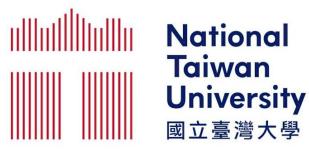
Applied Deep Learning

Towards Conversational Al

May 31st, 2021 http://adl.miulab.tw

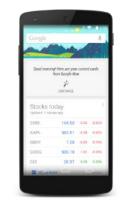


Iron Man (2008)

What can machines achieve now or in the future?

-Language Empowering Intelligent Assistants

Apple Siri (2011)



Google Now (2012) Google Assistant (2016)

Microsoft Cortana (2014)

3

Amazon Alexa/Echo (2014)

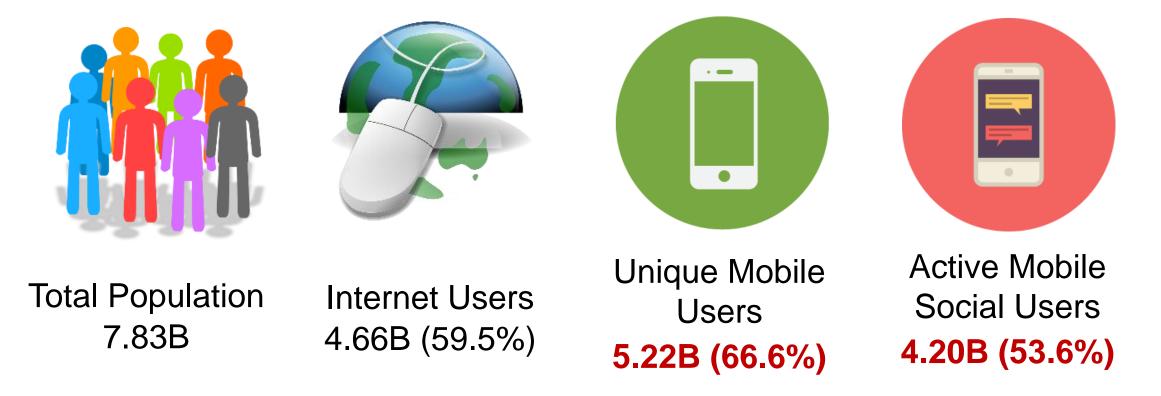
Google Home (2016)

Apple HomePod (2017)

Facebook Portal (2019)

4 Why Natural Language?

• Global Digital Statistics (2021 January)



The more **natural** and **convenient** input of devices evolves towards speech.

Why and When We Need? 5

"I want to chat"

"I have a question"

"I need to get this done" "What should I do?"

Turing Test (talk like a human) Social Chit-Chat Information consumption **Task-Oriented** Task completion

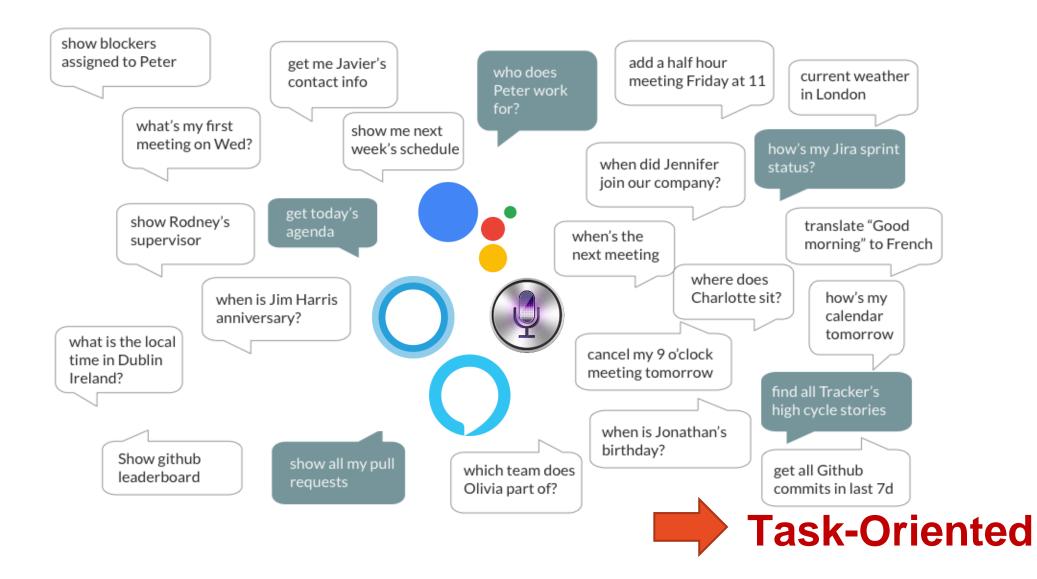
Decision support

Dialogues

- What is today's agenda?
- What does NLP stand for?
- Book me the train ticket from Kaohsiung to Taipei
- Reserve a table at Din Tai Fung for 5 people, 7PM tonight
- Schedule a meeting with Vivian at 10:00 tomorrow

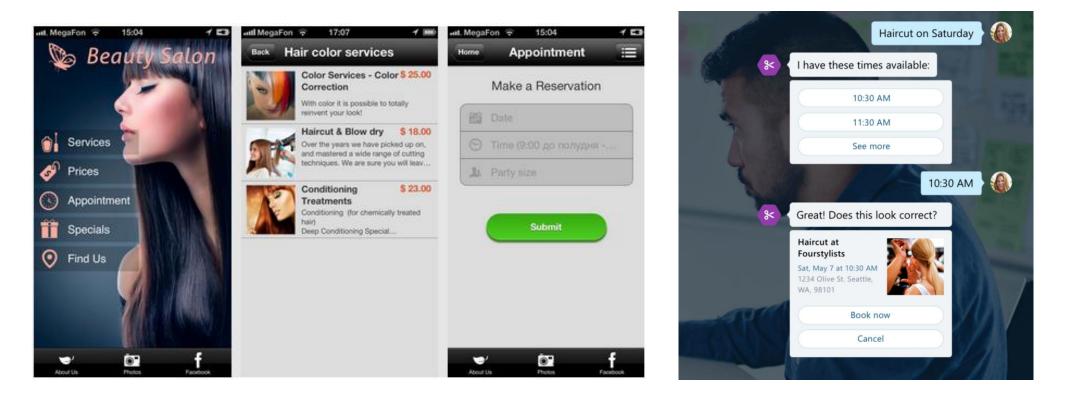
• Is this course good to take?

