 1) of

In a similar manner, we execute the steps listed in Table Il fqree distributions we associate to it two important parameters.

determinep,. We get
Bpl =(0, 1,0, 00"
[4sT] + [BpF] = (1, 0, 0, 1)7
and
“HAsT + Bpl]=(1,0, 1,00 =
Therefore the codeword is equal to
(s, p1, p2) =(1,0,0,0,0,0,0,1, 1,0, 1, 0).
A quick check verifies thaHz” = 07, as required.

I1l. A PPROXIMATE UPPERTRIANGULATION VIA GREEDY
ALGORITHMS

The first parameter(y, v) is therate of the degree distribution
pair and is defined in (2). Note that

1
1—7r(v,p)

The second parameter (1, »/) is called thethresholdof the
degree distribution pair and is defined in (4)rlf, ») > 0,

as we have tacitly assumed so far, then we can thir(u.of)

as the degree distribution pair of an ensemble of LDPC codes
of rater(u, v). Further, as discussed in Section I, in this case it
was shown in [9] thate* (1, /) is the threshold of this ensemble
when transmitting over the BEC assuming a belief propagation
decoder. In generaf;(:, ) may be negative and, hence, the

-, v) = (13)

We saw in the previous section that the encoding complexitggree distribution pair does not correspond to an ensemble of
is of ordern + g2, whereg is the gap of the approximate tri-LDPC codes. Nevertheless, the definitions are still meaningful.
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Example 4: Let (u(x), v(x)) = (z°, z?). In this case, we 1-k Kk
haver(z®, #2) = —1 and, using the techniques described in
[17], the threshold can be determined to be 0

318 k

ot (x°, 2?) = 57755 ™ 0.945851. O (1-n)l

In a similar way, the definition of the ensemld&.:, v/) as (1-0)l-k
well as the association of (extended) adjacency matrices to ele-
ments ofC!(;:, 1) carry over to the case(y, v) < 0. Assume 1
now that, for a given ensembi® (., /), we create a new en-
semble by simply exchanging the roles of left and right nodgsg. 4. Approximate lower triangulation of the matrit with row gap

This new ensemble is equivalent to the ensemble (1 —r)l —k and column gap — k achieved by a greedy algorithm.
O N, ) = CT= e (v, )
where we have used (13). For the associated (extended) adja- Ciy.os Ck
cency matrices this simply amounts to transposition. I 0
Assume we are given a matrik of dimension(1 — r){ x [ 0 0
with elements ilN, wherer is some real-valued parameter with Tk

r < 1. We will say that a row and a column acennectedf
the corresponding entry id is nonzero. Furthermore, we will
say that a row (column) hadegree; if its row (column) sum
equalsi. Assume now that we want to bringjinto approximate
lower triangular form. The class of greedy algorithms that we
will consider is based on the following simple procedure. Given
the (1 — )l x I matrix A and a fixed integek, £ < (1 - ' _ _
7,)1’ permute, if possible, the rows and columns in such a Wgy 5. Given the matrix4 let ¢4, ..., C; denote those columns which are
hat the first has its last t t itibA connected to rows of degree one andrlgt. . ., r;, be degree-one rows such
tha € irstrow has Its last nonzero entry a pOSI'ﬁ B+ thatc; is connected ta;. Reorder the rows and columns in such a way that
1). If this first step was successful then fix the first row and, ..., r, form the firstk rows and such that., ..., ¢, form the firstk
permute, if possible, the remaining rows and all columns in su?ﬂumns. Note that the t_op-Ie@tx k submatrix has diagonal form and that the
. . first k rows have only this one nonzero entry.
a way that the second row has its last nonzero entry at position

(I — k£ + 2). In general, assuming that the figst 1 steps were ] ) ] ]
successful, permute at tit step, if possible, the lagt —r )l — By a diagonal extension step we will mean the following. As

(i — 1) rows and all columns in such a way that titie row has input, we are given the matriXd and a set of known column;.

its last nonzero entry at positidid — & 4 ). If this procedure The algorithm performs some row and column permutations
does not terminate before theh step then we accomplished arfid specifies aesidual matrixA. More precisely, if none of
approximate lower triangulation of the matrix We will say the known columns are con_nected to rows of degree one then
that A is in approximate lower triangular form witlow gap perform a column permutation so that all the known columns

b

(1 — )l — k andcolumn gag — k, as shown in Fig. 4. form the leading columns of the matrix. Furthermore, delete
' these known columns from the original matrix and declare
A. Greedy Algorithm A the resulting matrix to bed. If, on the other hand, all known

. . . - columns are connected to rows of degree one then perform a
We will now give a precise description of the greedy algo- : oo .
. . . . .2 row and column permutation to bring into the form depicted
rithm A. The core of the algorithm is th@iagonal extension .~ _.
step in Fig. 5. Furthermore, delete the known columns. .., ¢

