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Abstract—This paper presents a geometric approach to the con- [2]. Sincep and~ are small,H has a small density of “ones”
struction of low-density parity-check (LDPC) codes. Four classes and hence is a sparse matrix. For this reason, the code specified

of LDPC codes are constructed based on the lines and points of Eu- by H is called an LDPC code. The LDPC code defined above
clidean and projective geometries over finite fields. Codes of these . :

four classes have good minimum distances and their Tanner graphs is known as a regu_lar LDPC code. If not all the columns or all
have girth 6. Finite-geometry LDPC codes can be decoded in var- the rows of the parity-check matr#f have the same number of
ious ways, ranging from low to high decoding complexity and from “ones” (or weights), an LDPC code is said to be irregular.
reasonably good to very good performance. They performverywell  Although LDPC codes have been shown to achieve out-
with iterative decoding. Furthermore, they can be put in either standing performance, no analytic (algebraic or geometric)

cyclic or quasi-cyclic form. Consequently, their encoding can be N
achieved in linear time and implemented with simple feedback shift method has been found for constructing these codes. Gallager

registers. This advantage is not shared by other LDPC codes in gen- Only provided a class of pseudorandom LDPC codes [1], [2].

eral and is important in practice. Finite-geometry LDPC codes can Good LDPC codes that have been found are largely computer
be extended and shortened in various ways to obtain other good generated, especially long codes. Encoding of these long
LDPC codes. Several techniques of extension and shortening arecomputer-generated LDPC codes is quite complex due to the

presented. Long extended finite-geometry LDPC codes have beenI k of code struct h i . lic struct
constructed and they achieve a performance only a few tenths of a ack or code struciure such as cyclic or quasi-Cyclic structure.

decibel away from the Shannon theoretical limit with iterative de- Furthermore, their minimum distances are either poor or hard
coding. to determine.

Index Terms—Bit flipping decoding, column splitting, cyclic In this paper, we investigate the construction of LDPC codes
code, Euclidean geometry, iterative decoding, low-density parity- from a geometric approach. The construction is based on the
check (LDPC) codes, projective geometry, quasi-cyclic code, row- |ines and points of a finite geometry. Well-known finite geome-
splitting, shortening. tries are Euclidean and projective geometries over finite fields.

Based on these two families of finite geometries, four classes
|. INTRODUCTION of LDPC codes are constructed. Codes of these four classes

. . i . are either cyclic or quasi-cyclic, and, therefore, their encoding
eor\évad;yngglgzre'tryﬁ]he[;;( i(rll_%F;Ce);r?)?izg(?sri\?l?thdalsgorveé-an be implemented with linear feedback shift registers based
cently been rediscovered and generalized [3]-[14]. It has b onlthelr generator (or characterization) polynomials [27], [28].

'é;

. s linear time encoding is very important in practice and is
shown that these codes achieve a remarkable performance g yimp P

. ) . : - shared by other LDPC codes in general. We call codes of
iterative decoding that is very close to the Shannon limit [4\?(hese four classes finite-geometry LDPC codes.

[9]-[14]. Consequently, these codes have become strong comz. .. - ; .
petitors to turbo codes [23]-[26] for error control in many com, Finite-geometry LDPC codes have relatively good minimum

munication and digital storage systems where high reliabilit dsistances and their Tanner graphs do not contain cycles of
required 9 ge sy 9 yI'ength4. They can be decoded with various decoding methods,

. , . ranging from low to high complexity and from reasonably good
An. LDP(? code is deﬂ_ned as the null space of.a parlty—chegg very good performance. These decoding methods include:
matrix H with the following structural properties: 1) each row

one-step majority-logic (MLG) decoding [28], [31], Gallager's

consists ofp "ones”; 2) each column consists gf*ones”; 3) i g oing (BF) decoding [2], weighted MLG decoding [49],
the number of “ones” in common between any two COIumn\%lei hted BF decoding posterioriprobability (APP) decodin
denoted\, is no greater tham; 4) bothp and~ are small com- g @p P y g

[2], and iterative decoding based on belief propagation (com-
pared to the length of the code and the number of row# [], monly known as sum-product algorithm (SPAY) [10], [11], [15],
[20]-[22]. Finite-geometry LDPC codes, especially high-rate
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parity-check matrix of a finite-geometry LDPC code into multhat any two rows have at most one-¢omponent” in common.
tiple rows. Combining column and row splittings of the parityThe density of this matrix, denoted is defined as the ratio of
check matrices of finite-geometry LDPC codes, we can obtdine total number of “ones” it to the total number of entries
a large class of LDPC codes with a wide range of code lengtinsH . Then we readily see that= p/n = «v/J. If p and~y are
and rates. A finite-geometry LDPC code can also be shortergdlall compared ta. and.J, thenI—Ig) is a low-density matrix
by puncturing the columns of its parity-check matrix that coiwhich has all the structural properties defined in Section I.
respond to the points on a set of lines or a subgeometry of therhe null space over GR) of HS) gives a binary LDPC code
geometry based on which the code is constructed. Shortenegfitengthn. Such a code is called the type-I geomey-DPC
nite-geometry LDPC codes also perform well with the SPA d@ode' denoteﬂg). The rows ong) are not necessarily lin-

coding. _ , _ early independent. LeR be the rank oY’ ThenCY is a
The paper is organized as follows. Section Il presentsb? =) i de withg® G it 'tG heck

construction method of LDPC codes based on the lines gafy (n,n = R) linear code withH 5" as its parity-chec

points of afi.ni.te geometry. Two types of codes are constructe Let ﬁ@) be the transpose cH(l), ie. H? _ [H(l)]T_

and their minimum distances are lower-bounded. Section ﬂ:' (8 . . e G

gives the construction and characterization of LDPC cod enHg '_S also a low-density matrix with row v(vQ(?gljtand

based on Euclidean and projective geometries. Various &@umn weighto. The null space over Gf2) of H" gives a

coding methods for finite-geometry LDPC codes are discusseiiary LDPC code of lengtlf, denotedC’. SinceHy’ and

in Section IV. A simple weighted BF decoding algorithm amﬂg) have the same rark, C'g) is a binary(J, J — R) linear

a two-stage hybrid soft/hard decoding scheme are presentaate. This code is called the type-ll geome@y:DPC code.

Section V presents simulation results of error performanCé(Gl) andC'g) are called companion codes and have the same

of some finite-geometry LDPC codes using various decodimgimber of parity-check symbols.

methods. Techniques for extending and shortening finite-geom-_et b, ho, ..., h; be the rows oﬂr-Ig) where

etry LDPC codes are given in Sections VI and VII, respectively. ]

Section VIII discusses the possible combinations of finite-ge- % = (.15 hj2s - hyn), - forl<j <.J.

ometry LDPC codes and turbo codes in concatenation forgy ,-tuplev = (v1, va, ..., vy) is a codeword of the type-I

Finally, Section IX concludes this paper with some rema”ﬁﬁeometryG LDPC codeCc® specified byI-I(l) if and only if
and suggestions of further research work. the inner product ¢ ¢

[l. FINITE-GEOMETRY LDPC CODES AND THEIR GENERAL sj=v-h; = Z vihj 1 =0 (1)
STRUCTURE 1=1

This section presents a simple construction of LDPC codt 1 < 7 < J. The sum given by (1) is called a parity-check
based on the lines and points of finite geometries. Two typggm (or simply check sum), which is simply a linear sum of a
of codes are constructed and their general structural propergig§set of code bits. A code hif is said to be checked by the
are investigated. Lower bounds on their minimum distances &¢ms; = v - h; (or the rowh;) if h; ; = 1. Let A; be the set
derived. of rows ian) that check on the code hij. Let S; denote the

Let@G be afinite geometry with points and’ lines which has set of check sums formed by the rowsAn It follows from the
the following fundamental structural properties: 1) every linstructural properties ng> that the code bit; is contained in
consists ofp points; 2) any two points are connected by onevery check sum it%; and any of the othen — 1 code bits is
and only one line; 3) every point is intersected-pines (i.e., contained in at most one check suntin The check sums if;
every point lies ony lines); and 4) two lines are either paralle(or the rows in4;) are said to be orthogonal on the codeit
(i.e., they have no point in common) or they intersect at orf28], [31]. The check sums ifi; are called the orthogonal check
and only one point. There are two families of finite geometriesums on code bit; and the rows im; are called the orthogonal
which have the above fundamental structural properties, name#yctors ony;. For1l < I < n, each code bit; is checked by
Euclidean and projective geometries over finite fields. exactlyy orthogonal check sums. These orthogonal check sums

FormaJ x n matring) = [h, ;] over GF(2) whose rows can be used for majority-logic decoding of the code [28], [31].
and columns correspond to the lines and points of the finite gehe code is capable of correcting any error pattern ywtf2| or
ometryG, respectively, wherg; ; = lifandonlyiftheithline fewer errors using one-step majority-logic decoding [28], [31].
of G contains thgth point ofG andh; ; = 0, otherwise. Arow As aresult, the minimum distandxg) of the type-l geometrya
in Hg) simply displays the points on a specific line@fand LDPC codeO'g) is at leasty + 1.
has weightp. A column in I-Ig) simply displays the lines that ~ Similarly, it can be shown that there greheck sums orthog-
intersect at a specific point i and has weight. The rows of onal on each code bit of a codeword in the type-Il geoméiry-
Hg) are called the incidence vectors of the line€ipand the CodeC'g). Thereforeﬁg) is also one-step majority-logic de-
columns are called the intersecting vectors of the pointg.in codable and has a minimum distan@ at leastp + 1.
Therefore,Hg) is the incidence matrix of the lines @& over For a linear block code of lengthspecified by a parity-check
the points inG. It follows from the second structural property ofmatrix of .J rows, a graph can be constructed to display the re-
G that every two columns have exactly one¢omponent” in lationship between its code bits and the check sums that check
common, and it follows from the fourth structural property®f on them. This graph consists of two levels of vertices. The first
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level consists of: vertices which represent thecode bits of be any two points in the finite geomet€y. Then there is a line
the code. These vertices, denotedw, ..., v,, are called the £; connectingp; andp,. Let p; be a third point inG but not
code-bit (or variable) vertices. The second level consist$ ofon £;. Then there is a lin&€, connectingp; andp, and a line
vertices which represent thlecheck sumss , so, ..., sy, that L3 connectingp, andp;. These three lines enclose a triangle
the code bits must satisfy. These vertices are called the chedth p,, p,, andp, as the vertices. In the Tanner graph of the
sum vertices. A code-bit vertex is connected to a check sumtype-I geometry&@ LDPC code, these three linés, £, andL3
vertexs; by an edge, denotedy, s,), if and only if the code correspond to three check-sum vertices, says2, andss, and

bit v; is contained in the check susi. No two code-bit vertices the three pointp,, p,, andp; correspond to three code-bit ver-
are connected and no two check sum vertices are connectaxs, say;, v2, andvs. Each of these three check-sum vertices,
This graph is a bipartite graph [32] which was first proposed by, s2, and sz is connected to only two of the three code-bit
Tanner [3] to study the structure and iterative decoding of LDP¢&rticesw,, v2, andvs. Since no two check-sum vertices are
codes, and hence it is called the Tanner graph. The numbercohnected to the same pair of code-bit vertices, the edges con-
edges that are connected to (or incident at) a code-bit veftexnectings;, s2, andss to vy, vz, andvz form a cycle of length
called the degree af;, is simply the number of check sums thag in the Tanner graph of the type-I geome@eodeC’g). The
containy;. The number of edges that are incident at the cheekimber of cycles of length is equal to the number of triangles
sum vertexs;, called the degree of;, is simply the number of in G which can be enumerated and is

code bits that are checked by the check symFor a regular 1

LDPC code, the degrees of all the code-bit vertices are the same Ne = —n(n—1)(n —p). 2)

6
and the degrees of all the check-sum vertices are the same. Such
a Tanner graph is said to be regular. Since the Tanner graphs of type-1 and type-ll geomé&ryedes

. . . ! are dual, they have the same girth and the same cycle distribu-
A cycle in a graph of vertices and edges is defined as a §gin The above analysis shows that the girth of the Tanner graph
quence of connected edges which starts from a vertex and e

e " 8F5n LDPC code constructed based on the lines and points of a
at the same vertex, and satisfies the condition that no vertex (

fiiite geometry is.
ceptthe initial and the final vertex) appears more than once [32]. g y

The number of edges on a cycle is called the length of the cycl
The length of the shortest cycle in a graph is called the girth o
the graph. The Tanner graph of a linear block code contains nd=uclidean and projective geometries over finite fields form
cycles of lengti2 and no cycles of odd lengths. Therefore, thevo large families of finite geometries. The structures of these
girth of the Tanner graph of a linear block code is at ldast  two families of finite geometries have been well studied and can

In decoding a linear block code with the SPA decoding, e found in any major text in gombinatorics or groups Of. finite
performance very much depends on cycles of short lengths2ffier- References [36]-[38] give a good exposition of this sub-
its Tanner graph. These short cycles, especially cycles of len fi- A simple d'SCPSS'O” of these two types offinite geometries
4, make successive decoding iterations highly correlated a] also be found in [28]. To make this paper seli-contained, the

hence severely limit the decoding performance [3], [10], [11 Emdamental structura}I properti_es of Iine; and points of these
[20], [33]-[35]. Therefore, to use the SPA for decoding, it i 0 types of geometries are briefly described before the code

important to design codes without short cycles in their Tann‘é?gztsr;gtigz'the lines and points of Euclidean and projective
raphs, especially cycles of length _ -

grap P yey ot geometries, four classes of finite geometry LDPC codes can
Both types of geometrd# LDPC codes are regular andye constructed. They are: 1) type-l Euclidean geometry (EG)-

hence the|_r Tanner(lgraphs are regular. _Slnce the row gngpc codes; 2) type-Il EG-LDPC codes; 3) type-l projective

column weights ofH ,” are p and~, respectively, the degreesﬁeometry (PG)-LDPC codes; and 4) type-ll PG-LDPC codes.

of each check-sum vertex and each code-bit vertex in fghong these four classes of codes, two are cyclic and two are
) (L : .