Intelligent Assistants



$7 - App \rightarrow Bot$

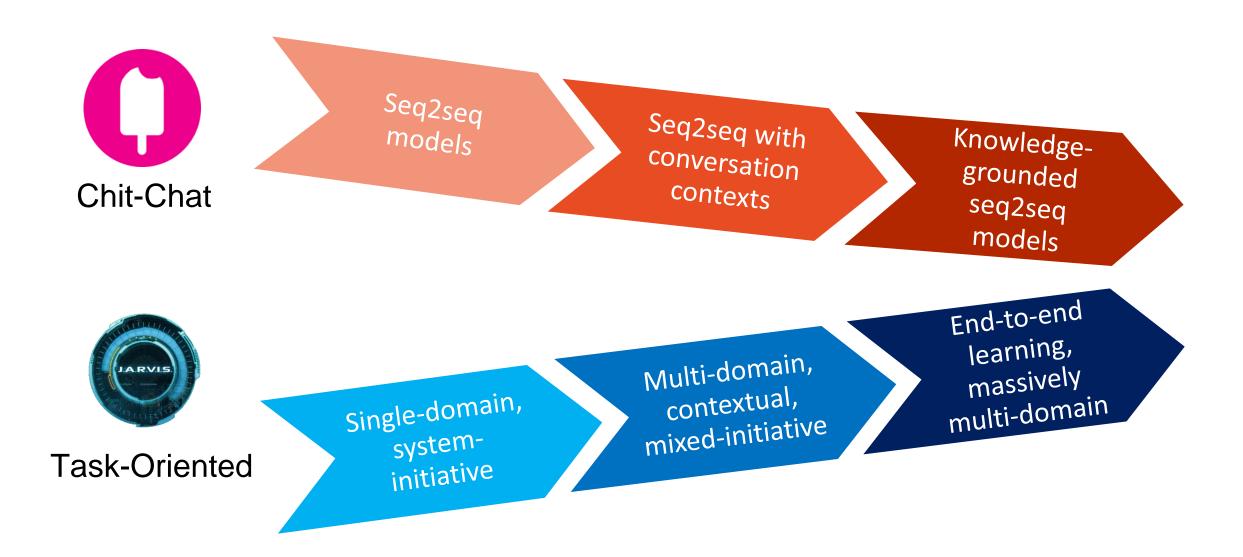
• A bot is responsible for a "single" domain, similar to an app



Users can initiate dialogues instead of following the GUI design

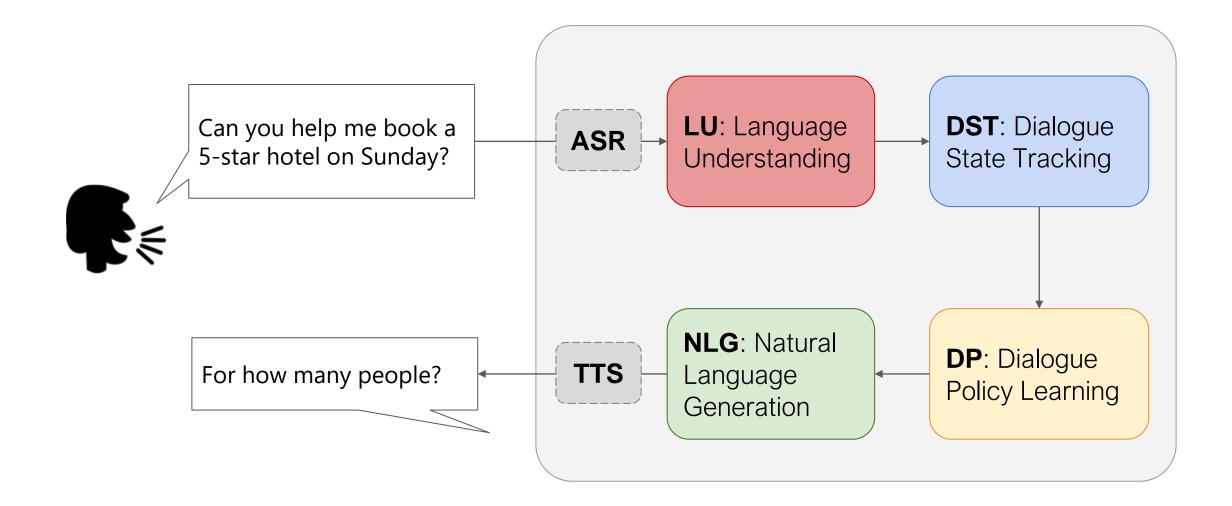
Two Branches of Conversational Al

8



Task-Oriented Dialogue Systems

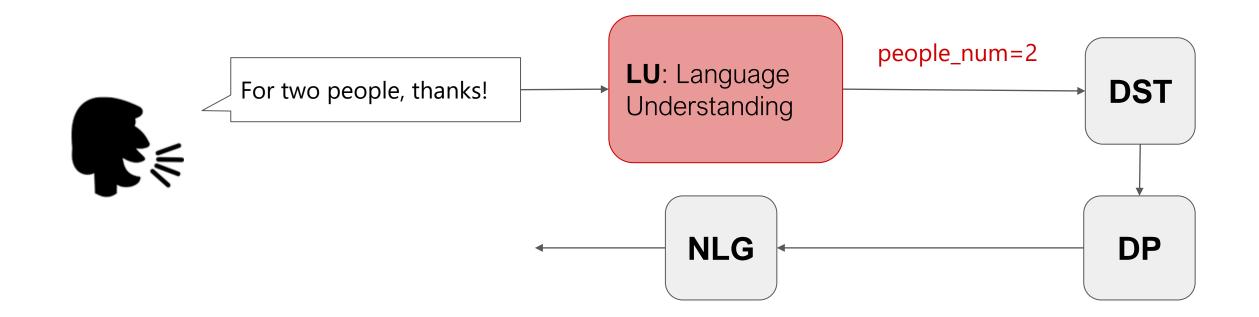
10 Task-Oriented Dialogue Systems (Young, 2000)



11 Language Understanding

Modular Task-Oriented Dialogue Systems

12—Language Understanding (LU)