Diagonal Extension StepAssume we are given a matri and the rowsy, ..., ry from the original matrix and declare

. i the resulting matrix to bel.
and a subset of the columns which are classifiedramsvn In - . .
. ; In terms of this diagonal extension step, greedy algorithm A
all cases of interest to us, either none of these known columns . . .
as a fairly succinct description.
are connected to rows of degree one or all of them are. As-

sume the latter case. Lef, . .., ¢, denote the known columns  Greedy Algorithm A:

andletrs, ..., r be degree-one rows such tieais connected [Initialization] Given a matrix4 declare each column inde-

to r,.2 Reorder, if necessary, the rows and columnsiafuch . . .
. pendently to bé&knownwith probability1 — « or, otherwise,

thatry, ..., rp form the leadingk rows of A and such that ~

: - to be anerasure Let A := A.
¢1, ..., ¢ form the leading: columns ofA as shown in Fig. 5, R
whereA denotes the submatrix éf which results from deleting 1. [Stop or Extend] IfA contains neither a known column nor a
the rows and columns indexed by, ..., rip andcy, ..., c. row of degree one then output the present matrix. Otherwise,
Note that after this reordering the top-léftc £ submatrix ofA perform a diagonal extension step.

has diagonal form and that the tépows of A have only this

2. [Declare Variables as Known] Any column i which is
one nonzero entry.

connected to a degree one row is declared to be known.
3r, may not be determined uniquely. Goto 1.
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l (1-a)l al

A (1 — r)l (1 — ’l')l
(a) (6)
(1—a)l . - (1—a)l O
TT 0 ;
Tk c? e 0 al
A
1-r—a)l

(© (d)

Fig. 6. (a) The given matrix. (b) After the first application of step one, tfie — «)! known columns are reordered to form the fifst— «)! columns of the
matrix A. (c) After the second application of step one, theew known columns and their associated rows are reordered to form a diagonal ofde(@ttf the
procedure does not terminate prematurely then the diagonal is extended to have:leanyththerefore, the row gap is equal fo— r — «){ and the column gap
is equal to(1 — a)l.

To see that greedy algorithm A indeed gives rise to an approkssume first that(\, p) > 0 so thatC'(y, v/) represents an en-
imate triangulation assume that we start with (the- »)I x I semble of LDPC codes of raté), p). For the same code/graph
matrix A as shown in Fig. 6(a). In the initialization step, an exeonsider the process of transmission over an erasure channel
pected fractior{1 — «) of all columns are classified as knownwith erasure probabilityx followed by decoding using the
and the rest is classified as erasures. The first time the algorithmssage-passing decoder described in Section I. Compare this
performs step one the§e—«)! known columns are reordered toprocedure to the procedure of the greedy algorithm A. Assume
form the leading columns of the matrikas shown in Fig. 6(b). that the bits erased by the channel correspond to exactly those
Assuming that the residual matrix has rows of degree one, tt@umns which in the initial step are classified as erasures.
columns connected to these degree-one rows are identified intthreder this assumption, one can see that those columns which
second step. Letthese columnshe. .., ¢ andletry, ..., r,  are declared known in thé&h round of greedy algorithm A
be degree-one rows such thatis connected te;. During the correspond exactly to those variable nodes which are declared
second application of step one these new known columns dmbwn in thefth round of the decoding algorithm. Hence, there
their associated rows are ordered along a diagonal as showisia one-to-one correspondence between these two algorithms.
Fig. 6(c). Furthermore, in each additional iteration this diagonal As discussed in Section |, i < «*(u, v) then (asymptot-
is extended further. If this procedure does not stop prematuréglly in ) with high probability the decoding process will be
then the resulting diagonal has expected lengtland, there- successful. Because of the one-to-one correspondence we con-
fore, the row gap has expected s{ze- » — )l and the column clude that in this case (asymptoticallylingreedy algorithm A
gap has expected siZé — «)! as shown in Fig. 6(d). If, on will extend the diagonal to (essentially) its full lengtfi with
the other hand, the procedure terminates before all columns high probability so that the row and column gaps are as stated
exhausted then we get an approximate triangulation by simtythe Lemma.
reordering the remaining columns to the left. Assuming that theln the case that(s:, v) < 0 we cannot associate an ensemble
remaining fraction of columns is equal tbthen the resulting of codes to the degree distribution péjr, /). Nevertheless,
expected row gap is equal {d — » — « + ¢)I and the resulting recursion (3) still correctly describes the expected progress of
expected column gap is equaltb— « + €)l. greedy algorithm A. It is also easy to see that the concentration
around this expected value still occurs. It follows that the same