Tanner graph of the type-I geomet@4LDPC codeC,” are quasi-cyclic.

p and~, respectively. Sinceﬂg) is the transpose QHS), the

degrees of each check-sum vertex and each code-bit verexType-I EG-LDPC Codes

in the Tanner graph of the type-ll geomeﬁ/codeC’g) are

7 andp, respectively. In fact, the Tanner graphs of th_e YPeyer the Galois field GF2°) wherem and s are two positive
and type-Il geometrys LDPC codes are dual graphs, i.e., th?ntegers. This geometry consists 8** points, each point

code-bit vertices of one graph become the check-sum Verti(fgssimply an m-tuple over GR2*). The all-zerom-tuple

of the other graph and the check-sum vertices of one gra@h: 0, 0 0) is called the origin. The™* m-tuples over

become the code-bit vertices of the other graph. GF(2*) that represent the points of @, 2°) form anm-di-

It follows from the structural properties of the parity'ChedfnensionaI vector space over GF). Therefore, EGm, 2°) is
. . 1 )

; (1) (2) ;
matricesH” andH~ that no two code bits are checked Sigjm )y thes,-dimensional vector space of all the* m-tuples

multaneously by two check sums. This implies that the Tannger GF(2°). Aline in EG(m, 2°) is either a one-dimensional
graphs of both types of geomet4. DPC codes do not contain (1-D) subspace of EGn, 2°) or a coset of a 1-D subspace.

cycles of lengtht. However, they do contain cycles of length Therefore, a line in EGm, 2°) consists o2* points. There are
To show this, we use the fundamental property of a finite geom-

etry that any two points are connected by a line. peandp, o(m=D)s(gms _ 1) /(2% _ 1) (3)

[I. EUCLIDEAN AND PROJECTIVEGEOMETRY LDPC CoDES

Let EG(m, 2°) be anm-dimensional Euclidean geometry
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lines in EG(m, 2°). Every line ha(m—=Ls _ 1 lines parallel where0 < §; < 2% for 0 < i < m. The2?® weight of 4, denoted

to it. For any point in EGm, 2°), there are Was (), is defined as the following sum:
(2™ —-1)/(2° - 1) (4) Was(h) 260+ 61+ + 6m_i. (6)
lines intersecting at this point. For a nonnegative integér let 1Y be the remainder resulting

Let GF(2™*) be the extension field of Gf2*). Each element from dividing 2'% by 2* — 1. Theno < r() < 2ms _ 1,

in GF(2™*) can be represented as antuple over GR2%). | et g*) (X) be the generator polynomial of the typenk-di-
Therefore, the™* elements in GE2™*) may be regarded as theémensional EG-LDPC code. Let be a primitive element of
2™ points in EG(m, 2°) and hence GF2™*) may be regarded G (2ms). Thena is a root ofggé(X) if and only if [28], [39],
as the Euclidean geometry E@, 2°). Let « be a primitive [40]

element of GK2™?). Then0 = a™, a°, ot, o?, ..., a*" " 72
form the2* points of EG(m, 2°), whered = o is the origin. 0 < max Wos (h(l)) < (m—-1)(2° -1). @)
Let o’ be a nonorigin point in EGm, 2°). Then, the2® points 0si<s

{BaiY 2 {Bad: B e GF(2°)} From the above characterization of the rootg@; (X), ithas

been shown [40] thaggé(X) has the following sequence of

form a line in EG(m, 2°). Since for3 = 0,0 - o/ = 0, :
consecutive powers af:

the line contains the origin® as a point. We say thgt3a’}

passes through the origin. Letanda’ be two linearly indepen- a, ?, ..., oD/ =0=L

dent points in EGm, 2°). Then the collection of the following a5 roots. It follows from the Bose—Chaudhuri-Hocquenghem

points: (BCH) bound [27]-[30] that the minimum distance of the type-I
{o + Ba’} EN {o + B’ B € GF(2°)} m-dimensional EG-LDPC code is lower-bounded as follows:

formaline in EG(m, 2°) that passes through the poitit Lines di(m, s) > (2™ = 1)/(2" - 1). (8)

{Ba?} and{a’ + Ba’ } do not have any point in common andThis bound is exactly the same as the bound given above based

hence they are parallel. Lat' be a point which is linearly inde- on majority-logic decoding.

pendent ofv’ anda’. Then lines{o’ 4 Bo } and{a’ + pa*} The number of parity-check symbols of the typerdimen-

intersect at the point*. sional EG-LDPC code is, of course, equal to the degree of its
Let H{;.(m, s) be a matrix over GF2) whose rows are the generator polynomiag'i:(X). However, a combinatorial ex-

incidence vectors of all the lines in E@:, 2°) that do not pass pression for this number has been derived by Lin [42)].

through the origin and whose columns correspond t@ttie— A special subclass of EG-LDPC codes is the class of type-I

1 nonorigin points in EGm, 2°). The columns are arrangedtwo-dimensional (2-D) EG-LDPC codés: = 2). For any pos-

in the order ofa®, o!, o2, ..., ¥ 72, i.e,, theith column itive integers > 2, the type-I 2-D EG-LDPC code has the fol-
corresponds to the point'. TheanC);(m, s) consists ofs =  lowing parameters [28], [40]:
2™ — 1 columns and Length n=292_1
J= (2(,",1)5 _ 1) (2ms — 1)/(2° — 1) (5) Number of parity bits 7 —k=3°—1

) _ Minimum distance dgé(2, 5)=2°+1
rows. Hy4(m, s) has the following structures: 1) each row Row weight of the
has weightp = 2°; 2) each column has weight = (2° — parity-check matrix ~ p = 2°
1)/(2°—1)—1; 3) any two columns have at most one¢om- Column weight of the
ponent” in common, i.e = 1; 4) any two rows have at most parity-check matrix y =25 )

“ ” . 1 .

one "1-component” in common. The density By (m, 5) s For this special case, the geometry EG2°) contain2?* — 1
r=2°/(2m*~1) which is small form > 2 ands = 2. Therefore, ;o< that do not pass through the origin. Therefore, the parity-
H) (m, s) is a low-density matrix g i

EG e : w check matrixH (2, s) of the type-1 2-D EG-LDPC code is

(II)et CEG<m’ s) be the null space offy(m, s). Then (22° — 1) x (22° — 1) square matrix. ActuallyH (2, s)
Cr(m, s) is a regular LDPC code of length = 2™ — 1. ¢an pe constructed easily by taking the incidence vestoof
We call this code the typesh-dimensional EG-LDPC code. g jine £ in EG(2, 2°) that does not pass through the origin and

. . 1 .
Since the column weight di ), (m, s) is then cyclically shifting this incidence vect®?* — 2 times. This
y=@2m -1/ -1) -1 results in2%* — 1 incidence vectors for the?* — 1 distinct

. . ) . s s linesin EG(2, 2°) that do not pass through the origin. The in-
the minimum distance @'y (m, 5) is at least2 1)/(2 cidence vectow and its22* — 2 cyclic shifts form the rows of

1). Itturns out that this EG-LDPC code is the one-step majority: . - gr(1) ) .
logic decodablg0, s)th-order EG code constructed based o¥1he parity-check matriH (2, s). Therefore Hyg (2, 5) is a

EG(m, 2°) [28], [39], [40] and is the dual code of a polynomialsquare cwcgllant matrix. A list of type-1 2-D EG-LDPC codes is

code [40]-[43]. Therefore, it is cyclic and its generator polyncglven In Table |.

mial is completely characterized by its roots in @F*#). Example 1:Consider the 2-D Euclidean geometry
Let & be a nonnegative integer less thzi#r. Thenh can be EG(2, 22). Let o be a primitive element of GR2*2).

expressed in radig? form as follows: The incidence vector for the liné = {a7, a8, a0, o'} is

ho=80+6,2° + 4 6,y 20m D (000000011010001).
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TABLE | In general, forn # 2, Ogé(m, s) is not cyclic but it can be
ALIST OF TYPET 2-D EG-LDPC @DES put in quasi-cyclic form. To see this, consider the
s n k dmin P vy (2(m—1)s 1) —1)/(2° — 1)
2 15 7 5 4 4 o s -
lines in EG(m, 2*) that do not pass through the origin. The

3 63 37 9 8 8 incidence vectors of these lines can be partitioned into
4 255 175 17 16 16 K — (Q(m—l)s _ 1)/ (2° — 1) (11)
> 1023 781 33 2% cyclic classes. Each of thegé cyclic classes contairg™ —
6 4095 3367 65 64 64 1 incidence vectors of lines which are obtained by cyclically
7 16383 14197 129 128 128 shifting any incidence vector in the clag%® — 1 times. For

each cyclic class of incidence vectors of lines, we can choose
a representative and the rest of the incidence vectors are gen-
This vector and its 14 cyclic shifts form the parity-check matrigrated by cyclically shifting this representative. Now we con-
Hgé(z, 2). The null space of this matrix is th@s, 7) type-1 struct a(2™* — 1) x K matrix Hy, whoseK columns are the

2-D EG-LDPC code, the first code given in Table I. K representative incidence vectors of the cyclic classes. For

given in Section Il that the Tanner graph of the type-dimen-
sional EG code does not contain cycles of lengjthvith some
modifications to (2) (due to the exclusion of the origin), we find HG)M(m, s) = [Ho, Hy, ..., Home o). (12)
that the number of cycles of lengéhis

H,. Form the following matrix:

Then the null space (ch);(m, s) gives a quasi-cyclic type-Il
Nélg;g(m, 5) = 1 95 (Q(m—l)s _ 1) m-dimensional EG-LDPC cod@gé(m, s). Every K cyclic
’ 6 shifts of a codeword inC'2 (m, s) is also a codeword in
2M _3.2° 4 3)(2™ —1). (10) A B
( =327 +3)( —1). (10) OfEé(m, s). Encoding of quasi-cyclic codes can also be
We see that the Tanner graph of the code contains many cy@gieved with linear feedback shift registers [27].