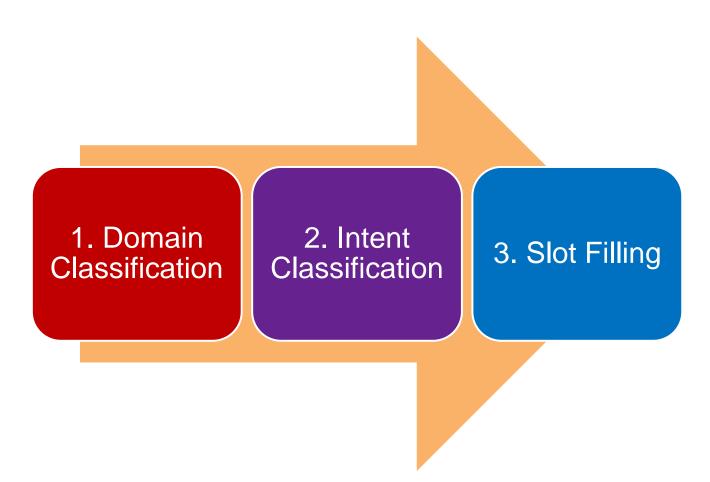


NLU is a turn-level task that maps utterances to semantics frames.

- Input: raw user utterance
- Output: semantic frame (e.g. speech-act, intent, slots)

13—Language Understanding (LU)

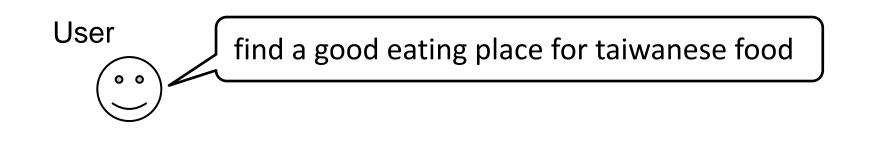
• Pipelined

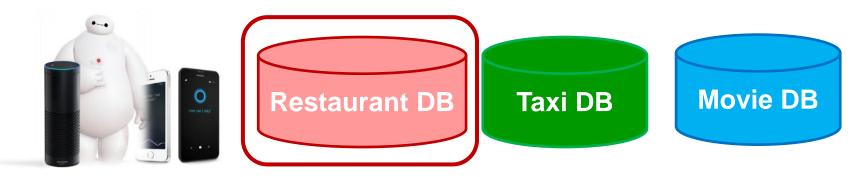


1. Domain Identification

14

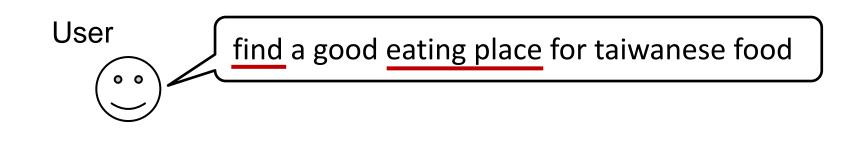
Requires Predefined Domain Ontology

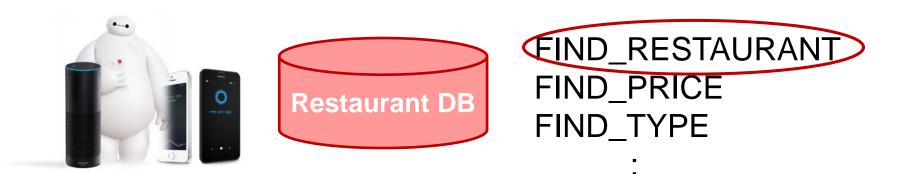




Intelligent Agent Organized Domain Knowledge (Database)

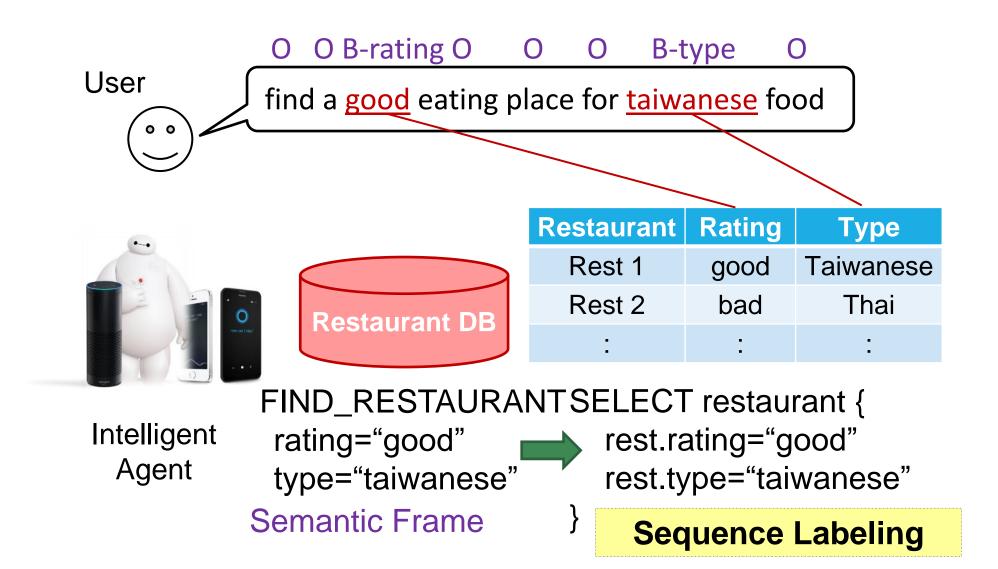
Classification!





Intelligent Agent

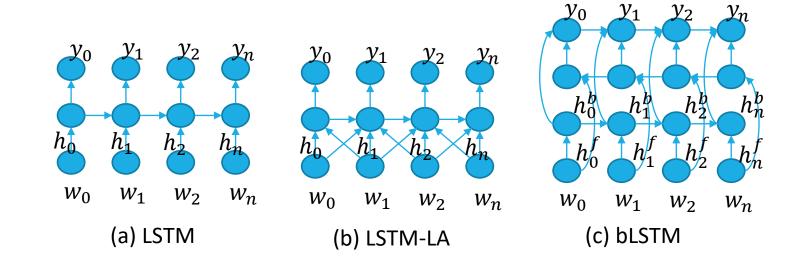
Classification!