Lemma 1 [Performance of Greedy Algorithm Allet (1, ) analysis is still valid in this case. O

be a given degree pair and choese: «* (1, v). Pick a graph _ )
at random from the ensemtf&(;, /) and letA be its extended ~ 1) Greedy Algorithm AH:By greedy algorithm AH we
adjacency matrix. Apply greedy algorithm A to the extendedf€an the direct application of greedy algorithm A to the
adjacency matrixi. Then (asymptotically i) the row gap is €xtended parity-check matrik of a given LDPC code. The
concentrated around the val(ie— r — o)l and the column gap 9ap we are interested in is then simply the resulting row gap.
is concentrated around the val(ie— «)!. Lettinga T o™, we Corollary 1 (Performance of Greedy Algorithm AH):et
see that the minimum row gap achievable with greedy algorithfh, p) be a given degree distribution pair witl{A, p) > 0
Alis equal to(1 — » — )l and that the minimum column gapand choosex < «*(A, p). Pick a code at random from the
is equal to(1 — «*)l. ensembleC™(), p) and let A be the associated extended
Proof: Assume we are given a graph and an associatpdrity-check matrix. Apply greedy algorithm A t&. Then
extended adjacency matrid from the ensemble’!(;, v). (asymptotically inn) the gap is concentrated around the
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value (1 — (A, p) — a)n. Letting o T o, we see that the Lemma 2:Let (i, ) be a degree distribution pair. Then
minimum gap achievable with greedy algorithm A is equal ta*(y:, ») = 1 if and only if for all« € [0, 1)
(1 =r(A, p) —a")n.

Example 5 [Gap for thé3, 6)-Regular Code and Greedy Al-
gorithm AH]: From Example 2, we know tha(z?, 2°) = 5  Furthermore, if (14) holds and(0) = 1(0) = 0, then
and thato* (22, %) ~ 0.429439. It follows that the minimum ) )
expected gap size for greedy algorithm AH is equalte- pv'(1) <1< ' (ra. (15)

0.070561n. O

x> op(l—v(l—2x)) Ve (0,aql (14)

Proof: Clearly, if (14) holds then for any < [0, 1) we

Note that greedy algorithm A establishes a link between theave
error-correcting capability on a BEC using a message-passing
decoder and the encoding complexity. In simplified terms: Good x> ap(l—v(l - x)) Vze(0,al
codes have low encoding complexity!

2) Greedy Algorithm AHT:Rather than applying greedy al- P «
gorithm A directly to the extended parity-check mattixof an (3) CONVETQES O ast iends to infinity. Henceg™ (1, ») = 1.
LDPC code we can apply it to the transpose of the extended ‘SSUMe now thatx (uy ) 7_)&0 This means that for any
parity-check matrix. In this case, the gap we are interested irfis€ [0, 1) we have thatv,(«) "—" 0. We want to show that
equal to the resulting column gap. (14) holds. Letf(z, «) := ap(l — v(1 — z)) and note that for

. x, a € [0, 1], f(z, «) is an increasing function in both its ar-

Corollary 2 (Performance of Greedy Algorithm AHT)et  guments. Note that becauggr, ) is increasing in it follows
(A, p) be a given degree distribution pair with\, p) > 0 and  that a necessary condition fag(c) to converge to zero is that
chooser < a*(p, A). Pickacode atrandom fromthe ensemblg, . (o «), i.e., that at least in the first iteration the erasure
C"(A, p) and letH be the associated extended parity-check margpapility decreases. We will use contraposition to prove (14).
trix. Apply greedy algorithm A ta2”. Recall that this is equiv- Hence, assume that there exist a strictly posiivand anc,
alent to applying greedy algorithm A to a randomly chosen ex- < , < 1, such that: < f(z, ). Sincea > f(a, o) and
tended adjacency matrix from the ensem8le=™ (p, A).  sincef is continuous this implies that there exists a strictly pos-

Therefore, (asymptotically in) the gap is concentrated aroundtive » and anw, = < « < 1, such that: = f(x, «). Then
the valuel_ﬁ,z—fk) n. Lettinga T «*(p, A), we see that the min- -

By a compactness argument if follows that «) as defined in

ilmu[rz g/%p achievable with greedy algorithm AHT is equal to a(a) = fla, @) > flz, o) = x.
—« \p
=r(p, %) ™ It follows by finite induction that
Example 6 [Gap for thé3, 6)-Regular Code and Greedy Al-
gorithm AHT]: From Example 4, we know tha{z?, 22) = a(a) = flae—1, @) 2 f(z, o) =z

—1 and thato* (2%, 2?) = % It follows that the minimum

expected gap size for greedy algorithm AHT is equal to and, thereforeq (o) does not converge to zero d4gends to

infinity, a contradiction.

1_ 31*1 292179511 Finally, for z close to one we have
275 = 222 0~ 0.0270746n.