of length6. C. Type-1 PG-LDPC Codes
B. Type-Il EG-LDPC Codes The construction of PG-LDPC codes for both types is based
Let on the lines and points of projective geometries (PGs) over finite
fields. For the purpose of code construction, a brief description
) L . . T S
H(Ec);(m’ s) = [H%é(m’ ). of this famll(y cflf)lnlte geometnes_ls given here.
Let GF(2!™*1)%) be the extension field of GR2°). Let« be
ThenH ) (m, s) is a matrix with2™* — 1 rows and a primitive element of GE2"+1)*). Let
_ (m+1)s _ s
J = (2(n1,—1)s _ 1) (2m,s _ 1)/(29 _ 1) n (2 1) /(2 1) (13)
) ) ~andf3 = «a™. Then the order off is 2° — 1. The2® elements
columns. The rows of this matrix correspond to the nonorigifl 1. 3, 82 ..., 3% =2 form all the elements of G2*). Con-
points of EG(m, 27) and the columns correspond to the linegjder the firstn powers ofa, A = {a® ot a2, ..., a1}

in EG(m, 2°) that do not pass through the origin. Its colummpartition the nonzero elements of GE™+1#) into n disjoint
and row weights are = 2* andp = (2" —1)/(2°—=1)—1, supsets as follows:

respectively. Any two rows of this matrix have exactly one ; PR 2 _5 ;
“1-component” in common, and any two columns have at most {of, o, foas .. 3 o'} (14)
one “l1-component” in common. for 0 < i < n. Each set consists @ — 1 elements and each
The null space onEQC);(m, s) gives an LDPC code of length element is a multiple of the first element in the set. Represent
J. This code is called the type-th-dimensional EG-LDPC each set by its first element as follows:
code. This code is also one-step majority-logic decodable WA i 2_o ;
and has minimum distanoééc);(m, s) at least2® + 1. Since (@) = 4eds /?OC e B . “ } , L
H{)(m, s) andHE) (m, s) have the same rankiul(m, s) With 0 < i < n. For ajn.yozlf € ZGF(Q(er ), if of = /g ot
and C2.(m, s) have the same number of parity-check sym?ith 0 < ¢ <n, thena’ isin (a") and represlented ).
. 5 2) If we represent each element in GE™+19) as an(m +
bols. Since the Tanner graphsGﬁG(m, s) andCpi(m, ) ‘ .
) P TR 1)-tuple over GK2?), then(«") consists o2° — 1 (m + 1)-tu-
are dual, they have the same cycle distribution. #0r= 2, ,
since the paritv-check matri& ) (2 of the tvpe-1 2-D ples over GR2%). The(m+ 1)-tuple fora” represents th2® — 1
! panty ) a pa(2 5) ) yp (m+1)-tuplesin(a’). The(m+1)-tuple over GR2*) that rep-
EG-LDPC codeCyg (2, s) is a square matrix V‘(’?)OSG rows al&esentg«') may be regarded as a point in a finite geometry over
the cyclic shifts of the first row, the rows di;;5(2, s) are GF(2%). Then the point¢a®), (a1), (¢?), ..., (a™~1) form
simply permutations of the rows oB\(2, s). Therefore, anm-dimensional projective geometry over GF), denoted
C'SE%(Z s) andOfﬁé(Z s) are identical. PG(m, 2°%) [28], [36]-[38]. Note that the2®* — 1 elements in
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{af, o, ..., B¥ ~2a'} are considered to be the same point TABLE I

in PG(m, 2°) and a PG does not have an origin. ALIST OFTYPE| 2-D PG-LDPC WDES
Let (') and(a’) be any two distinct points in PGn, 2°). 5 n k dmin P 7

Then, the line passing through (or connectifg)) and (a”) 5 91 11 6 P P

consists of points of the following fornfi, " + 7207 ), where

7. andrne are from GH2%) and are not both equal to zero. Since 373 45 10 9 9

(mat +n2a) and(Bn ot + B0 ) are the same point, there- 4 273 191 18 17 17

i H (m+1)s i
fore, each line in PG2 ) consists of s 1057 813 34 33 33
(@) -1/ -1)=2"+1 (15) 6 4161 3431 66 65 65
points. 7 16513 14326 130 129 129

Let (o!) be a point not on the ling(n,a’ + noa?)}. Then,
the line {(n.a* + n2a)} and the line{(n1a! + )} have D, o ' , L
(a?) as a common point (the only common point). We say thgg‘e”!];c);()*) hasa” as a root if and only if, is divisible by
they intersect ata’). The number of lines in PGn, 2°) that 2 — *and
intersect at a given point is 0 < max W (h“)) =j(2°—1) (18)

o<i<s
(2™ =1/ -1 (16)  With 0 < j < m — 1 [28], [40], [44]. Let¢ = a2 ~L. The order
There are of ¢ is thenn, = (2(m+1Y)° _1)/(2° —1). From the characteriza-
_ tion of the roots ob(l) (X) given by (18), it can be shown [39]
— (oms .. s (m—1)s_ .. s s rG ! !
T= @4 42412 2D/ (47) [40] thatggc);(X) has the following consecutive powers{f
lines in PG(m, 2°). 0 1 42 (2m°—1)/(2°—1)
’ . 19
Form a matrixH (%, (m, s) whose rows are the incidence vec- §585 808 (19)
tors of the lines in P(E«m, 25) and whose columns Corresponcﬁs roots. Therefore, it follows from the BCH bound that the min-
to the points of PGm, 2°). The columns are arranged in thdmum distance of the typesh-dimensional PG-LDPC code is

order (a®), (al), ..., (a"1). Hi(m, s) hasJ rows andn ~l0Wer-bounded as follows:
columns. It follows from the structural properties of lines and d%(m, s)> (2™ —1)/(2° — 1)+ 1. (20)

points described above thngé (m, s) has the following struc-
tural properties: 1) each row has weight= 2° + 1; 2) each jority-logic decoding
column has weight = (2"°—1)/(2°—1); 3) any two columns ) . .

have exactly oneI-component” in common; and 4) any two . The number of parity-check symbols of the typexidimen-

rows have at most ond “component” in common. The densitys'(.m.aI PG-LDPC fo_r a givers can be enu_merated bY dete_r-
of HY (m, ) is mining the roots of its generator polynomial. A combinatorial
PG ’

expression for this number can be found in [42].
r= (2% —1)/(2m+Ds 1), A special subclass of PG-LDPC codes is the class of type-|
] ] L ) 2-D PG-LDPC codes constructed based on(R@?) for var-
Form > 2, r is relatively small. ThereforeH )(m s)yisa ; itva i
2 2, y : pG\’h iouss. For any positive integesr > 2, the type-I1 2-D PG-LDPC

Sparse rr(11:;)1trix. W code has the following parameters [28], [42], [46], [47]:
Let Créa(m, s) be the null space o i (m, s). Then

This bound is exactly the bound derived based on one-step ma-

. i Length n=2%42 41
1 ’
C’%é(m, s) is a regular LDPC cpde, called the typenl—'dl— Number of parity bits n—k=3+1
mensional PG-LDPC code. Since the column weight of - . (1)
gD is Minimum distance dpe(2,5) =2 +2
pG(m; 5) | Row weight of the
y=(2™ —-1)/(2° - 1) parity-check matrix p=2"+1
o ] 1 1) ) Column weight of the
the minimum distancel;(m, s) of Cp4(m, s) is at least parity-check matrix N=2° 1. (21)

(2m* — 1)/(2° — 1) + 1. This regular LDPC code turns out_ . . . :
to be the one-step majority-logic decodable s)th order PG It is a difference-set code [28], [46]. The parity-check matrix

(1) i i 2s s 2s s
code constructed based on the lines and points ofrR@?) HPG.(27 5) ,Ofth's code is 427 +-2 +D x (2 .+2. +1) square
discovered in the late 1960s [28], [44], [45] and is the dufalrX. which can be formed by taking the incidence vector of
of a nonprimitive polynomial code [40]-[43]. It is cyclic and,2 line in PG(2, 2°) and its2™ + 2° cyclic shifts as rows. A list

therefore, can be encoded with a linear feedback shift regis?érlype'l 2-D PG-LDPC codes is given in Table Il.

based on its generator_ pol_ynomial. D. Type-ll PG-LDPC Codes
Let i be a nonnegative integer less tHzi+1)s — 1. For a @ W
nonnegative integer; let 2O be the remainder resulting from Let Hpg(m, s) be the transpose di i (m, s). Then the
dividing 2'h by 2(+1Ds — 1. The 2°-weight of b, Wa.(h), is rows and columns Och);(m, s) correspond to the points and
defined by (6). Letggé(X ) be the generator polynomial oflines of PG(m, 27), respectivelyH%(m, s) is also a low-den-
the type-l'm-dimensional PG-LDPC code constructed basegity matrix with row weighp = (2*—1)/(2° —1) and column
on PG(m, 2°). Let a be a primitive element of GR("+1)*).  weighty = 2°+1. The null space (ﬂ%(m, s) gives aregular
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LDPC code, called the type-th-dimensional PG-LDPC code, IV. DECODING OFFINITE-GEOMETRY LDPC CODES

(2) . . i L
denotedCpg (m, s). This code is also one-step majority-logic Finite-geometry LDPC codes can be decoded in various

decodable with minimum distancg’;(m, s) at least2® + 2. ways, namely one-step MLG decoding [28], [31], BF decoding
Form = 2, H%c);@ s) is a square matrix whose rows arq1], [2], weighted MLG decoding, weighted BF decoding,
then cyclic shifts of the first row, and the rows (H%(Z, s)  APP decoding [2], [31] and SPA decoding [10], [11], [15],
are simply permutations of the rowstgc);(z s). As aresult, [20], [22]. These decoding methods range from low to high
cv (2, s) anda%(z s) are identical. In general, fon, # 2, decoding complexity and from reasonably good to very good
C'I)Qz(m, s) is not cyclic but it can be put in quasi-cyclic formerror performance. They provide a wide range of tradeoffs

in a similar manner as for the typesH-dimensional EG-LDPC among decoding complexity, decoding speed, and error perfor-
code. mance. MLG and BF decodings are hard-decision decoding
and they can be easily implemented. Since finite-geometry
L . LDPC codes have relatively good minimum distances, they
(_3'D) projective geometry PG, 2%) has 85 pomt?)and 357 provide relatively large coding gains over the uncoded system.
lines. To construct the type-| 3'2)PG'LDPC col%. (3, 2), MLG decoding has the least decoding delay and very high
we form the parity-check matrill 1;;(3, 2) whose rows are the gecoding speed can be achieved. APP and the SPA decodings
incidence vectors of all the 357 lines in RS 2%) and whose 46 soft-decision decoding schemes. They require extensive
columns correspond to all the 85 points in B3G2?). The ma- decoding computation but they provide the best error perfor-

Example 2: Let m = 3 ands = 2. The three-dimensional

trix H2 (3, 2) can be put in the following form: mance. Weighted MLG and BF decodings are between hard-
and soft-decision decodings. They improve the error perfor-

Lz iz L Ihr L7 mance of the MLG and BF decodings with some additional

H, computational complexity. They offer a good tradeoff between

ch);(& 2) = H, error performance and decoding complexity. The SPA decoding

gives the best error performance among the six decoding
methods for finite-geometry LDPC codes and yet is practically
H, implementable.

The first MLG decoding algorithm was devised by Reed [48]
wherel;7 isthel7 x 17 identity matrix and eaclf; isan85 x  for decoding Reed—Muller codes [27]. Later Reed’s algorithm
85 circulant matrix. The circulant matricelly, H», Hs, H4  was reformulated and generalized by Massey for decoding both
have the following vectors (in polynomial form) as their firsplock and convolutional codes [31]. A thorough discussion of

rows, respectively: various types and implementation of MLG decoding can be
found in [28]. Therefore, we will not describe this decoding

hi(X)=14+X*4+ X4+ X4 X% method here. APP decoding also gives minimum error perfor-

ho(X) = X1+ X% 4 X584 x84 x®* mance, however, it is computationally intractable and hence it

ha(X) = X34+ X144 X324 X784 y® wil(ljnot Ze disgussed herg for ?i(;)Fc)jigg findiFe-geomgtryqc LDI;Q

ha(X) = X164 X3 1 X0 4 X674y codes. A good presentation o ecoding can be found in

[1], [2].

g ) _ Suppose a finite-geometry (EG- or PG-) LDPC cd@ds
The matrix Hp,;(3, 2) has row we{ghtp = 5 and column a4 for error control over an additive white Gaussian noise
weighty = 21. The null space of (3, 2) gives a(85, 24) (AWGN) channel with zero mean and power spectral density
type-13-D PG-LDPC Codggc);(ii, 2). The companion code of N,/2. Assume binary-phase shifrt keying (BPSK) signaling

this code is the null space of the parity-check matrix with unit energy. A codewordr = (vg, vy, ---, Un_1) iS
mapped into a bipolar sequenae = (xzg, 1, ..., Zp—1)
H%(:s, 2)= [I-Igc);(:s, 2)]*. before its transmission wheres = (2v; — 1) = +1 for
v = landz; = —1forv; = Owith0 <[ < n—1.
The matrix H'Z,(3, 2) has row weightp = 21 and column Lety = (v, 21, ..., yn—1) be the soft-decision received

weighty = 5_0%&);(37 2) has the same number of parity-checiéduence at the output of the receiver matched filte_r. For
bits asc’gc);(ii, 2). Hence, it is &(357, 296) PG-LDPC code 0= 1= n= Ly = 4 where n; 1S & Gaussian
with minimum distance at least random variable with zero mean and varlar_m_@/z. Le_t
z = (20, 21, ..., 2n—1) be the binary hard-decision received
It follows from (2), (13), and (15) that the number of cyclesequence obtained frognas follows:z = 1 for 35 > 0 and
of length6 in the Tanner graph of am-dimensional (type-l or -, = ¢ for y;; < 0.