17 Slot Tagging (Yao et al, 2013; Mesnil et al, 2015)

• Variations:

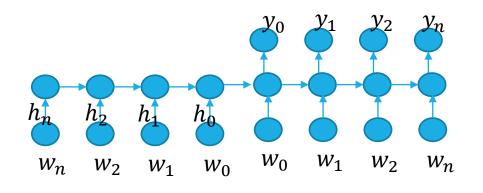
- a. RNNs with LSTM cells
- b. Input, sliding window of n-grams
- c. Bi-directional LSTMs

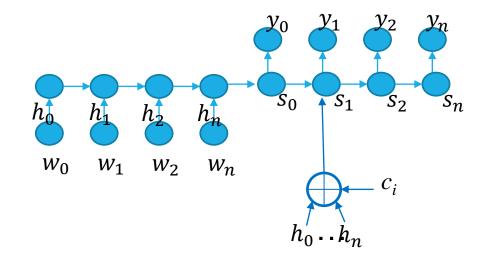


18 — Slot Tagging (Kurata et al., 2016; Simonnet et al., 2015)

- Encoder-decoder networks
 - Leverages sentence level information

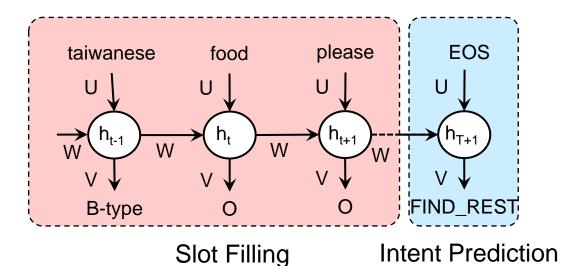
- Attention-based encoder-decoder
 - Use of attention (as in MT) in the encoder-decoder network
 - Attention is estimated using a feedforward network with input: h_t and s_t at time t



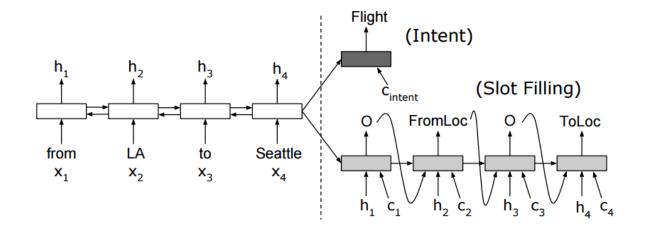


— Joint Semantic Frame Parsing

Sequence-based (Hakkani-Tur+, 2016) Sequence-based (Liu and Lane, 2016)

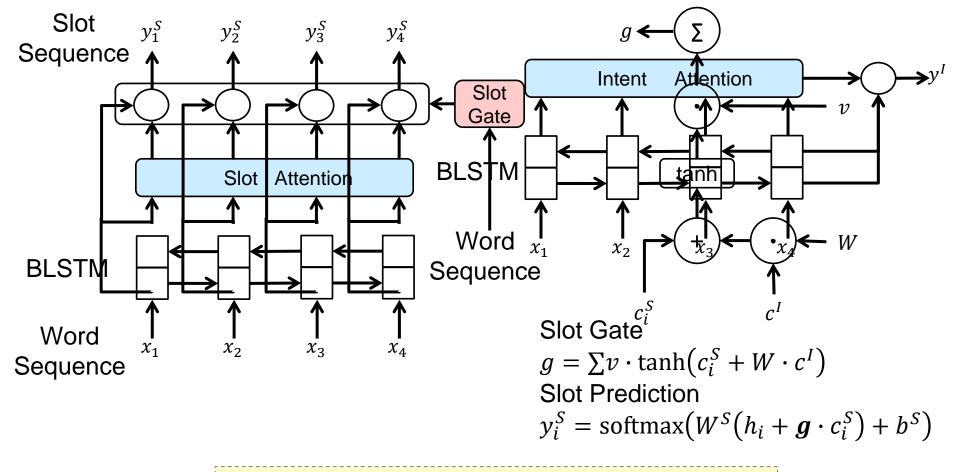


19



	Attention Mechanism	Intent-Slot Relationship
Sequence-based (Hakkani-Tur+, '16)	Х	Δ (Implicit)
Parallel-based (Liu & Lane, '16)	\checkmark	Δ (Implicit)
Slot-Gated Joint Model	\checkmark	$\sqrt{(Explicit)}$

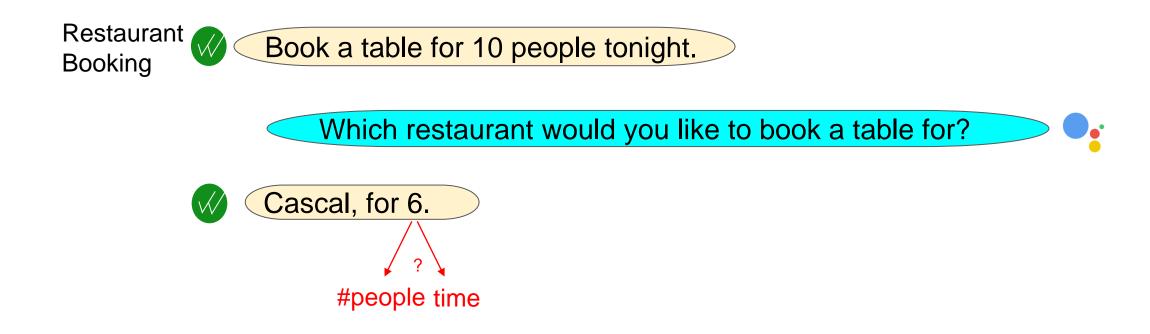
20 Slot-Gated Joint SLU (G00+, 2018)



 $m{g}$ will be larger if slot and intent are better related

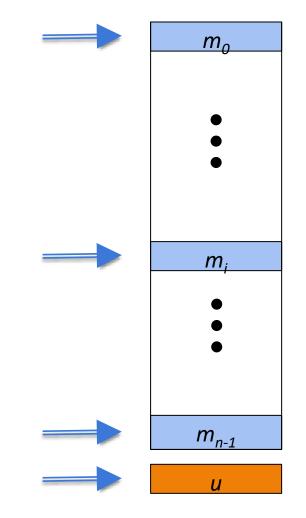
21—Contextual Language Understanding

User utterances are highly ambiguous in isolation



22 End-to-End Memory Networks (Sukhbaatar et al, 2015)

- U: "i d like to purchase tickets to see deepwater horizon"
- S: "for which theatre"
- U: "angelika"
- S: "you want them for angelika theatre?"
- U: "yes angelika"
- S: "how many tickets would you like ?"
- U: "3 tickets for saturday"
- S: "What time would you like ?"
- U: "Any time on saturday is fine"
- S: "okay , there is 4:10 pm , 5:40 pm and 9:20 pm"
- U: "Let's do 5:40"