2 T W1~ () = e/ (11— 2) + O((1 — 2)%)

Example 7 (Gap for an “Optimized” Code of Maximal De~,nereas for: tending to zero we have
gree 12 and Greedy Algorithm AHT)Let us determine the
thresholda*(p, A) for one of the “optimized” codes listed in (1 —v(z)) =1 — i/ (Draz + O(z?).
[12]. We pick the code with

g:

This yields the stability conditions stated in (15). O
A(z) := 0.251z + 0.309z% + 0.0022> + 0.4382°
and B. Greedy Algorithm B
p(z) == 0.6372° + 0.363z". For greedy algorithm A, the elements of the initial set of

known columns are chosen independently from each other. We
Quite surprisingly we gete*(p, A) = 1! This means that for will now show that by allowing dependency in the initial choice,
anye > 0 we can start the process by declaring onlye#® the resulting gap can sometimes be reduced. Of course, this de-
fraction of all columns to be known and, with high probabilitypendency makes the analysis more difficult.
the process will continue until at most ayi2 fraction of all ~ |n order to describe and analyze greedy algorithm B we need

columns is left. Therefore, we can achieve a gaprofor any  to introduce some more notation. We call a polynomial
e > 0. We will later prove a stronger result, namely, that in this

case the gap is actually at most of orgét, but we will need w(z) =Y wa'™!
more sophisticated techniques to prove this stronger reddit. i>1

The above example shows that at least for some degree diith real nonnegative coefficients in the ranie 1] a weight
tribution pairs(u, ») we havea* (1, ) = 1. When does this distribution, and we denote the set of all such weight distribu-
happen? This is answered in the following lemma. tions byW. Letr : D x W — D be a map which maps a pair
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consisting of a degree distributierand a weight distributiow  tribution » to 7(», w). Therefore, the new graph is an element
into a new degree distribution(», w). This map is defined as of the ensembl€(:, 7(v, w)). Further, one can check that this
map is reversible and, therefore, one-to-one. A closer look re-

(v, w) =+ Z VWi veals now that applying greedy algorithm B to an extended ad-
iz2 . jacency matrix picked randomly from the ensembi¢;:, )
(v, w)i =vi(l — wy), 22 is equivalent to applying greedy algorithm A with = 0 to

the transformed extended adjacency matrix, i.e., the resulting
_ residual graphs (which could be empty) will be the same. Now,
Greedy Algorithm B: sincer(v, w); > 0 it follows that the greedy algorithm B will

0. [Initialization] We are given a matrix and a weight dis- 96t started and since by assumptioh(y., 7(v, w)) = 1 we
tribution w(). For each row ind perform the following: if Know from the analysis of greedy algorithm A that with high
the row has weightthen select this row with probability; . probability the diagonalization process will continue until the
For each selected row of weightleclare a random subseldiagonal has been extended to (essentially) its full length. In
of size(i — 1) of its ¢ connected columns to be known. AJthis case, the resulting column gap is equal to the size of the set

remaining columns which have not been classified as knowihich was initially classified as known. To determine the size of
are classified as erasures. Let— A. this set we first determine the probability that arandomly chosen

edge is one of those edges which connect a selected right node
row of degree one then output the present matrix Otherwﬁo one of its(; — 1) declared known neighbors. A quick calcula-
perform a diagonal extension step. 3fon shows that this prqpab|llty is e_qualqzo: ZiZI Viwi 5
_ . Therefore, the probability that a given left node of degrée
2. [Declare Variables as Known] Any column it which is  connected to at least one of these edges is equaktal — ¢)*.

connected to a degree one row is declared to be knovetom this the stated row and column gaps follow easily. ]
Goto 1

We are now ready to state greedy algorithm B.

1. [Stop or Extend)] Ifd neither contains a known column nor

1) Greedy Algorithm BH:Following our previous notation,
Clearly, greedy algorithm B differs from greedy algorithm Ay greedy algorithm BH we mean the direct application of
only in the choice of the initial set of columns. greedy algorithm B to the extended parity-check makfiof a
Lemma 3 (Analysis of Greedy Algorithm B)et (1, 1) be a given LDF_’C code. The gap we are interested in is then simply
given degree distribution pair. Le{z) be a weight distribution the resulting row gap.
such that" (s, 7(v, w)) = 1. Defineq == 35,5, viwi'T. Corollary 3 (Performance of Greedy Algorithm BH):et
Pick a graph at random from the ensem@léu, ) and letA (), p) be a given degree distribution pair with\, p) > 0. Let
be its extended adjacency matrix. Apply greedy algorithm B to{x) be a weight distribution such that* (A, 7(p, w)) = 1.
the extended adjacency matrix Then (asymptotically if) the Define

row gap is concentrated around the value i1
. q .= Z PiWi —
; [1-0-915 i>1 ¢
= —r(u, ) |1 _ .
M ick a code at random from the ense , p)and le
/ Pick a code at random from th mbig )\, p) and letH
be its extended parity-check matrix. Apply greedy algorithm B
and the column gap is concentrated around the value to the extended parity-check matitk. Then (asymptotically in
1= (1 — )] n) the gap is concentrated around the value
L Y- (-
n = — (A ) | .
Proof: The elements of the initial set of known columns I

are clearly dependent (since groups of those columns are cgn-
nected to the same row) and therefore we cannot apply our p &'
vious methods directly. But as we will show now there is a . . {
q" := inf
w(z)

one-to-one correspondence between applying greedy algorithm
B to the ensemble&!(y, ) with a weight distributionw(x)

and applying greedy algorithm A to the transformed ensembigen we see that the minimum gap achievable with greedy al-