I) PG-LDPC code is Let H be the parity-check matrix of the finite-geometry
LDPC codeC with J rows andn columns. Lehy, hs, ..., hy,
Ne,pg = é(g(m-l-l)s _ 1) (2ms — 1) denote the rows oH, whereh; = (hj 0, hj 1, -y hjn1)

forl1 < j < J.Then

20 \°
folm—1)s _
(2 1) <2S—1> - @) 32(317327~~~73J)23'HT (23)
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gives the syndrome of the received sequeaicehere thejth Step1 Compute the parity-check sums (syndrome bits). If
syndrome component; is given by the check sum all the parity-check equations are satisfied (i.e., all
o1 the syndrome bits are zero), stop the decoding.
sj=z-h;= Z 2hj . (24) Step 2 Flnd the number of ur?satlsf'lgd parlty—check equa-
et tions for each code bit position, denotg¢d i =
0,1,...,n—1.

The received vectoz is a codeword if and only is = 0. If

8 # 0, errors inz are detected. A nonzero syndrome component
s; indicates a parity failure. The total number of parity failures
is equal to the number of nonzero syndrome componends in

Step 3 Identify the set? of bits for which f; is the largest.

Step 4 Flip the bits in set.

Step 5 Repeat Steps 1) to 4) until all the parity-check equa-
tions are satisfied (for this case, we stop the iteration

Let in Step 1) or a predefined maximum number of it-
e=(eg, €1, ..., €n1) erations is reached.
=(vo, V1, «+ ) Un-1) + (20, 215 .- .s Zn-1).  (25) BF decoding requires only logical operations. The number

of logical operationsVgr performed for each decoding itera-
tion is linearly proportional to/ p (or n+y), sayNer = KgrJp,
where the constarfigr depends on the implementation of the
8=1(s1, 89, ...,87)=e- H” (26) BF decoding algorithm. Typicalld{gr is less than three. The
simple BF decoding algorithm can be improved by using adap-

Thene is the error pattern irx. This error patterre and the
syndromes satisfy the condition

where tive thresholds’s. Of course, this improvement is achieved at
n—1 the expense of more computations. EG- and PG-LDPC codes
sj=e-h; = Z eth; g (27) perform well with the BF decoding due to the large number of
1=0 check sums orthogonal on each code bit.

forl<j<J. B. Weighted MLG and BF Decodings

A. BF Decoding The simple hard—decision MLG and BF decodi.ngs can be im-
BF decoding of LDPC codes was devised by Gallager in t|113‘£0ved to achieve better error performance by including some

early 1960s [1], [2]. When detectable errors occur durin trl]%nd of reliability information (or measure) of the received sym-

tranimission tﬁere.will be parity failures in the syndr 9 bols in their decoding decisions. Of course, additional decoding

i complexity is required for such performance improvement.
(s1, s2, ..., sy) and some of the syndrome bits are equal to . - .
Consider the soft-decision received sequence

1. BF decoding is based on the change of the number of parity

failures in{z - h;: 1 < j < J} when a bit in the received Y= (Y0, Y1, -+ Yn—1)-

sequence is changed. For the AWGN channel, a simple measure of the reliability of a
First, the decoder computes all the parity-check sums basedeived symboly; is its magnitudey;|. The larger the magni-

on (24) and then changes any bit in the received veetortude|y,|, the larger the reliability of the hard-decision digit

that is contained in more than some fixed numbeof un- Many algorithms for decoding linear block codes based on this

satisfied parity-check equations. Using these new values, fegiability measure have been devised. In the following, this re-

parity-check sums are recomputed, and the process is repegtgsility measure is used to modify the one-step majority logic

until the parity-check equations are all satisfied. This decodifgcoding and the BF decoding.

is an iterative decoding algorithm. The paramefgrcalled  Again consider a finite-geometry LDPC code specified by a

threshold, is a design parameter which should be chosen parity-check matrixd with J rows, ki, ho, ..., hy. For0 <

optimize the error performance while minimizing the number< » — 1 and1 < j < J, define

of computations of parity-check sums. The value afepends DA ) )

on the code parameteps v, d i (C) and the signal-to-noise [y lada 2 {min{luil}: 0 < é < n—1, 00 =1} (28)

ratio (SNR). and
If decoding fails for a given value aof, then the value of E 2 > (235,1) - 1) il (29)
can be reduced to allow further decoding iterations. For error s es,

atterns with number of errors less than or equal to the erro . . .
P q wﬁereSl is the set of check sums orthogonal on bit position

correcting capability of the code, the decoding will be com- o . .
pleted in one or a few iterations. Otherwise, more decoding i;grrbe value is simply a weighted check sum thatis orthogonal

ations are needed. Therefore, the number of decoding iterati(())rq‘sthe code bit positio. Lete = (co, e1, ..., en—1) be the

is a random variable and is a function of the channel SNR. ep(ror patterr_1_to be estimated. Th_en the one-step MLG decoding
limit may be set on the number of iterations. When this limit i&an be modified based on the weighted check stims follows:

reached, the decoding process is terminated to avoid excessive o = { 1, for ;>0 (30)

computations. Due to the nature of LDPCs, the above decoding 0, for £; <0

algorithm corrects many error patterns with number of errofsr 0 < I < n — 1. The above decoding algorithm is called

exceeding the error correcting capability of the code. weighted-MLG decoding and was first proposed by Kolesnik in
A very simple BF decoding algorithm is given as follows. 1971 [49] for decoding majority logic decodable codes.
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The decision rule given by (30) can be used in BF decoding. The implementation of the SPA decoding [10] is based on the

In this case, the decoding is carried out as follows. computation of marginal posterioriprobabilitiesP (v, |y)’s for
Step 1: Compute the check sums. If all the parity—checE = I <n.Thenthe LLR for each code bitis given by
equations are satisfied, stop the decoding. . Py =1]y)
Step 2: ComputeE; based on (29), fob <! <n — 1. L(w) = log P(u =0ly)’ (32)

Step 3: Find the bit positiord for which E; is the largest. , ,
Step 4: Flip the bit z,. Letp? = P(v; = 0) andp; = P(v; = 1) be the prior probabil-
Step 5: Repeat Steps 1 to 4. This process of BF continui€s of v = 0 andv; = 1, respectively.

. . . g P ac,(z)
until all the parity-check equations are satisfied ora FOr0 <7 <n, 1 <j <.Jandeacth; € 4;, letg;’," bethe
preset maximum number of iterations is reached. conditional probability that the transmitted codeibas value

x, given the check sums computed based on the check vectors in
This modified BF algorithm is called weighted BF decodingql\hj at theith decoding iteration. Fld < I < n, 1 < j < J
algorithm. , , _ , andh; € A, leto™ ) be the conditional probability that the

The above weighted decoding algorithms are in @ way SOffrack sums. is sajfisfied, given; = z (0 or 1) and the other

decision decoding algorithms and require real addition operg;ye pits iné?(h,») have a separable distribution
tions to compute the weighted check sumss to make deci- !
sions. Since a real addition operation is much more complex {q};fi .4 e B(hj)\l}
than a logical operation, the computational complexities of both
weighted MLG and BF decodings are dominated by the totaf-
number of real additions needed to decode a received sequenees) _ Z
From (29), we can readily see that for weighted MLG decoding??
the number of real additions required for decoding a received o
sequence i& yir.a(Jp +nv) whereK 1 is a constant. How- X H 4 @, (33)
ever, for weighted BF decoding, the number of real additions teB(h;)\I

needed for each decoding iterationfig 1. (Jp + n). Since )
Jp (or n) is the total number of-entries in the parity-check 1"€ computed values of ;" are then used to update the values

P(sjlui = o, {ve: t € B(hj)\I})
{ve: teB(hy)\1}

matrix H of the code, the computational complexities of bothf qf}’l(“’l) as follows:

weighted-MLG and -BF decodings are linearly proportional to - (1) (41) 5 ()

the total number of-entries inH. ¢ =T I e (34)
Ry CAN\hy

C. The Sum—-Product Algorithm wherea T is chosen such thaf” /") + ¢} ") = 1.

Atthesth iteration step, the pseudo-posterior probabilities are
The sum—product algorithm (SPA) [17]-{20], [33] is an itgiven by
erative decoding algorithm based on belief propagation [10], ‘ ) )
[11], [20]-[22] which is extremely efficient for decoding LDPC PO(v = aly) = afpy T[ o7 (35)
codes. Like MAP probability decoding algorithm [50], it is a h;c A
symbol-by-symbol soft-in/soft-out decoding algorithm. It pro-
cesses the received symbols iteratively to improve the reliabili
of each decoded code symbol based on the parity-check su
computed from the hard decisions of the received symbols al
the parity-check matriff that specifies the code. The reliability o {
Zl =

hereq; is chosen such tha@® (v; =0|y)+P® (v =1jy) = 1.
ed on these probabilities, we can form the veettr =
) A0 2 ) as the decoded candidate with

1,  for POy, =1]y) > 0.5

of a decoded symbol can be measured by its margiosteriori _
0, otherwise.

probability, its log-likelihood ratio (LLR), or the value of its cor-
responding received symbol. The computed reliability measuHeﬁ
of code symbols at the end of each decoding iteration are use
as inputs for the next iteration. The decoding iteration proce'% he SPA decoding in terms of brobability consists of the fol-
continues until a certain stopping condition is satisfied. Thepw. ; 9 P y

based on the computed reliability measures of code symboPs, INg Steps.

n computee® . H” . If 20 . H" = 0, stop decoding the
ration process and outpt” as the decoded codeword.

hard decisions are made. Initialization: Seti = 0, maximum number of iterations to
Again we consider a finite-geometry LDPC cod& of Iinax. FOr every pailj, [) such that; ; = 1
length » specified by a parity-check matri with J rows, with1 < j < Jando<l<n, setq%lo):pgJ

hi, hs, ..., hy. Forl < j < J, define the following index set andq,l.’l(O) = pt.
for h;: Step 1: ForO% l<n,1<j<.Jandeach; € A,
compute the probabilities; "’ ando;’”.
B(hJ)I{l th =1, 0Sl<7’L} (31) Go to Step 2.

Step 2: For0<l<n,1<j < Jandeachh; € 4,

which is called the support df;. compute the values of "+ andg;"*"
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Error Rate

Eb/N0 (dB)

Fig. 1. Bit-error probabilities of the type-l 2-R255, 175) EG-LDPC code and273, 191) PG-LDPC code based on different decoding algorithms.

and the values ofP“+V(y; = Oly) and brid soft/hard decoding scheme. At the first stage, a code is de-
POty = 1|y). Form 20+ and test coded with the SPA with a small fixed number of iterations,
200 HY if 204D . HT = 0 or the sayl. Atthe completion of thd'th iteration, hard decisions of
maximum iteration numbef,,,. is reached, decoded symbols are made based on their LLRs. This results
go to Step 3. Otherwise, sét:= i + 1 and in a binary sequence of estimated code bits. This sequence

go to Step 1. z is then decoded with the simple one-step MLG decoding.
Step 3: Outputz+1) as the decoded codeword andrhis two-stage hybrid decoding works well for finite-geometry
stop the decoding process. LDPC codes because they have large minimum distances and

Inthe above SPA decoding, real number addition, subtractioSnPA decoding of these codes converges very fast. Simulation
o L . . . results for many codes show that the performance gap between
multiplication, division, exponential, and logarithm operation

. . "fve iterations and 100 iterations is within 0.2 dB. Therefore,
are needed. In implementation, the last four types of operations ) . .

. . : at the first stage, we may set the number of iterations for the
are more complex than addition and subtraction. For this reas

: ; . . A decoding to five or less (in many cases, two iterations are
we simply ignore the number of additions and subtractions in : ; i
enough). The resulting estimated code sequemoay still con-

analyzing the computational complexity. From (33)~(35), W&in a small number of errors. These errors will be corrected by

find that the number of multiplications and divisions needed if) .
each iteration of the SPA decoding is of the ordkée.] p-+4n-) the one-step MLG decoding at the second stage due to the large

and the number of exponential and logarithm operations nee{] ority-logic error-correcting capability of the finite-geometry

) . o . C codes.
for each iteration of decoding is of the ord@(n). A detail i : .
exposition of the SPA can be found in [10], [17]-[20], [33]. The two-stage hybrid soft/hard decoding scheme offers

a good tradeoff between error performance and decoding

D. Two-Stage Hybrid Decoding complexity. Furthermore, it reduces decoding delay.

The SPA decoding is computationally expensive. Each de-
coding iteration requires many real number computations. If de-
coding of a code with the SPA converges slowly, a large numberTo demonstrate the error performance of finite-geometry
of iterations is needed to achieve the desired performanceLBPC codes, we select several EG- and PG-LDPC codes
large number of iterations results in a large number of computa- various lengths and decode them with various decoding
tions and long decoding delay which is not desirable in highaethods. Figs. 1-8 show the error probabilities of these codes.
speed communications. However, for finite- geometry LDPC Fig. 1 gives the bit-error performance of the type-l 2-D
codes, this difficulty can be overcome by using a two-stage h{255, 175) EG-LDPC code and the type-l 2-D273, 191)

V. PERFORMANCE OFFINITE-GEOMETRY LDPC CoDES
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Fig. 2. Bit-error probabilities of th€255, 175) EG-LDPC code(273, 191) PG-LDPC code and two computer generat2d3,

SPA decoding.
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Fig. 3. Bit-and block-error probabilities of the type-1 20023, 781) EG-LDPC code an¢i1057, 813) PG-LDPC code based on different decoding algorithms.