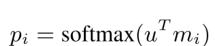


23 E2E MemNN for Contextual LU (Chen+, 2016)

1. Sentence Encoding

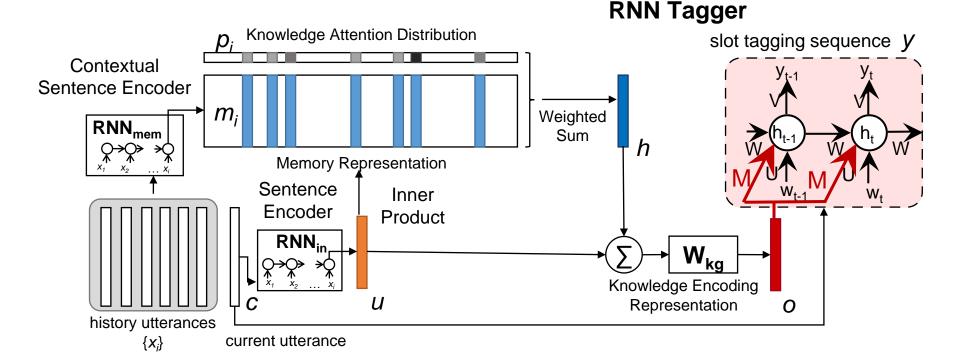
2. Knowledge Attention

 $m_i = \text{RNN}_{\text{mem}}(x_i)$ $u = \text{RNN}_{\text{in}}(c)$



3. Knowledge Encoding

$$h = \sum_{i} p_{i} m_{i} \ o = W_{\mathrm{kg}}(h+u)$$



Idea: additionally incorporating contextual knowledge during slot tagging

0.69

0.13

0.16

E2E MemNN for Contextual LU (Chen+, 2016)

U: "i d like to purchase tickets to see deepwater horizon"

- S: "for which theatre"
- U: "angelika"

24

- S: "you want them for angelika theatre?"
- U: "yes angelika"
- S: "how many tickets would you like ?"
- U: "3 tickets for saturday"

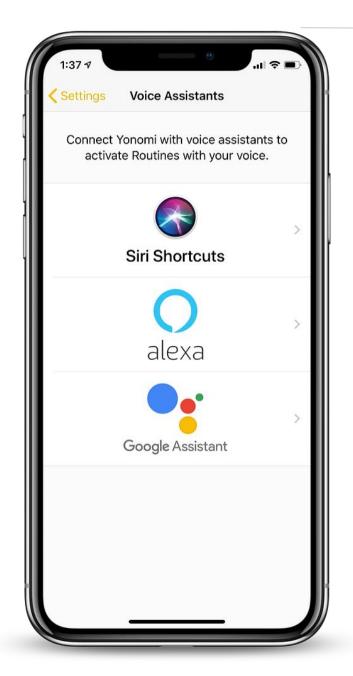
U: "Let's do 5:40"

- S: "What time would you like ?"
- U: "Any time on saturday is fine"

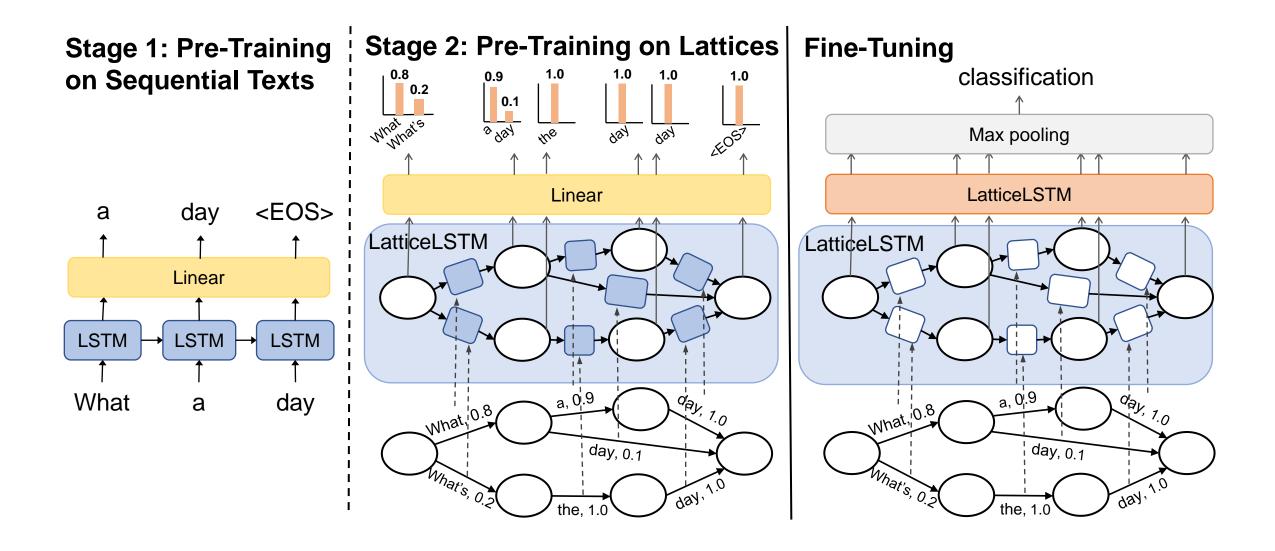
S: "okay, there is 4:10 pm, 5:40 pm and 9:20 pm"

25 Recent Advances in NLP

- Contextual Embeddings (ELMo & BERT)
 - Boost many understanding performance with pretrained language models