> piwii _L S o (A, 7(p, w)) = 1} :

i>1

Clp, 7(v, w)). gorithm BH is equal to
Assume we are given the ensemilé:, ») and a weight dis- 1A
tribution w(z). Assume further that we are given a fixed set of 7; A=)
selected right nodes (rowsy), ..., rx, and that the fraction of = T -7\ p) | n

selected right nodes of degréés equal tow;. Given a graph

from C'(, 1) transform it in the following way: replace each

selected right node of degréby ¢ right nodes of degreke One Example 8 [Gap for thé3, 6)-Regular Code and Greedy Al-
can check that this transformation leaves the left degree disgerithm BH]: We haveA(z) = x? andp(z) = #° and since
bution . unchanged and that it transforms the right degree digtz) has only one nonzero term it follows that we can param-
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eterizew(z) asw(z) = wgz®. Therefore, we have(p, w) = Example 9 [Gap for thé3, 6)-Regular Code and Greedy Al-

we + (1 — wg)a® and sincey = we 2, it follows that we need to gorithm BHT]: We haveA(z) = #% andp(z) = 2® and since

find the smallest value afg, call it g, such thatv* (22, we + A(z) has only one nonzero term we can parameterize) as

(1 — wg)x®) = 1. From Lemma (14) we see that a necessawy(z) = wsx?. Therefore, we have(\, w) = ws + (1 — w3)x?

and sufficient condition is given by and sincey = w;»,% it follows that we need to find the smallest

o y g value ofws, call it wj, such thatv* (2°, w3 + (1 — w3)2?) = 0.

1—z>(1—ws—(1-we)z’)” = (1 —we) (1 —27) From Lemma 2 (14) we see that a necessary and sufficient con-
Ve (0,1). dition is given by

Equivalently, we get I—z>(1—ws—(1—ws)z?)® =1 —-ws)(1—2?)°
(1—w6)2<(11__—$€)2 \V/]}E(O,].) V.’L’G[O,l)
which simplifies to
Differentiating shows that the right-hand side takes on its min- i}
imum at the unique positive root of the polynomial — = — 1> (1-ws)’(1—2*)(1+2).

2 — 22 +9x*. If we call this rootz*, with z* ~ 0.739429, then _ - _ _ _
v o * By differentiating (1 — z%)*(1 + z) we find that it takes its
we conclude that - i, S

minimum atz = 1/9. Thus, the critical value aob} is given

1— b
wi=1— ] —— 20 1 0.344683. y
(1= (x5)°)? .

We then gey* = wi2 ~ 0.287236 and, therefore, the gap is ws=1-%5 <§> = 0.01107.
equal to

We then get* = wj s ~ 0.00738. This corresponds to a gap of

2
3
(1-(1-4¢%
Note that in this case the gap is larger than the corresponding 2

gap for greedy algorithm AH. O Thisissignificantly better than the corresponding gap for greedy
algorithm AHT. O

1
1—(1—q*)?°— 5 = 0.137893n.
n ~ 0.02174n.

2) Greedy Algorithm BHT:Again as for greedy algorithm
A, rather than applying greedy algorithm B directly to the ex~ Greedy Algorithm C
tended parity-check matrikl of an LDPC code we can apply _ o i
it to the transpose of the extended parity-check matrix. In this €t (#, ) be the given degree distribution pair. Recall that

case, the gap we are interested in is equal to the resulting colujfingreedy algorithm B we chose the weight distributiofx)
gap. in such a way that* (11, (v, w)) = 1. Hence, with high prob-

ability, the greedy algorithm will extend the diagonal to (essen-
Corollary 4 (Performance of Greedy Algorithm BHT)et  tjally) its full length.