PG-LDPC code given in Tables | and I, respectively. Thesehich they are constructed. They have about the same rate
two codes are equivalent in terms of geometries based @md minimum distance. The EG-LDPC code is decoded with
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Fig. 4. Bit-error probabilities of th€1023, 781) EG-LDPC code(1057, 813) PG-LDPC code and two computer-generateds7, 813) Gallager codes with
the SPA decoding.
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Fig. 5. Bit- and block-error probabilities of the type-1 2{B095, 3367) EG-LDPC code and4161, 3431) PG-LDPC code based on different decoding
algorithms.
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Fig. 7. Error performance of the type-Il five-dimensional (5{B§955. 85963) EG-LDPC code with the SPA decoding.
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Fig. 8. Convergence of the SPA decoding for the type-1 4005, 3367) EG-LDPC code.

various decoding methods but the PG-LDPC code is onlyFig. 3 shows the bit-error performance of the type-l1 2-D
decoded with the SPA decoding. From Fig. 1, we see that th€4623, 781) EG-LDPC code and the type-l 2-DL057, 813)

two codes have almost the same error performance with tR&-LDPC code given in Tables | and Il, respectively. These
SPA decoding. We also see that the SPA decoding gives the liest codes are equivalent in terms of the code construction
error performance at the expense of computational complexigometries and they have about the same rate and minimum
The hard-decision BF decoding achieves relatively good ermistance. Again, the EG-LDPC code is decoded with various
performance with much less computational complexity. #tecoding methods and the PG-LDPC code is only decoded with
outperforms the simple one-step MLG decoding by 0.45 dfie SPA decoding. The two codes perform almost the same
at the bit-error rate (BER) ofl0—>. With some additional with the SPA decoding. At the BER df—?, the performance
computational complexity, the weighted BF decoding achieve$ both codes is only 1.7 dB away from the Shannon limit
0.75- and 1.20-dB coding gains over the hard-decision BF afwlith binary-input constraint computed based on the rate of
MLG decodings at the BER of0~?, respectively, and it is the (1023, 781) code). For codes of lengtto00 and rate).77,

only 1.2 dB away from the performance of the SPA decodinthis performance is amazingly good. Again, we see that the
It requires much less computational complexity than that @feighted BF performs very well and provides a good tradeoff
the SPA decoding. Therefore, weighted BF decoding providestween the error performance of the SPA decoding and the
a very good tradeoff between the error performance of tlecoding complexity of the simple one-step MLG decoding.
SPA decoding and the complexity of the simple one-step MLThe block error performance of both codes with the SPA de-
decoding. Fig. 2 gives a comparison of the error performanceding is also shown in Fig. 3. They both perform well. Fig. 4
of the two finite-geometry LDPC codes and that of twa@ives a comparison of the error performance of the two finite
best computer-generatéd73, 191) Gallager's LDPC codes geometry LDPC codes and that of two best computer-generated
[10] with v equals to3 and 4, respectively. All codes are (1057, 813) Gallager's LDPC codes with equals to3 and
decoded with the SPA decoding. For the two finite-geometry respectively. All codes are decoded with the SPA decoding.
LDPC codes, the maximum number of decoding iteratione see that the two finite-geometry LDPC codes slightly
is set to 50, however, for Gallager's codes, the maximuoutperform their corresponding Gallager’s codes.

number of decoding iterations is set to 200. We see that bothThe next two codes being evaluated are the type-lI 2-D
finite-geometry LDPC codes outperform their corresponding095, 3367) EG-LDPC code and the type-I 2-@161, 3431)
computer-generated Gallager's codes. The Gallager's cdé@-LDPC code, the fifth codes given in Tables | and II,
with v+ = 3 also shows an error floor. This indicates that theespectively. Both codes have rates abOw3. Their error
code has poor minimum distance. performances with various types of decoding are shown in
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Fig. 9. Bit-error probabilities of the type-l 2-Dt095, 3367) EG-LDPC code based on two-stage hybrid decoding.

Fig. 5. With the SPA decoding, they perform 1.5 dB from theery fast. For example, consider the type-1 26095, 3367)

Shannon limit at the BER af0—2. EG-LDPC code, the fifth code given in Table I. Fig. 8 shows
Form = s = 3, the type-1 3-D EG-LDPC cod@'gc);(:i, 3) the convergence of the SPA decoding for this code With, =

is a (511, 139) code with minimum distance at leass. Its 100. We see that at BER d0—*, the performance gap between

parity-check matringc);(:S, 3) is a4599 x 511 matrix with five and 100 iterations is less than 0.2 dB, and the performance

row weightp = 8 and column weighty = 72. Then, between 10 and 100 iterations is less than 0.05 dB. This fast con-
vergence of the SPA decoding for finite-geometry LDPC codes
H%&(:i, 3) = [HSE%(:S, Y is not shared by the computer-generated Gallager’s codes whose

parity-check matrices have small column weightsy 4.

is abll x 4599 matrix with row weight72 and column  To demonstrate the effectiveness of the two-stage hybrid
weight 8. The null space onEQC);(ZS, 3) gives the type-ll 3-D soft/hard-decoding scheme for finite-geometry LDPC codes,
EG-LDPC code which is 4599, 4227) code with minimum we consider the decoding of the type-1 2-@095, 3367)
distance at least and rated.919. The type-I code is a low-rate EG-LDPC code. Fig. 8 shows that decoding this code with
code but the type-1l code is a high-rate code. Both codes hatie SPA, the performance gap between two iterations and 100
372 parity-check bits. The bit- and block-error performances pérations is about 0.5 dB at the BER d6~°. Therefore, in
both codes with the SPA decoding are shown in Fig. 6. We s@#o-stage hybrid decoding, we may set the first stage SPA
that the (4599, 4227) type-Il EG-LDPC code performs very decoding to two iterations and then carry out the second stage
well. At BER of 102, its performance is only 1 dB away fromwith the one-stage MLG decoding. The code is capable of cor-
the Shannon limit. recting 32 or fewer errors with one-step MLG decoding. Fig. 9

Form = 5 ands = 2, the type-Il five-dimensional (5-D) shows that the code performs very well with the two-stage
EG-LDPC codeC'(F?é(S, 2) constructed based on the lines antlybrid decoding.
points of EG(5, 22) is an(86955, 85963) code with rate).9886 The parity-check matrix of a type-I finite-geometry LDPC
and minimum distance at least With the SPA decoding, this code in general has more rows than columns. This is because
code performs only 0.4 dB away from the Shannon limit at thbe number of lines is larger than the number of points in either
BER of 10~° as shown in Fig. 7. Its block error performance i€G or PG, except for the 2-D case. Therefore, the number of
also very good. rows is larger than the rank of the matrix. In decoding a finite-

In decoding the finite-geometry LDPC codes with the SP4eometry LDPC code with the SPA (or BF decoding), all the
decoding, we set the maximum numbgy,,. of decoding iter- rows of its parity-check matrix are used for computing check
ations to 50. Many codes have been simulated. Simulation seims to achieve good error performance. If we remove some
sults of all these codes show that the SPA decoding convergedundant rows for the parity-check matrix, simulation results
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Fig. 10. Bit- and block-error probabilities of the extendéd520, 61425) EG-LDPC code with the SPA decoding.

show that the error performance of the code will be degradegd- b columnsg; .+, §; y42: -, 9;, ,» have weightyex;. The
Therefore, finite-geometry LDPC codes in general require modestribution ofy “ones” ofg, intog, 1, g; », ..., 9, , is carried
computations than their equivalent computer-generated LDBG! in a rotating manner. In the first rotation, the firgt of g,
codes with small row and column weights (often column weighg put ing; ., the second1” of g, is puting, ,, and so on. In
is 3 or 4 and the row weight i§). the second rotation, thg + 1)th “one” of g, is puting, ,, the
(g + 2)th “one” of g, is put ing; ,, and so on. This rotating
VI. CobE CONSTRUCTION BY COLUMN AND Row SpLitTing  distribution of the “ones” of, continues until all the “ones” of

OF THE PARITY-CHECK MATRICES OF FINITE-GEOMETRY g; have been distributed into tlenew columns.
LDPC CoDES The above column splitting results in a new parity-check ma-

A finite-geometry (type-I or type-Il) LDPC cod€ of length trix H..; with gn columns which has the following structural

n be extended b littin h colurmn of it ritv-ch %operties: 1) each row has weight2) each column either has
7 can be extended by Spiitling each column OT 1S parity-che eightex Or has weighty.: + 1; 3) any two columns have at
matrix H into multiple columns. This results in a new parity

most one 1” in common. If the density off is r, the density

matrix with smaller density and hence a new LDPC code. If tqﬁ H... is thenr/q. Therefore, the above column splitting re-
column splitting is done properly, very good extended finite-g o .

ometry LDPC codes can be obtained. Some of the ex_tende§S —gién ;;I(:Z\: Z?\:?S/ ;:egttemﬁgg V;L:E:_Z‘:gi (S{?;T_Igpzhi c? Cl; (lel
nl_te-geometry LDP(_: codes const_ructed perform amazingly w .. If  is not divisible byg, then the columns oH..., have
with the SPA deCOd'Ug- They achieve an error perf_or_mance OQ\AI?O different weightsy.: andv.xt+ 1. Therefore, a code bit of
a fev_v tenths of a deC|b(_aI away from the Shannon limit. Thgy e extended codB... is either checked by... check sums or
?ﬁ;:ﬁ;l:]nl?rm? algebraically constructed codes approaching ~Yext + 1 check sums. In this case, the extended LDPC code
Letgy, 91, - - -, 9,1 denote the columns of the parity-checkaeXt 's an iregular LDPC code.
matrix H. First we consider splitting each column AF into Example 3: Form = 2 ands = 6, the type-1 2-D EG-LDPC
the same number of columns. All the new columns have thedeC'SElG(Z, 6) is a(4095, 3367) code with minimum distance
same length as the original column. The weight (or “ones”) @, the fifth code given in Table I. The parity-check matrix of
the original column is distributed among the new columns. this code has row weight= 64 and column weight = 64, re-
regular column weight distribution can be done as follows. Lepectively. Its error performance is shown in Fig. 5. At the BER
g be a positive integer such that< ¢ < . Dividing v by ¢, of 10~%, the required SNR is 1.5 dB away from the Shannon
we havey = ¢ X Yext + b, Whered < b < ¢. Split each column limit. Suppose we split each column of the parity-check ma-
g, of Hintog columnsg, 1, ¢; 5, ..., 9, , sSuchthatthe first trix of this code into 16 columns with rotating column weight
columnsg, 1, g; 2,---, 9; »» have weighty.; +1 and the next distribution. This column splitting results in(§5520, 61425)



KOU et al. LOW-DENSITY PARITY-CHECK CODES BASED ON FINITE GEOMETRIES 2727

TABLE Il
EXTENDED CODES CONSTRUCTEDFROM THE TYPE-I 2-D (4095, 3367) EG-LDPC GoDE

The Gap Between
Shannon | Drop Point Crossing
q n k p vy rate Drop Point and
Limit(dB) | BER = 10~(dB)
Shannon Limit