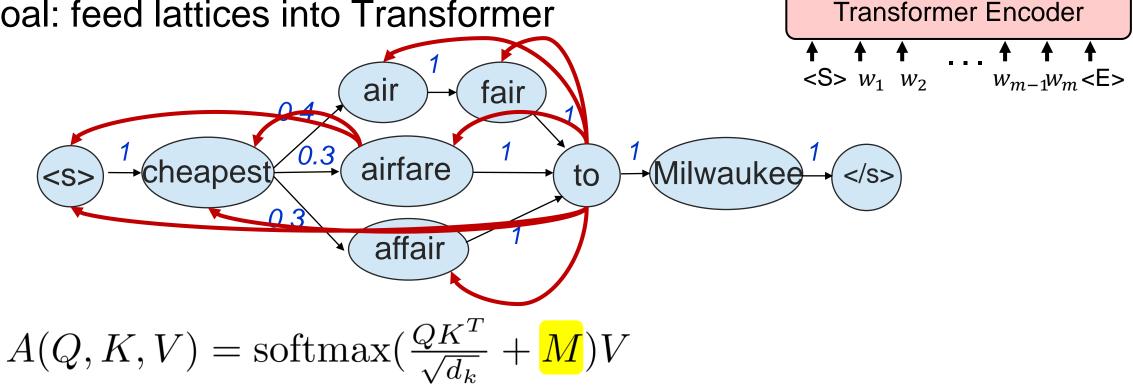
28 Robustness – Adapting to ASR (Huang & Chen, 2019)



Linear

Robustness – Adapting to ASR (Huang & Chen, 2019) 29

- Idea: lattices may include correct words
- Goal: feed lattices into Transformer



SLU performance is improved by leveraging the lattices without increasing training/inference time

Chao-Wei Huang and Yun-Nung Chen, "Adapting Pretrained Transformer to Lattices for Spoken Language Understanding," in Proceedings of 2019 IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), 2019.

30 Robustness – Adapting to ASR (Huang & Chen, 2019)

- Confusion-Aware Fine-Tuning
 - Supervised Acoustic Confusion $C = \{w_3^{x_{trs}}, w_2^{x_{asr}}\}$

 x_{trs} : Show me thefaresfrom Dallas to Boston x_{asr} : Show me*affairsfrom Dallas to Boston

 \rightarrow Top hypothesis \mathbf{x}_1 Acoustic Confusion \cdots Alternative hypothesis \mathbf{x}_{2} all List flights tomorrow * lights Monaco Least * to slides Lift Morocco

The contextual embeddings of the recognized texts would be similar to the ground truth one.

Chao-Wei Huang and Yun-Nung Chen, "Learning ASR-Robust Contextualized Embeddings for Spoken Language Understanding," in ICASSP, 2019.

31 Scalability – Multilingual LU (Upadhyay+, 2018)

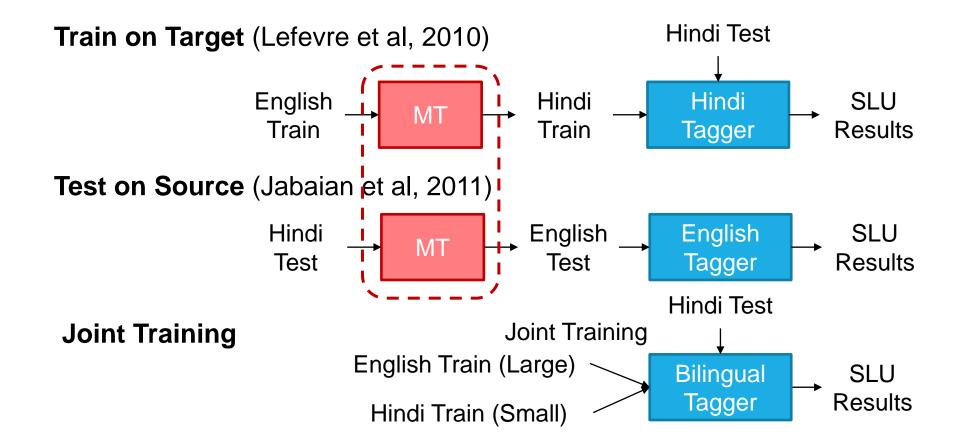
- Source language: English (full annotations)
- Target language: Hindi (limited annotations)

RT: round trip, FC: from city, TC: to city, DDN: departure day name

```
find a one way flight from boston to atlanta on wednesday
Utt:
Slots:
         O B-RT I-RT
                               B-FC O
      0
                      0 0
                                        B-TC O
                                                 B-DDN
                      (a) English Utterance
     बुधवार को बोसटन से अटलांटा तक जाने वाली एकतरफा उड़ाने खोजें
Utt:
Slots: B-DDN O B-FC O B-TC
                               0 0
                                        0
                                             B-RT
                                                        0
                                                    0
                      (b) Hindi Utterance
```

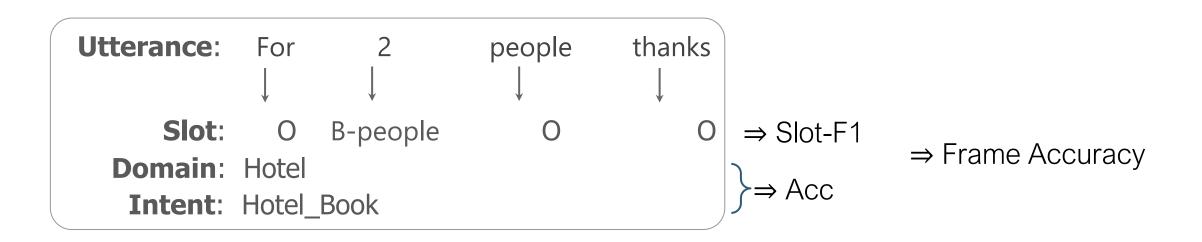
```
Slido: #ADL2021
```

32 Scalability – Multilingual LU (Upadhyay+, 2018)



MT system is not required and both languages can be processed by a single model

33 – LU Evaluation



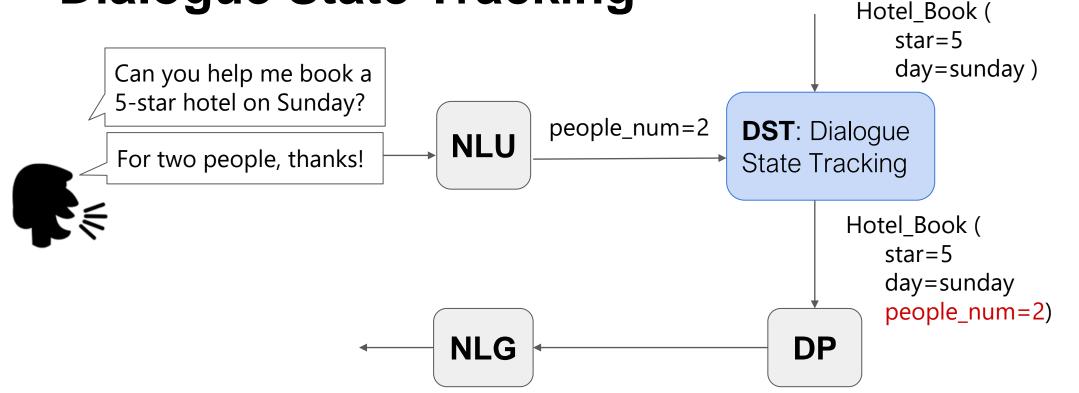
Metrics

- Sub-sentence-level: domain/intent accuracy, slot F1
- Sentence-level: whole frame accuracy