(A, p) be a given degree distribution pair withfA, p) > 0. Alternatively, we can try to achieve an approximate tri-
Letw(x) be a weight distribution such that (p, 7(A\,w))=1.  angulation in several smaller steps. More precisely, assume
Defineq := 3~,~; Aw;*7+. Pickacode atrandom from the enthat we pick the weight distributiow(x) in such a way that
sembleC™ (), p) and letH be its extended parity-check matrix.o (i, 7(v, w)) < 1. Then with high probability the greedy
Apply greedy algorithm B td{ . Recall that this is equivalent algorithm will not complete the triangulation process. Note
to applying greedy algorithm B to a randomly chosen extendéght, conditioned on the size and on the degree distribution pair
adjacency matrix from the ensemlfé="(-% (p, A). There- of the resulting residual graph, the edges of this residual graph
fore, (asymptotically in:) the gap is concentrated around thare still random, i.e., if the residual graph has lengthnd a

value degree distribution paif/z, ) then we can think of it as an
1 - (1 - )] element ofC™(ji, 7). This is probably easiest seen by checking
1 v that if the destination of two edges which are contained in the
_(1 —r(p, ) [ p . residual graph are interchanged in the original graph and if the
greedy algorithm B is applied to this new graph then the new
Let residual graph will be equal to the old residual graph except

applying several small steps, then we can still use the previous
tools to analyze the expected gap.

o ) . There are obviously many degrees of freedom in the choice of
Then we see that the minimum gap achievable with greedy gla sizes and the choice of weight distribution. In our present

} for this interchange. Therefore, if we achieve a triangulation by

5 — 1
q* = inf {Z /\ZwiL—,: a*(p, (A, w)) =1
i

w(@) | =1

gorithm BHT is equal to discussion, we will focus on the limiting case of infinitesimal
S —(1—g*)i]e small step sizes and a constant weight distribution. Therefore,
i>1 ‘ assume that we are given a fixed weight distributign) and

(1—=r(p, \) [ p - lete, ¢ > 0, be a small scaling parameter for the weights such
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thata*(p, 7(v, ew)) < 1. Assume that we apply greedy algoff at least one of its incoming messages is not an erasure—oth-
rithm B to a randomly chosen element of the enserdb(g, /) erwise, it stays and retains its degree. Using (16) we see that a
where:(0) = v(0) = 0. We claim that the expected degre@ode of degree has a probability of

distribution pair of the residual graph, callji, »), is given by

2 Vjwj
Jjz2 . 2
== je+ O(¢%)
<E l/iUJi) <E wij — L) 1= w(Qre
s i =2 e+ 0(2) of being expurgated. Since in the original graph the number of
L=/ (Do left degreei nodes is proportional té: it follows that in the

residual graph the number of left degre@odes is proportional
Uy — v+ ijl/j —w; e+ (v —(E—1—wm)y) to

A 2 Vjwj
u(l)g Viw; & 1— j=2 i6+0(62)
E T e, o R Gy
1—p/'(Drs

To see this, first recall from the analysis of greedy algorithm From an edge perspectlv_e the degréaction of the residual
raph is, therefore, proportional to

B that the degree distribution pair of the equivalent trand!

formed graph is equal t¢u, 7(v, ew)). Since by assumption 3 viw;
a*(p, 7(v, ew)) < 1, the recursion given in (3) (withk = 1) i>2 p 2
. : o . pi |1 — —=——ie+ 0O(e)
will have a fixed point, i.e., there exists a real number. < 1, 1— /' (Lrs
such that
After normalization we find that the left degree distribution
p(l=7(r, ew)(l—2)) = e of the residual graph, call ji, is given by
To determine this fixed point note that if we expand the above o
in (1 — z) around(1 — x) = 0 we obtain 22 vjw; Z:Q Hi) —
fii — i |1+~ : ,’1‘/ c+0(2)
w1 = (v, @w)(1 — 2) A
=1-uw(1) EZ viwi +va(1 = ewp)(1 - x) We next determine the right degree distribution of the residual
1>2 . .
N graph. Recall that the equivalent transformed graph has a right
+O((1 = 2)7). degree distribution of (1, ew). We are only interested in nodes
of degree at least two. Hence we have
Therefore, lettingAx denotel — x, the fixed-point equation
is T(v, ew); x v (1 — ew;), 1> 2.

From a node perspective these fractions are proportional to
Arx = /(1) GZ viw; + Az | + O((A.’L’)Q) + O(eAx). Vi

i>2 i (1 — aui), 1 2 2.

Define theerasure degreef a right node to be equal to the

It follows that number of incoming edges which carry erasure messages. To

/ first order in¢, a node of erasure degréean stem either from
w (1)) viw; : ; :
B i>o 5 a node of regular degreell of whose incoming messages are
Ar = 1— /(D) e+ 0(e”). erasures or it can stem from a node of regular degiee 1)

which has one nonerasure message. Hence, at the fixed point the
In the language of message-passing algorithmsAz isthe  fraction of right nodes with an erasure degreeisforoportional
expected fraction of erasure messages passed from left to right ‘
at the time the algorithm stops. The fraction of erasure messagéél —ew;)(1 — Az)*

which are passed at that time from right to left is then ‘ Vi1 4 )
1 (1 —ewip))(@ + DA2(1 — Az)" + O(€%).
(3
Z Viw; Converting back to an edge perspective we see that these frac-
1—7(v, ew)(Az) =1 — n ”22/ o€ +O(?). (16) tions are proportional to
— 1 (e vi(1 — ew;)(1 — Az’
We start by determining the residual degree distribution of left +vipi(l — awip)Az(l — Az)' 4 O(c?)

