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Abstract —  Binary Low Density Parity Check
(LDPC) codes have been shown to have near Shannon
limit performance when decoded using a probabilis-
tic decoding algorithm. The analogous codes defined
over finite fields GF(q) of order ¢ > 2 show signifi-
cantly improved performance. We present the results
of Monte Carlo simulations of the decoding of infi-
nite LDPC Codes which can be used to obtain good
constructions for finite Codes. We also present em-
pirical results for the Gaussian channel including a
rate 1/4 code with bit error probability of 1074 at
Ey/No = —0.05dB.

I. INTRODUCTION

We consider a class of error correcting codes first described by
Gallager in 1962 [2]. These recently rediscovered low density
parity check (LDPC) codes are defined in terms of a sparse
parity check matrix and are known to be asymptotically good
for all channels with symmetric stationary ergodic noise [6].
Practical decoding of these codes is possible using an approx-
imate belief propagation algorithm and near Shannon limit
performance has been reported {7].

We consider the generalisation of binary LDPC codes to
finite fields GF(q), ¢ > 2, and demonstrate a significant im-
provement in empirical performance. Although little is known
about the theoretical properties of the approximate belief
propagation algorithm when applied to this decoding problem,
Monte Carlo methods may be used to simulate the behaviour
of the decoding algorithm applied to an infinite LDPC code.
We have used such Monte Carlo results to design better codes
for practical decoding.

In section II we define low density parity check codes and
in section III we describe the decoding algorithm. Section IV
presents the results of the Monte Carlo simulation and empir-
ical decoding results are presented in section V.

II. CoDE CONSTRUCTION

The codes are defined in terms of a low density parity check
matrix H as follows. We choose a source block length K, a
transmitted block length N and a mean column weight ¢ > 2.
The weight of a vector is the number of non-zero components
in that vector. We define M = (N — K) to be the number of
parity checks in the code. H is a rectangular matrix with M
rows and IV columns. We construct H such that the weight
of each column is at least 2, the mean column weight is ¢ and
the weight per row is as uniform as possible.

We fill the non-zero entries in H from the elements of a
finite field GF(q), ¢ = 2°, according to a carefully selected
random distribution: rather than using the uniform distri-
bution we choose the entries in each row to maximise the en-
tropy of the corresponding bit of the syndrome vector z = Hx
where x is a sample from the assumed channel noise model.

0-7803-4408-1/98/$10.00 (©1998 IEEE 70

Although the code construction is largely random, we may
reduce the probability of introducing low weight codewords
by constructing the weight 2 columns systematically. To gen-
erate codewords we would derive the generator matrix using
Gaussian elimination.

If the rows of H are not independent (for odd ¢, this has
small probability) H is a parity check matrix for a code with
the same N and with smaller M. So H defines a code with
rate of at least K/N.

III. DECODING ALGORITHM

We transmit a vector z which is received asr = z+n wheren
is a sample from the channel noise distribution. An instance
of the decoding problem requires finding the most probable
vector x such that Hx = z, where z is the syndrome vector
z := Hr = Hn and the likelihood of x is determined by the
channel model. The decoding algorithm we use is a generalisa-
tion of the approximate belief propagation algorithm [8] used
by Gallager [2] and MacKay and Neal {7, 6]. The complexity
of decoding scales as Ntq? per iteration.

We refer to elements of n as noise symbols and elements of
z as checks. The belief propagation algorithm may be viewed
as a message passing algorithm on a directed bipartite graph
defined by the parity check matrix H. Each node is associated
with a check or a noise symbol. Let edge e;; connect check ¢
with noise symbol j. For each edge e;; in the graph quantities
gf; and rf; are iteratively updated. ¢f; approximates the prob-
ability that the jth element of x is a, given the information
obtained from all checks other than ¢. rj; approximates the
probability that the ith check is satisfied if element j of x is
a and the other noise symbols have a separable distribution
given by the appropriate g;;;. We initialise the algorithm by
setting the gfj to the likelihood that the jth element of x is a,
as given by the channel model.