34 — Dialogue State Tracking

Modular Task-Oriented Dialogue Systems

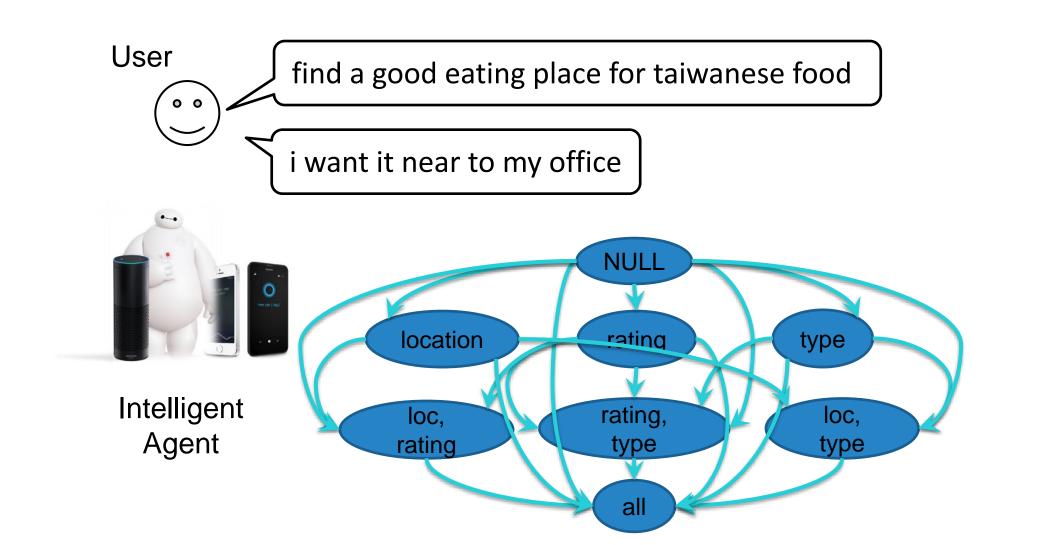
35 Dialogue State Tracking



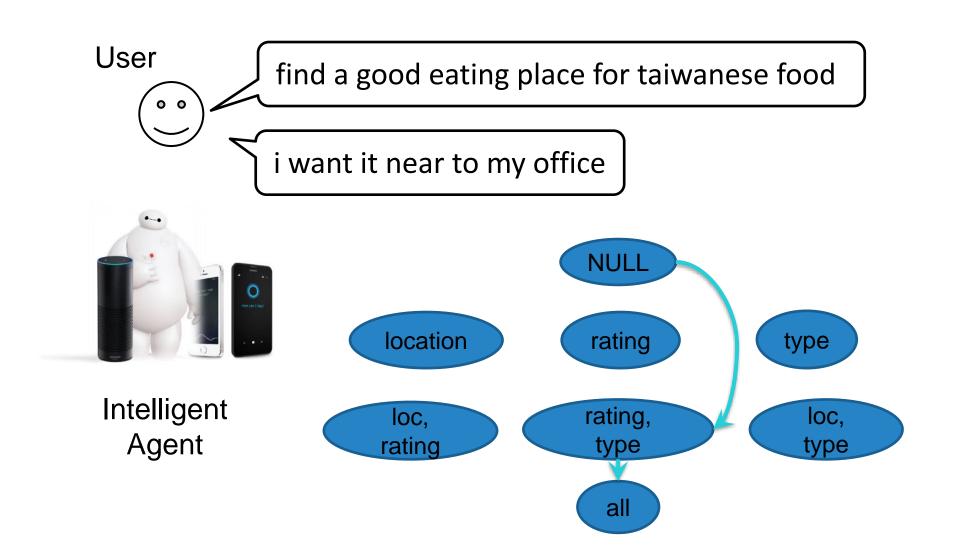
- DST is a dialogue-level task that maps partial dialogues into dialogue states.
 - Input: a dialogue / a turn with its previous state
 - Output: dialogue state (e.g. slot-value pairs)