nodes. Note that a left node will not appear in the residual graph = 1i(1 — (ew; + 1Ax)) + vi11iAz + O(E2).
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Summing the above ovér> 2 we obtain C™(A, p) inwhich case we are interested in the resulting column
1 1 A gap or we can apply it to the transpose of the extended parity-
€ Z: viwi — (1 +12)A. check matrix in which case we are interested in the column gap.
i>2

We call these algorithms CH and CHT, respectively.
Noting thatAx = O(¢) and normalizing we see that the residual

right degree distribution, call i, is given by Example 10 [Gap for3,6)-Regular Code and Greedy Al-

gorithm CHT]: We choosevs = 1 and letws = n wheren
is some very small quantity. Solving the system of differential

vy | l—e|w — Z viw; | —(i—1-1)Azx equations reveals that the resulting gap is equalad7n. We
iz2 see that this is the smallest expected gap for all the presented
+ vy 11z + O(€?) algorithms. O
v+ Z wjv; —wi | € D. A Practical Greedy Algorithm
i>2 In practice, one implements a serial version of greedy algo-
WY viw; rithm CHT. At each stage, if the residual graph has a degree-one
+ (g1 — (i — 1 — m)1y) 1%2 ¢+ 0(e?).  variable node then diagonal extension is applied. If no such de-
L=/ (Do gree-one variable node exists then one selects a variable node

We are ultimately interested in the resulting row and colun®f lowest possible degreé,say, from the residual graph, and
gaps. Since one can easily be determined from the other we Wiiclares — 1 (assuming no multiple edges) of its neighbors to
only write down an expression for the row gap. If we take thee known. The residual graph now has at least one degree-one
expression for the row gap, callgt from greedy algorithm B, node and diagonal extension is applied.
and keep only the terms which are linearithen we see that There are many practical concerns. For example, variable

the row gap increased according to nodes which are used in the diagonal extension step correspond
j—1 to nonsystematic variables. Typically, degree-two nodes have

D VWi the highest bit-error rates. Thus, it is preferable to use as many

gr — gn + 122 ey O(e?). low-degree variables in the diagonalization step as possible,

Z % e.g., if the subgraph induced by only the degree-two variables
=2 has no loops then all degree-two variables can be made nonsys-

The lengthl of the code itself evolves as tematic using the above algorithm.
2 Vjwj
l—=1]1- =2 | +0(). IV. CODES WITHLINEAR ENCODING COMPLEXITY
= pw@Dm)y &
3>2

We saw in the preceding section that degree distributions
Collecting all results we see that as a function of the indepegiving rise to codes that allow transmission close to capacity
dent variable: all quantities evolve according to the system ofill have gaps that are smaller than an arbitrarily small linear

differential equations fraction of the length of the code. To prove that these codes
have linear encoding complexity more work is needed, namely,
<E l/iwi> <E wij — L) one has to show that the ggmatisfiesg < O(/n) with high
Opi - \ix2 J>2 probability for large enough. More precisely, we will prove
ge M 1— (Lo the following.
v, Theorem 1 (Codes with Linear Encoding Complexitiet
9c Vi Z Wil — Wy (A, p) be a degree distribution pair satisfying(p, A) = 1,
722 with minimum right degreel. > 2, and satisfying thestrict
p' (1) 22 viw; inequality \'(0)p/(1) > 1. Let G be chosen at random from
+ (g1 — (i —1— L/Q)L/i)# the ensembl€™ (), p). ThenG is encodable in linear time with
, 1—p/'(1)rg probability at leasi — bcv™ for some positive constanisand
) Z>j vjw;i=t ¢, wherec < 1.
o §>2
age = J_Wl Discussion: We note that all optimized degree distribution
2’ pairs listed in [12] fulfill the conditions of Theorem 1. Further-
> vjw; more, in experiments when applying the prgcti_cal _greedy algo-
ﬂ _ j>2 rithm to graphs based on these degree distribution pairs, the
Jde (1= (D) ‘;—J resulting gap is typically in the range of one to three! This is
722 true even for very large lengths like one million. By correctly
with the value of the initial quantities equal g v, 0, andl, choosing the first degree-two variable, the gap can nearly always
respectively. be lowered to one. The primary reason for these very small gaps

As before, we can apply greedy algorithm C directly to the eks the large number of degree-two variable nodes in these degree
tended parity-check matrix chosen randomly from an ensembdlistributions. The number of degree-two variable nodes is suf-