1 | 4095 | 3367 | 64 64 0.822 225 37 1.45

2 | 8190 | 4095 |64 32 0.5 0.18 6 5.82

3 | 12285 | 8190 | 64 | 21or22 | 0.666 1.06 4.9 3.84

4 | 16380 | 12285 | 64 16 0.75 1.63 4.5 2.87

5 | 20475 | 16380 | 64 | 120r13 | 0.8 2.04 4.35 2.31

6 | 24570 | 20475 | 64 | 100r11 | 0.833 2.36 4.25 1.89

7 | 28665 | 24570 | 64 | 9or 10 | 0.857 2.62 422 1.63

8 | 32760 | 28665 | 64 8 0.875 2.84 4.1 1.26

9 | 36855 | 32760 | 64 | 7or8 | 0.888 3.05 4.11 1.11

10 | 40950 { 36855 | 64 | 6or7 09 32 4.12 0.92

11 | 45045 | 40950 | 64 | Sor6 | 0.909 3.34 4.16 0.82

12 | 49140 | 45045 |64 | Sor6 | 0916 3.47 4.2 0.73

13 [ 53235 | 49140 | 64 | 4or5 | 0.923 3.59 4.23 0.64

14 | 57330 | 53235 | 64 | 4or5 |0.928 37 427 0.57

15 | 61425 | 57330 | 64 | 4or5 | 0.933 3.8 4.32 0.52

16 | 65520 | 61425 | 64 4 0.937 391 4.33 0.42

17 | 69615 | 65520 | 64 | 3o0rd4 | 0.941 3.98 44 04

18 | 73710 | 69615 | 64 | 3o0r4 |0.944 4.05 45 0.45

19 | 77805 | 73710 | 64 [ 3or4 | 0.947 4.1 4.54 0.44
20 | 81900 | 77805 | 64 | 3or4 0.95 42 4.65 0.45
21 | 85995 | 81900 | 64 | 3o0r4 | 0.952 4.26 4.7 0.44
22 | 90090 | 85995 {64 | 2o0r3 | 0.954 43 4.79 0.49
23 194185 | 90090 | 64 | 2o0r3 | 0.956 4.38 49 0.52

extended type-l EG-LDPC code whose parity-check matrix hasExample 4: Form = 2 ands = 7, the type-I1 2-D EG-LDPC
row weightp = 64 and column weight... = 4. The rate of this code is a(16383, 14197) code with minimum distancé29,

new code i9.937. This code decoded with the SPA decodinghe sixth code in Table I. The column and row weights of its
achieves an error performance which is only 0.42 dB away froparity-check matrix are boti28. Suppose we split each column
the Shannon limit at the BER aD—* as shown in Fig. 10. We of the parity-check matrix of this code into 32 columns. We ob-
see that it has a sharp waterfall error performance. In decoditajn a(524256, 507873) extended type-I EG-LDPC code with
the maximum number of decoding iterations is set to 50, but trete 0.9688. The bit-error performances of this extended code
decoding converges very fast. The performance gap betweerahd its base code are shown in Fig. 11. At the BER®f?,

and 50 iterations is less than 0.1 dB. the performance of the extended code is 0.3 dB away from the

Given a base finite-geometry LDPC codk it can be ex- Shannon limit.

tended into codes of many different lengths. All these extendedExample 5:Let m = s = 3. The type-l 3-D EG-LDPC
codes have different rates and behave differently. Consider ttele constructed based on the lines and points of £G&?)
type-1 2-D (4095, 3367) EG-LDPC code discussed in Examplds a(511, 139) code with minimum distance at le&&t and rate

3. Suppose we split each column of its parity-check matrix inth272. It is a low-rate code. Its parity-check matrix id399 x
various numbers of columns from two to 23. Table Il show§11 matrix with row weightp = 8 and column weighty = 72.

the performances of all the extended codes in terms of SNBgppose this code is extended by splitting each column of its
required to achieve the BER 10~* and the gaps between theparity-check matrix into 24 columns. Then the extended code
required SNRs and their corresponding Shannon limits. We dgee (12264, 7665) LDPC code with raté.625. The bit-error
that splitting each column of the parity-check matrix of the bagerformances of this extended code and its base code are shown
code into 16 or 17 columns gives the best performance in tering=ig. 12. The error performance of the extended code is only
of the Shannon limit gap. 1.1 dB away from the Shannon limit at the BER16fF>.
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Fig. 11. Error performances of the type-l 2D5383, 14197) EG-LDPC code and the extend€g4256, 507873) EG-LDPC code with the SPA decoding.

Given a finite-geometry LDPC code specified by a parityt-components in a column dff must be labeled in a specific
check matrixH, each column ofH can be split in different circular order. Fol0 < 5 < n, let gg”) be thejth column of
manner and into different numbers of columns. Consequentlye ith circulant matrixH;. Then thejth columng; of H is
many extended finite-geometry LDPC codes can be obtainedditained by cascading](.l), 95.2)7 o gg,K) with one on top
splitting columns of the parity-check matrHl. If the columns  the other. We label the-components of thgth columng; of
are split differently, the resultant extended code is an irregulgf 55 follows. The firstl-component O@,(»l) on or below the

LDPC code. _ _ o main diagonal line of circulanH; and insideH; is labeled
Column splitting of the parity-check matrix of a finite-geoms-

! -~9=""""as the firstl-component of theg'th columng; of H. The first
etry LDPC code may result in an extended code which is nei- (2 . .

. . . . i—component ofg;” on or below the main diagonal line of
ther cyclic nor quasi-cyclic. However, if we arrange the rows o rculant Ho and JinsideH is labeled as the secoridcom-
the parity-check matrix into circulant submatrices and then sp‘ﬁt 2 . 2 . .
each column into a fixed number of new columns with colum‘%onem ofg;. Continue this labeling process until we label the

b distri : - : irst 1 t ofg{™ below the main di i
weight distributed in a rotating and circular manner, the resd|tSt 1-component ofg;™" on or below the main diagonal line
tant extended code can be put in quasi-cyclic form. To see tHi,circular Hy and insideH i as theK'th 1-component of
we consider a type-1 EG-LDPC code of lengthLet H be the €0lumng;. Then we go back to circulanl; and start the
parity-check matrix of this code witt rows andn columns. S€cond [?)“”d of the labeling progress. The secbedmpo-
The rows ofH can be grouped int& n x n circulant subma- Nent ofg;” below the main diagonal line dff; and inside ,
trices,H,, Ho, ..., Hy,whereK = .J/n. Each circulant sub- iS labeled as thek” + 1)th 1-component ofg;. The second
matrix H ; is obtained by cyclically shifting the incidence vectoi-component ob](?) below the main diagonal line of circulant
of alinen times. ThereforeH can be put in the following form: H is labeled as théK +2)th 1-component of;. Continue the

second round labeling process until we reachith circulant

H, H,;; again. Then we loop back to circulaif; and continue
H, the labeling process. During the labeling process, whenever we
H= (36) reach down to the bottom of a circulant matik;, we wrap

around to the top of the same cquryEﬁ) of H;. The above
labeling process continues until all thecomponents o, are
labeled. Once the labeling éfcomponents of; is completed,
Now we split each column of into ¢ columns in a similar we distribute thel-components 0§, into the ¢ new columns
manner as that described earlier in this section. However, thethe same rotating manner as described earlier in this sec-

Hyg
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Fig. 12. Error performance of the type-l 3{B11, 139) EG-LDPC code and the extendet2264, 7665) EG-LDPC code with the SPA decoding.

For PG-LDPC codes/ may not be divisible by.. In this

v ! Vg
case, not all the submatrices of the parity-check mdifinf a
type-1 PG-LDPC code can be arrangednag n square circu-
lant matrices. Some of them are nonsquare circulant matrices as
shown in Example 2. The rows of such a matrix are still cyclic
shifts of the first row and the number of rows dividesin reg-
ular column splitting, the labeling and distributionlsEompo-

(a) Column splitting nents of a column in a nonsquare circulant submatrix still follow
the 45 diagonal and wrap back to the top order. When we reach
the last row, move back to the first row and start to move down
from the next column. After column splitting, each extended

_— submatrix is still a circulant matrix and the extended code is
in quasi-cyclic form. The columns of the parity-check matrix of

a type-ll PG-LDPC code can be split in a similar manner.

o The last three examples show that splitting each column of the

(b) Row splitting parity-check matrixH of a finite-geometry LDPC cod€' into

multiple columns properly results in an extended LDPC code

C..: Which performs very close to the Shannon limit with the

SPA decoding. A reason for this is that column splitting reduces

tion. So the weight of each column & is distributed into new the degree of each code-bit vertex in the Tanner gl the

columns in a doubly circular and rotating manner. Clearly, tHease code and hence reduces the number of cycles in the graph.

labeling and weight distribution can be carried out at the sarSglitting a column ofH into ¢ columns results in splitting a

time. Let H.,; be the new matrix resulting from the abovecode-bit vertex of the Tanner grajgh of the base code intg

column splitting. TherH ., consists ofK” n x ng submatrices code-bit vertices in the Tanner gra@h,; of the extended code

He 1, Hoxi o, ..., Hoxr . FOr0 < 4 < K, the rows of Cu;. Each code-bit vertex idi.: is connected to a smaller

H... ; are cyclic shifts of the first rowg bits at a time. As a number of check-sum vertices thanGh Fig. 13(a) shows that

result, the null space dfl ... gives an extended finite-geometrysplitting a column inH into two columns results in splitting

LDPC code in quasi-cyclic form. Type-ll EG-LDPC codes caa code-hit vertex in the Tanner graghinto two code-bit ver-

be extended and put in quasi-cyclic form in a similar mannertices in the Tanner grap®..,;. The original code-bit vertex has

s 51 89

Fig. 13. Graph decomposition by column/row splitting.



2730 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 7, NOVEMBER 2001

oL1 Uiz U2t 22 also break many cycles in the Tanner graph of the base code.

An example of cycle breaking by check-sum vertex splitting is
shown in Fig. 14(b). Clearly, a combination of column and row
splitting will break many cycles in the Tanner graph of the base

code. This may result in a very good LDPC code.

(a) Breaking a cycle of length 4 by column sphttmg operation. Example 6: Consider thg255, 175) type-1 EG-LDPC 2-D
code given in Table I. Its performance is shown in Fig. 1. The
column and row weights of the parity-check matHxare both
16. If each column off is split into five columns and each row
of H is split into two rows, we obtain a parity-check matfk
whose columns have two weighsand4, and whose rows have

. 51,1 512 S21 S22 weight8. The null space o’ gives a(1275, 765) LDPC code
b) Break 1 fl h4b li . . N
(b) Bre mgacyc ¢ of length 4 by row splitting operation whose error performance is shown in Fig. 16.
Fig. 14. Cycle decomposition. Example 7: Again we consider thg4095, 3367) type-I
2-D EG-LDPC codeOSElé(Z, 6) given in Table I. If we split
U1 U2 U3 each column of the parity-check matd of this code into 16

columns and each row d into three rows, we obtain a new
parity-check matrixl’ with column weight4 and row weights

21 and 22. The null space ofH’ gives a (65520, 53235)
extended LDPC code. This extended code and its base code
have about the same rate. Its error performance is shown in

S 82 83 Fig. 17, and it is 0.7 dB away from the Shannon limit at the

¢ BER of 10~°. However, the performance of its base code is

1.5 dB away from the Shannon limit. This example shows that

Ui VU2 V21 V22 Us1 U3 by a proper combination of column and row splittings of the

parity-check matrix of a base finite-geometry LDPC code, we
may obtain a new LDPC code which has about the same rate
but better error performance.

VIl. SHORTENEDFINITE-GEOMETRY LDPC CoDES
S1 S2 53

Both types of finite-geometry LDPC codes can be shortened
Fig. 15. Decomposition of a cycle of lengltby column splitting. to obtain good LDPC codes. This is achieved by deleting prop-
erly selected columns from their parity-check matrices. For a
a degree oft but each code bit after splitting has a degree dype-I code, the columns to be deleted correspond to a prop-
2. This code bit splitting breaks some cycles that exist in tH¥ly chosen set of points in the finite geometry based on which
Tanner grapl@ of the base cod€'. Figs.14(a) and 15 show thethe code is constructed. For a type-Il code, the columns to be
breaking of cycles of length$ and6. Therefore, column split- deleted correspond to a properly chosen set of lines in the finite
ting of a base finite-geometry LDPC code breaks many cyclggometry. In this section, several shortening techniques are pre-
of its Tanner graph and results in an extended LDPC code wh&&éited.
Tanner graph has many fewer cycles. This reduction in cycles inFirst, we consider shortening type-| finite-geometry LDPC
the Tanner graph improves the performance of the code with #@des. We use a type-I EG-LDPC code to explain the short-
SPA decoding. In fact, breaking cycles with column splitting o#ning techniques. The same techniques can be used to shorten
the parity-check matrix can be applied to any linear block cod@. type- | PG-LDPC code. Consider the type-l EG-LDPC
This may result in good LDPC codes. code C'EG(m s) constructed based on the-dimensional
LDPC codes can also be obtained by splitting each row of theiclidean geometry EGn, 2°). Let EG(m — 1, 2°) be an
parity-check matrixH of a base finite-geometry LDPC code(m — 1)-dimensional subspace (also caIIed(an— 1)-flat) of
into multiple rows. The resultant code has the same length&& (m, 2°) [28], [36]-[38]. If the points in EGm — 1, 2°)
the base code but has a lower code rate. Furthermore, proper &s& removed from EGn, 2°), we obtain a systerf§, denoted
splitting also preserves the cyclic or quasi-cyclic structure of theG (m, 2°)\EG(m — 1, 2°), that contains2™® — 2(m—1)s
code. Clearly, LDPC codes can be obtained by splitting bog®ints. Every line (orl-flat) contained in EGm — 1, 2°) is
columns and rows of the parity-check matrix of a base finiteleleted from EGm, 2°). Every line that is completely outside
geometry code. of EG(m — 1, 2°) remains inS and still contain2® points.
Splitting a row in theH matrix is equivalent to splitting a Every line not completely contained Bicontains only2® — 1
check sum vertex in the Tanner graph of the code and hemsints, since by deleting an EG: — 1, 2%) from EG(m, 2°)
reduces the degree of the vertex as shown in Fig. 13(b). Thews also delete a pomt in E@n — 1, 25) from each such line.
fore, row splitting of the parity-check matrix of a base code carhe columns ofI-I ( , s) that correspond to the points
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T
— - BPSK uncoded (3
-©- Bit ]

‘| - Block

—— Shannon limit

Error Rate

E/N, (dB)

Fig. 16. Bit- and block-error probabilities of the extendé@75. 765) LDPC code with the SPA decoding.