After each iteration we make a tentative decoding % by
choosing, for each element, the noise symbol that receives the
largest vote from the r; messages. If HX = z then the de-
coding algorithm halts having identified a valid decoding of
the syndrome, otherwise the algorithm repeats. A failure is
declared if some maximum number of iterations (e.g. 500)
occurs without a valid decoding.

In the absence of loops the algorithm would converge to
the correct posterior distribution over noise vectors x. In the
presence of cycles convergence is not guaranteed, but decoding
performance proves to be very good.

IV. MONTE CARLO SIMULATION

We can use Monte Carlo methods to simulate an infinite
LDPC code in order to investigate the properties of the de-
coding algorithm in the absence of Joops. We would expect
the behaviour to be similar to the empirical performance as
the blocklength of the codes increased. We form an ensemble
of noise symbols A := {n;, {Q%}sccr(g)}}1 emitting initial




messages Qf according to our channel model. We then form
a fragment of an infinite graph using this ensemble, reflect-
ing our matrix construction, and propagate the @ messages
down to a new noise symbol to produce an element of a new
ensemble A”. This ensemble A’ will represent an ensemble of
noise symbols after one iteration of the decoding algorithm.
We iterate the procedure to produce successive ensembles con-
taining approximations to the distribution of @ messages in
an infinite network after an arbitrary number of iterations.
For successful decoding the average Shannon entropy of the
@ messages should become arbitrarily small as decoding pro-
gresses.

We declare a decoding ‘success’ if the average entropy of the
 messages in our ensemble drops below some chosen thresh-
old. With this approach it is possible to investigate the effect
of changes in field order, code construction and noise level on
the decoding performance.
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Fig. 1: Gaussian Channel: Minimum signal to noise ratio for which
average bit entropy reaches 10~ % within 80 iterations, as a function
of mean column weight. Rate 1/4 code.

In Figure 1 we present results for the Binary Gaussian
Channel. The results suggest that for best performance we
should choose the highest order code that is feasible, bearing
in mind that the decoding time per iteration scales as ¢%. We
then choose an appropriate mean column weight, which will
be lower as the order increases.

V. EMPIRICAL RESULTS

We have used the results of the MC analysis to construct finite
codes with performance very close to the Shannon limit [1].
We have produced rate 1/4 codes with mean column weight
2.3 with bit error probability of 10~° at E,/No = 0.2dB.

Recent work by Spielman et.al[4, 5] showed that care-
fully constructed irregular parity check matrices (non-uniform
weight per column) could give improved performance for codes
over binary fields. Preliminary results for irregular matrices
defined over GF(8) and GF(4) have produced very encourag-
ing results, presented in figure 2. We include a code with bit
error rate of 1074 at Ey/Ny = —0.05dB, a slight improvement
over the best turbo codes of which this author is aware.

We find that the codes presented in [4], with mean column
weight 8, perform poorly over higher order fields. Motivated
by the Monte Carlo results, we tried irregular constructions
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with quite low weight. The best code in figure 2 has a mean
column weight of 3.4, but contains column weights of up to
33, as shown in table 1. The row weight is almost uniform.

Col. Weight
fraction

2 3 9 13 17 33
0.67 023 0.04 0.03 002 0.01

Tab. 1: Parameters of good irregular code for GF(16), rate 0.25

No investigation of the parameters of irregular LDPC codes
has yet been performed using MC methods, but we expect
more careful choice of code parameters to yield further im-
provements.
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Fig. 2: Empirical results for Gaussian Channel, Rate 1/4 Left-
Right : Irregular LDPC, GF(8) blocklength 24000 bits; JPL

Turbo [3]; Regular LDPC, GF(16), blocklength 24448 bits; Ir-
regular LDPC , GF(2), blocklength 64000 bits[4]; Regular LDPC,
GF(2), blocklength 40000 bits{6]
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