RICHARDSON AND URBANKE: EFFICIENT ENCODING OF LOW-DENSITY PARITY-CHECK CODES 651

ficiently large so that, with very high probability, the subgraphodes (assuming that at least one such node exists) and perform
induced by these nodes has a large (linear size) connected ctima-diagonal extension step only on this variable.
ponent. Once a single check node belonging to this componentet Y; denote the number of degree-one variable nodes after
is declared known then the remainder of the component will dhe ¢tth such step, where we hayg = 1. If by X, we denote
agonalize in the next diagonal extension step. The diagonalilae number ofdditional degree-one variable nodes which are
tion process then typically completes without further increasinggnerated in theth step then we get
the gap. O
Yi=Y, 1 +X; -1 (7)
Proof: In order to show that under the stated conditions )
elements of the ensemble®' (), p) are linear time encod- where the-1 term stems from the fact that one degree-one vari-
able (with high probability) it suffices to show that their@ble node is used up during the diagonal extension step. Equa-
corresponding? can be brought into approximate lowerion (17) is an instance of Branching processNote that the
triangular form with a gap of no more thai(y/n) (with high Process continues untf; = 0, i.e., until there are no more
probability). Note that we are working on theansposeof —degree-one variable nodes available for the diagonal extension
the parity-check matrix. Although one can prove that such &€P- We would like the process to continue ukitihas reached
approximate triangulation is achieved by theactical greedy ‘linear size,”i.e., until; is a small fixed fraction of the number
algorithm it will be more convenient to consider a slightlyof variable nodes.
different greedy algorithm. The algorithm we consider has Assume that we have performed at mast steps. Let
three phases which we will have to investigate separatefy” ™, »**) denote theesidualdegree distribution pair. if is
startup main triangulation andcleanup In the startup phase, Small, itis intuitively clear thagA™*, p**) is “close” to(, p).
we will declare at mos(,/n) of the check nodes to be known.Indeed, in Lemma 4 in Appendix A it is shown that, given a
Each time we declare one check node to be known we apgiggree distribution pair, p) such that\;p'(1) > 1, then there
the diagonal extension step repeatedly until either there aregsts ane > 0 and ay > 1 such that\y=p*'(1) = v > 1
degree one variable nodes left or until (we hope) the number'§gardless which check nodes have been removed, as long as
degree-one variable nodes has grown to a linear-sized fractifftgir total number is no more than.
Assuming the latter, we then enter tmeain triangulation SO, assume that we have performed at mositeps. What is
process. With exponential probability, the process will contindge expected value of, ? Consider an edgeemanating from a
until we are left with at most a small linear fraction of nodeglégree-one variable node. With probabifit§” itis connected to
Now we enter theleanupphase. Here, we will show that with @degreerchecknode, callthis nodeThis checknode hag—1)
high probability at mosO(,/z) check nodes will be left when Otheredges, eachofwhichhas probabi# ofbeing connected
the algorithm terminates. So overall, with high probability thi?@degree-twonode. Thereforefifas degregthenthe expected
gap will be no more thaw)(,/n), which will prove the claim. number ofnewdegree—_one nodes that will be generated is equal
We will now discuss these three phases in detail. to (j — 1)A5™. Averaging over all degrees we get thef has
Recall that our aim is to bring a giveA”, where H is a €xpected value™p™'(1) = v > 1. In other words, we have
random element frong™ (), p), into approximate lower trian- E[X¢[X1, ..., ..., Xy 4] > vfor1 < ¢ < en. Furthermore,
gular form with gap at mosP(/n) by applying a greedy algo- X+ is upper-bounded by the maximum right degiige
rithm. Let us definel’ := min,{Y; = 0} to be the stopping time
Startup: Letvbe arandomly chosen degree-two variable no@ Y- We will say that the branching procesisps prematurely
and letc; andc, be its connected check nodes. Declareo be  If 7 < /n and we will say that it isuccessfuif 7 > 5n
known Now perform the diagonal extension step. After this stepNd Yz » = 75 n, wherern can be chosen freely in the range
the columns which correspond ¢g andc, will form the first 0 < 7 < 1 — . Assume now that we employ the following
two columns of the matrix (assumingdoes not have a double Strategy. Start a process, by choosing a degree-two variable node
edge) and the row corresponding/will form the firstrow ofthe @nd declaring one of its neighbors to be known. If this process
matrix. Consider the residual matrix (with the first two column8tops prematurely then start another process if the number of
and the firstrow deleted) and the corresponding residual grapHPiematurely stopped processes so far is less shg or de-
this residual matrix contains a degree-one row then we can apfigre a failure otherwise. If the current process has not stopped
another diagonal extension step and so on. It will simplify olgfématurely then declare a success it 5 nandYy , > n5n
description if we perform the diagonal extension steprte de- and stop the process at that time, and declare a failure otherwise.
gree-one variable node atatiniastead of to all degree-one vari-Note that the total number of steps taken for this strategy is at
able nodes in parallel. More precisely, we start out with one d@0Stv/n5 v/n + 5n = en. Although the branching process
gree-two variable node which we convert into a degree