— Extended LDPC code BER |]
—& Base LDPC code BER

Error Rate

E,/N, (dB)

Fig. 17. Bit-error probabilities of the extendé@b520, 53235) EG-LDPC code and the type-l 2-@095, 3367) EG-LDPC code with the SPA decoding.
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1 1
AAAAAAAAAA e e = Uncoded BPSK
: : : : : | B~ (255,175) EG-LDPC
....... ] -©~ (239,160) punctured EG-LDPC ||
—¥— (224,146) pun

Error Rate

Fig. 18. Bit-error probabilities of th€255, 175) EG-LDPC code, thé239, 160) and(224, 146) shortened EG-LDPC codes with the SPA decoding.

in the chosen(m — 1)-flat EG(m — 1, 2°) are deleted, the 2° points on£. This results in a matriH’ with 22¢ — 2° — 1
rows in Hgé(m, s) that correspond to the lines contained icolumns. The row inHSE%(z, s) that corresponds to the line
EG(m — 1, 2°) become rows of zeros in the punctured matrix{ becomes a row of zeros ifl’. Removing this zero row
the rows ofH 2 (m, ) that correspond to the lines containedrom H', we obtain a(2* — 2) x (22* — 2° — 1) matrix
in § become rows in the punctured matrix with wei@fit and H§é75(2, s). Each column 0H§é75(2, s) still has weight
the rows ongé(m, s) that correspond to lines not completelyy = 2¢. Removing a column OHSC);(Z s) that correspond a
contained inS become rows in the punctured matrix Withpointp on £ will delete a “one” from2® — 1 rowsianElé(z, 5)
weight2” — 1. Removing the rows of zeros from the puncturegihich are the incidence vectors of the lines that intersect with
matrix, we obtain a new matriff,/; 4(m, s) that has line £ at the pointp. Therefore, there arg*(2* — 1) rows in
H(Flé 5(2, s) with weightp, = 2° — 1. There are2® — 2 lines
20m=s(gme — 1) — 2(m=2) (9(m—1)> _ 1) 37y EG(2, 2°) not passing through the origin of E@, 2°) that
22 =1 are parallel tal. Deleting the columns of thHSElé(Z, s) that
s me1)s correspond to the points o does not change the weights
o and 2™ — 2l ~* columns. Every(lgzolumn of of the rows that are the incidence vectors of te— 2 lines
Hpg, s(m, s) still has weight”, butthe rows o, 5(m, s) parallel to£. Therefore, there & — 2 rows inH ), 4(2, 5)
have two different weights2® — 1 and 2°. The matrix with weight p; = 2°. Any two columns ianc);,s(Qa 5) st

HY) , s) still has low density of “ones” and the null space
G, s(m> 9) Y PaC ave at most onet” in common. The density aH b 4(2, )

of ch);js(m, s) gives a shortened EG-LDPC code whose _ (1 e ofi i
minimum distance is at least the same as that of the origirﬂ%l2 /(27 = 2). Therefore,HEIG’S(Z, s) is still a low-density
EG-LDPC code. matrix. The null space OH%&75(2, s) is a shortened EG-

Consider the EG-LDPC code constructed based on thPPC code with minimum distance at le@st+- 1.

Z-B)Euclidgan ngometry EC?, 2°). Its parity-check matrix  gyample 8: Consider the type-| 2-3255, 175) EG-LDPC
Hyg(2, s)is a(2® — 1) x (2°° — 1) matrix whose rows are ¢ode constructed based on EG24). The code has rate6863.

the incidence vectors of the lines in E& 2°) that dolr)wot Pass A line in EG(2,24) has 16 points. Puncturing this EG-LDPC
through the origin. The weight of each €0|UmanEG(27 s)  code based on aline in E@, 2*) not passing through the origin

is v = 2° and the weight of each row CHSEC);(Z, s)isp =2°. resultsin 239, 160) LDPC code with rat®.667. Note that the
Let £ be a line in EG?2, 2°) that does not pass through thepuncturing removes 15 information bits and one parity-check
origin. Delete the columns iHSC);(Z s) that correspond to the bit from the(255, 175) EG-LDPC code. Fig. 18 shows that the
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error performance of this punctured code is slightly better théthis code was discussed in Section V). The parity-check ma-
that of the original code. trix HSEQC);(:S, 3) of this code is &11 x 4599 matrix. In circu-

] , ; . g . i
Puncturing can also be achieved with combination of réa_mt form, this matrix consists of niriel1 x 511 circulant sub

moving columns and rows of the low-density parity-checF]amce.s' Suppose we delete one circulant submatrix (any one)
- (D) . . trom this matrix. The null space of the resultant shortened ma-
matrix Hy2 (m, s). For example, le} be a set of lines in

EG(m, 2°) not passing through the origin that intersect at trix gives a(4088, 3716) LDPC code with minimum_distance at
commc’Jn poinkt, where f%astg and rate0.909. The error performanf:e. of this shortened
' code is shown in Fig. 19. At the BER 06>, its error perfor-
1<1<(2™-1)/(2°-1). mance is 1.1 dB away from the Shannon limit. If we remove
Let P be the set of lines in EGn, 2°) that are parallel to the any three circulant submatrices fraHii(3, 3), we obtain a
lines inQ. Suppose we punctui# as follows: 1) remove all the (3066, 2694) LDPC code with rat®.878. Its error performance
rows in Hgé(m, s) that are the incidence vectors of the linegs also shown in Fig. 19. If we delete any six circulant subma-
in @ andP; and 2) remove the columns that correspond to theces fromHSEQC);(& 3), we obtain a1533, 1161) LDPC code
points on the lines i§. The total number of distinct points onwith rate0.757. Its error performance is 1.9 dB away from the
the lines in@Q is { - (2° — 1) + 1. The total number of lines in Shannon limit at the BER of0—>. For comparison, the error
QandPis! - (2(m=Ys —1). Therefore, the puncturing resultsperformance of the origing#599, 4227) base code is also in-
ina matrifoElc);ys(m, s) with (2(m=bs —1)(Z°=L — [y rows cluded in Fig. 19.
and2™® — [(2° — 1) — 2 columns.

Example 9: Consider puncturing the55, 175) EG-LDPC VIIl. A M ARRIAGE OF LDPC CobDES AND TURBO CODES
code. Let£; and £, be two lines in EG2,2°) not passing
through the origin that intersect at the point. There are
28 lines not passing through the origin parallel to eitider
or Ls. Puncturing the parity-check matrinElc);(z 4) of the
(255, 175) EG-LDPC code based ofy, £,, and their parallel

Turbo codes with properly designed interleaver achieve an
error performance very close to the Shannon limit [23]-[26].
These codes perform extremely well for BERs abbde* (wa-
terfall performance), however, they have a significant weakened
, ) . D) performance at BERs belol0—> due to the fact that the compo-
lines results in @25 x 224 matrix HEG,S@’ 4). The LDPC nent codes have relatively poor minimum distances, which man-
code generated b}, (2, 4) is a (224, 146) code with ifests itself at very low BERs. The fact that these codes do not
minimum distance at leadb. Its error performance is shownhave large minimum distances causes the BER curve to flatten
in Fig. 18. out at BERs belowl0~>. This phenomenon is known as error

Clearly, shortening of a type-I finite-geometry LDPC Cod‘g_loor. Because of the error floor, turbo codes are not suitable for

can be achieved by deleting columns from its parity-check mapplications requiring extremely low BERSs, such as some scien-
trix H that correspond to the points in a setgfarallel (m — tific or command and control applications. Furthermore, in turbo

1)-flats. Zero rows resulting from the column deletion are rélecoding, only information bits are decoded and they cannot be

moved. This results in a shortened LDPC code of length yped for error detection. The poor minimum distance and lack
gms _ go(m—1)s gr gms _ g2(m-1)s _ 1 depending whether of error-detection capability make these codes perform badly in

the (m — 1)-flat that contains the origin is included in the deleterms of block error probability. Poor block error performance
tion. also makes these codes not suitable for many communication

To shorten a type-Hn-dimensional EG-LDPC code, we firstapplications. On the contrary, finite-geometry LDPC codes do
put its parity-check matri {3}, (m, ) in circulant form not have all the above disadvantages of turbo codes, except that

@) they may not perform as well as the turbo codes for BERs above

HEG(m, 8) = [Hl, HQ, ey H}(] (38) 10—4_
where The advantage of extremely good error performance of
K = @m0 _1y/(20 1) turbo codes for BERs abové0~* and the advantages of
- finite-geometry LDPC codes such as no error floor, possessing
and H; is a (2™ — 1) x (2™ — 1) circulant matrix whose error detection capability after decoding, and good block error

columns are cyclic shifts of the incidence vector of a line. F&erformance, can be combined to form a coding system that
any integed with 0 < [ < K, we select circulant submatrices Performs well for all ranges of SNRs. One such system is

from H>.(m, s) and delete them. This deletion results in anefie concatenation of a turbo inner code and a finite-geometry
) L ems s LDPC outer code. To illustrate this, we form a turbo code
matrix H ¢, g(m, s) with 2™ — 1 rows and K —1)(2™° — 1)

columns. The column and row weights of this matrix 2t@nd that uses the6d, 57) dlsta_nce4 Hamming code as the two
Pmponent codes. The bit and block error performances of

(K —1)2°, respectively. Its null space gives a shortened type-[I. - .
EG-LDPC code which is still quasi-cyclic. This shortened co L'S turbo code are shown in Fig. 20 from which we see the

has minimum distance at lea%t+ 1. A type-Il PG-LDPC code etror floor gnd poor bIocI§ error perfprmance. Supposg this
. turbo code is used as the inner code in concatenation with the
can be shortened in the same manner.

extended(65520, 61425) EG-LDPC code given in Example
Example 10: Form = s = 3, the type-ll EG-LDPC code 3 as the outer code. The overall rate of this concatenated
constructed based on HG, 2%) is a (4599, 4227) code with LDPC-turbo system i€.75. It achieves both good waterfall
minimum distanc® whose error performance is shown in Fig. ®it and block error performances as shown in Fig. 20. At
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1
— -~ BPSK uncoded
| ©— (4088, 3716) code with Shannon limit 3.34dB | |
i} =% (3066, 2694) code with Shannon limit 2.89dB |3
| =&— (1533, 1161) code with Shannon limit 1.68dB |1
—0— (4599, 4227) code with Shannon limit 3.52dB |-

Error Rate

1 A : 1 i { I
5 6
Eb/NO (dB)

Fig. 19. Bit-error probabilities of thet088, 3716), (3066, 2694), and(1533, 1161) shortened EG-LDPC codes and the type-Il 3-D EG-LDPC code with the
SPA decoding.

] -& Turbo only bit |
—8- Turbo only block

—
ol
(5]

Error Rate

[y
O.
IS

25
E,/N, (aB)

Fig. 20. Bit- and block-error performance of a concatenated LDPC—turbo coding system with a turbo inner code and an extended EG-LDPC outer code.

the BER of10~?, its performance is 0.7 dB away from thea concatenated system in which a Reed—Solomon (RS) code,
Shannon limit. This concatenated system performs better theay the NASA standar{255, 223) RS code over GE28), is
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used as the outer code and decoded algebraically or decoded 20t + 5, b = (5t + 1)(d¢ + 1), v = 5t + 1, p = 5,
based on a reliability-based decoding algorithm. and A = 1. The set of integers for which 4¢ + 1 is a power
Another form of the marriage of turbo coding and a finiteef a prime is{1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 15, 18, 20,...}
geometry code is to use finite-geometry codes as componeittich is infinite. For this class of BIBDs, the incidence ma-
codes in a turbo coding setup. trix Q is a(5t + 1)(4t + 1) x (20t + 5) matrix with density
5/(20t + 5), a sparse matrix. The® and Q" generate two
LDPC codes. Of course, column- and row-splitting techniques
i . ~ can be applied t& and Q” to generate other LDPC codes.
In this paper, a geometric approach to the construction §fe apove construction based on BIBDs may yield good LDPC
LDPC codes has been presented. Fqur classes pf LDPC c s. In fact, one such code of lenghi4 and dimensio99
have been cpnstructed ba_sed.on the Ilnes.and pomt_s pf the \Aﬁgg been constructed, which performs very well, 2 dB away
known Euclidean and projective geometries over finite fieldgom the Shannon limit. This construction approach should be a

IX. CONCLUSION AND SUGGESTIONS FORFURTHER WORK

These codes have been shown to have relatively good minimyfaction for further research.

distances and their Tanner graphs have dirthhey can be de-
coded with various decoding methods, ranging from low to high
decoding complexity, from reasonably good to very good error
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linear time process and can be achieved with simple feedback
shift registers. This linear time encoding is very important in
practice. This advantage is not shared by other LDPC code ]
in general, especially the randomly computer-generated LDPC
codes and irregular LDPC codes. [2]

The finite-geometry LDPC codes can be extended or short-[S]
ened in various ways to form many other good LDPC codes
of various lengths and rates. Extension by column splitting [4]
of the parity-check matrix of a finite-geometry LDPC code is
a powerful method to construct long powerful LDPC codes. 5
Some long extended finite-geometry LDPC codes have been
constructed and they achieve a performance that is only a fewfl
tenths of a decibel away from the Shannon limit. Techniquesm
for column splitting and deletion have been proposed so that
both the extended and shortened finite-geometry LDPC code$s]
can be put in quasi-cyclic form.

In this paper, it has been shown that finite geometry is a
powerful tool for constructing good LDPC codes. Finite geom- [9]
etry is a branch in combinatorial mathematics; there are other
important branches in combinatorial mathematics which ma
also be useful in constructing LDPC codes. One such branc
is balanced incomplete block design (BIBD) [37], [38], [52], [11]
[63]. Let X = {x1, x2, ..., z,} be a set ofn objects. A
BIBD of X is a collection oft p-subsets ofX, denoted by
By, Bs, ..., B, and called the blocks, such that the following
conditions are satisfied: 1) each object appears in exaotify
the b blocks; and 2) every two objects appear simultaneousl)[ll?’]
in exactly A of the blocks. Such a BIBD can be described by
its incidence matrixQ, which is ab x n matrix with 0's and
1's as entries. The columns and rows of the ma@ixcorre-
spond to the objects and the blocks Xf respectively. The
entry at theith row and;jth column of@ is “1” if the object
x; is contained in the block; and is ‘0" otherwise. IfA = 1
and bothy and p are small, therQ and its transpos@” are
sparse matrices and they can be used as the parity-check nap
trices to generate LDPC codes whose Tanner graphs does not
contain cycles of lengtd. Over the years, many such BIBDs (18]
have been constructed. For example, for any positive integer
such thatit 4+ 1 is a power of a prime, there exists a BIBD with
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[14]

[15]

[16]

REFERENCES

R. G. Gallager, “Low density parity check code$RE Trans. Inform.
Theory vol. IT-8, pp. 21-28, Jan. 1962.

——, Low Density Parity Check Codes Cambridge, MA: MIT Press,
1963.

R. M. Tanner, “A recursive approach to low complexity coddgEE
Trans. Inform. Theoryol. IT-27, pp. 533-547, Sept. 1981.

D. J. C. MacKay and R. M. Neal, “Near Shannon limit performance
of low density parity check codesElectron. Lett,. vol. 32, no. 18, pp.
1645-1646, 1996.

] M. Sipser and D. Spielman, “Expander codeffEE Trans. Inform.

Theory vol. 42, pp. 1710-1722, Nov. 1996.

D. Spielman, “Linear-time encodable error-correcting codéEEE
Trans. Inform. Theoryol. 42, pp. 1723-1731, Nov. 1996.

M. C. Davey and D. J. C. MacKay, “Low density parity check codes over
GF (q),” IEEE Commun. Lettvol. 2, pp. 165-167, June 1998.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, and D. A. Spielman,
“Improved low-density parity-check codes using irregular graphs and
belief propagation,” ifProc. 1998 IEEE Int. Symp. Information Thepry
Cambridge, MA, Aug. 16-21, 1998, p. 171.

D. J. C. MacKay, “Gallager codes that are better than turbo codes,”
in Proc. 36th Allerton Conf. Communication, Control, and Computing
Monticello, IL, Sept. 1998.

——, “Good error-correcting codes based on very sparse matrices,”
IEEE Trans. Inform. Theorwol. 45, pp. 399-432, Mar. 1999.

T. Richardson, A. Shokrollahi, and R. Urbanke, “Design of capacity-
approaching irregular codedEEE Trans. Inform. Theoryol. 47, pp.
619-637, Feb. 2001.

T. Richardson and R. Urbanke, “The capacity of low-density parity-
check codes under message-passing decodlEEE Trans. Inform.
Theory vol. 47, pp. 599-618, Feb. 2001.

Y. Kou, S. Lin, and M. Fossorier, “Low density parity check codes based
on finite geometries: A rediscovery,” iroc. 2000 IEEE Int. Symp. In-
formation TheorySorrento, Italy, June 25-30, 2000.

——, “Construction of low density parity check codes: A geometric ap-
proach,” inProc. 2nd Int. Symp. Turbo Codes and Related To@osst,
France, Sept. 4-7, 2000, pp. 137-140.

J. Pearl,Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference San Mateo, CA: Kaufmann, 1988.

S. L. Lauritzen and D. J. Spiegelhalter, “Local computations with prob-
abilities on graphical structures and their application to expert systems,”
J. Roy. Statist. Soc.,Bol. 50, pp. 157-224, 1988.

N. Wiberg, H.-A. Loeliger, and R. Kétter, “Codes and iterative decoding
on general graphsEurop. Trans. Telecommuynol. 6, pp. 513-526,
1955.

R.J. McEliece, D. J. C. MacKay, and J.-F. Cheng, “Turbo decoding as an
instance of Pearl’s belief propagation algorithdEE J. Select. Areas
Commun,.vol. 16, pp. 140-152, Feb. 1998.



2736

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 47, NO. 7, NOVEMBER 2001

[19] F.R.KschischangandB. J. Frey, “Iterative decoding of compound codef35] G. D. Forney, Jr., “Codes on graphs: Normal realizatiofSEE Trans.

(20]

[21]

(22]

(23]

(24]

(25]

(26]

(27]
(28]
[29]
(30]

[31]
(32]

(33]

[34]

by probability propagation in general model$ZEE J. Select. Areas
Commun.vol. 16, pp. 219-230, Feb. 1998.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and
the sum—product algorithmJEEE Trans. Inform. Theorwol. 47, pp.
498-519, Feb. 2001.

M. Fossorier, M. Mihaljevic, and H. Imai, “Reduced complexity iterative [38]

decoding of low density parity check codedEFEE Trans. Commurpvol.
47, pp. 673-680, May 1999.
R. Lucas, M. Fossorier, Y. Kou, and S. Lin, “Iterative decoding of

one-step majority logic decodable codes based on belief propagation[40]

IEEE Trans. Communvol. 48, pp. 931-937, June 2000.

C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit [41]

error-correcting coding and decoding: Turbo codes,Pimc. 1993
IEEE Int. Conf. Communication&eneva, Switzerland, May 1993, pp.
1064-1070.

C. Berrou and A. Glavieux, “Near optimum error correcting coding [43]

and decoding: Turbo-codesJEEE Trans. Commun.vol. 44, pp.
1261-1271, Oct. 1996.

S. Benedetto and G. Montorsi, “Unveiling turbo codes: Some result§44]

on parallel concatenated coding schem#sEE Trans. Inform. Theory
vol. 42, pp. 409-428, Mar. 1996.

J. Hagenauer, E. Offer, and L. Papke, “lterative decoding of binary[45]

block and convolutional codeslEEE Trans. Inform. Theoryol. 42,
pp. 429445, Mar. 1996.

W. W. Peterson and E. J. Weldon, Jerror-Correcting Codes2nd
ed. Cambridge, MA: MIT Press, 1972.

S. Linand D. J. Costello, JiError Control Coding: Fundamentals and
Applications Englewood Cliffs, NJ: Prentice-Hall, 1983.

R. C. Bose and D. J. Ray-Chaudhuri, “On a class of error correcting48]

binary group codes hform. Contr, vol. 3, pp. 68-79, Mar. 1960.

E. R. BerlekampAlgebraic Coding Theory New York: McGraw-Hill,
1968.

J. L. MasseyThreshold Decoding Cambridge, MA: MIT Press, 1963.
N. Deo,Graph Theory With Applications to Engineering and Computer
Science Englewood Cliffs, NJ: Prentice-Hall, 1974.

N. Wiberg, “Codes and decoding on general graphs,” Ph.D. disser{51]

tation, Dept. Elec. Eng., Univ. Linkdping, Linkdping, Sweden, Apr.
1996.

T. Etzion, A. Trachtenberg, and A. Vardy, “Which codes have cycle-free[52]

Tanner graphs,JEEE Trans. Inform. Theoryol. 45, pp. 2173-2181,
Sept. 1999.

[36]

(37]

(39]

[46]

Inform. Theoryvol. 47, pp. 520-548, Feb. 2001.

R. D. Carmichael,Introduction to the Theory of Groups of Finite
Order. New York: Dover, 1956.

A. P. Street and D. J. Stree€ombinatorics of Experimental De-
sign  Oxford, U.K.: Oxford Sci., Clarendon, 1987.

H. B. Mann,Analysis and Design of ExperimentsNew York: Dover,
1949.

E. J. Weldon, Jr., “Euclidean geometry cyclic codes, Piroc. Symp.
Combinatorial Mathematic<Chapel Hill, NC, Apr. 1967.

T. Kasami, S. Lin, and W. W. Peterson, “Polynomial cod&SEE Trans.
Inform. Theoryvol. IT-14, pp. 807-814, Nov. 1968.

S. Lin, “On a class of cyclic codes,” iarror Correcting CodesH. B.
Mann, Ed. New York: Wiley, 1968.

[42] ——, “On the number of information symbols in polynomial codes,”

IEEE Trans. Inform. Theoryol. IT-18, pp. 785-794, Nov. 1972.

T. Kasami and S. Lin, “On majority-logic decoding for duals of prim-
itive polynomial codes,IEEE Trans. Inform. Theorwol. IT-17, pp.
322-331, May 1971.

E. J. Weldon, Jr., “New generations of the Reed—Muller codes, Part
II: Non-primitive codes,”IEEE Trans. Inform. Theoryol. IT-14, pp.
199-205, May 1968.

L. D. Rudolph, “A class of majority logic decodable codd&EE Trans.
Inform. Theoryvol. IT-13, pp. 305-307, Apr. 1967.

E. J. Weldon, Jr., “Difference-set cyclic codeBgll Syst. Tech. Jvol.

45, pp. 1045-1055, Sept. 1966.

F. L. Graham and J. MacWilliams, “On the number of parity checks in
difference-set cyclic codesBell Syst. Tech. Jvol. 45, pp. 1056-1070,
Sept. 1966.

I. S. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,1RE Trans. Inform. Theoryol. IT-4, pp. 38—49, Sept. 1954.

V. D. Kolesnik, “Probability decoding of majority code$?tobl. Pered.
Inform,, vol. 7, pp. 3-12, July 1971.

L. R.Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear
codes for minimizing symbol error ratelEEE Trans. Inform. Theory
vol. IT-20, pp. 284-287, Mar. 1974.

R. Lucas, M. Bossert, and M. Breitbach, “On iterative soft-decision de-
coding of linear block codes and product codeéBEE J. Select. Areas
Commun.vol. 16, pp. 276-296, Feb. 1998.

C. J. Colbourn and J. H. DinitZ;he CRC Handbook of Combinatorial
Designs Boca Raton, FL: CRC, 1996.

H. J. RyserCombinatorial Mathematics New York: Wiley, 1963.



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 
	Intentional blank: This page is intentionally blank