36 Dialogue State Tracking

Requires Hand-Crafted States

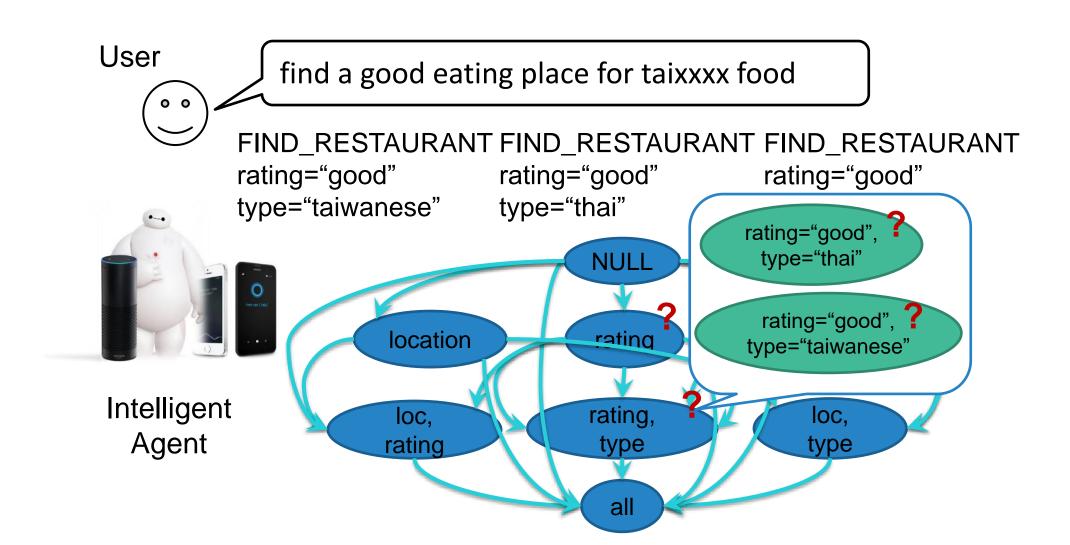


Requires Hand-Crafted States



39 Dialogue State Tracking

Handling Errors and Confidence



40 DST Problem Formulation

• The DST dataset consists of

- *Goal*: for each informable slot
 - e.g. price=cheap
- *Requested*: slots by the user
 - e.g. moviename
- *Method*: search method for entities
 - e.g. by constraints, by name
- The dialogue state is
 - the distribution over possible slot-value pairs for goals
 - the distribution over possible requested slots
 - the distribution over possible methods

41—Dialogue State Tracking (DST)

 Maintain a probabilistic distribution instead of a 1-best prediction for better robustness to SLU errors or ambiguous input

Slot	Value
# people	5 (0.5)
time	5 (0.5)

Slot	Value
# people	3 (0.8)
time	5 (0.8)

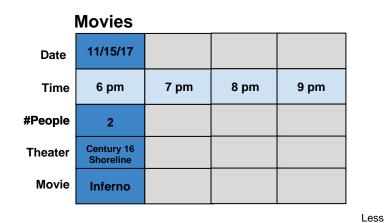
42 Multi-Domain Dialogue State Tracking

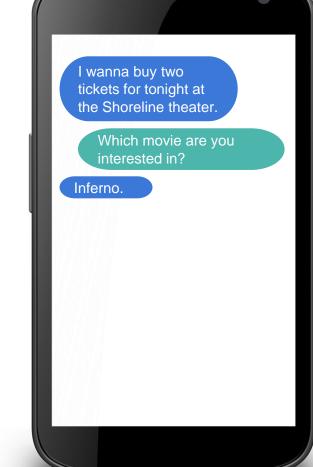
 A full representation of the system's belief of the user's goal at any point during the dialogue

Likelv

Likelv

Used for making API calls



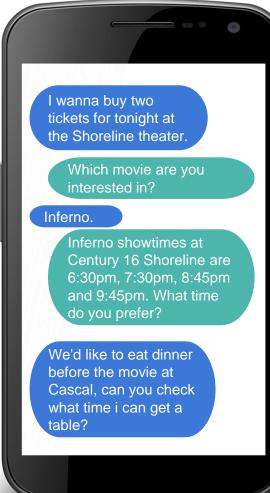


43 Multi-Domain Dialogue State Tracking

- A full representation of the system's belief of the user's goal at any point during the dialogue
- Used for making API calls



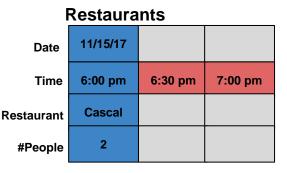




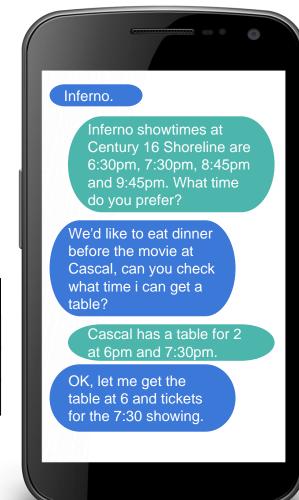
44 Multi-Domain Dialogue State Tracking

- A full representation of the system's belief of the user's goal at any point during the dialogue
- Used for making API calls

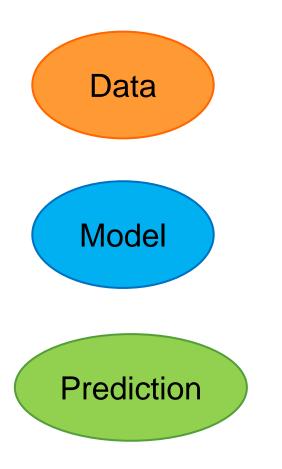




Less More Likely



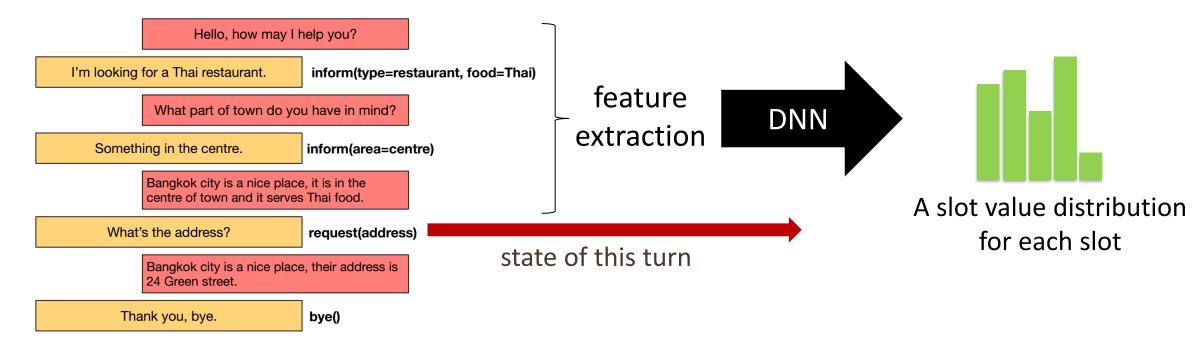
45 Discriminative DST – Single Turn



• Observations labeled w/ dialogue state

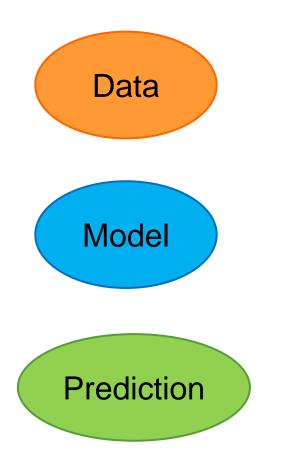
- Neural networks
- Ranking models

Distribution over dialogue states
 – Dialogue State Tracking



multi-turn conversation

Oiscriminative DST – Multiple Turns



• <u>Sequence of observations</u> labeled w/ dialogue states

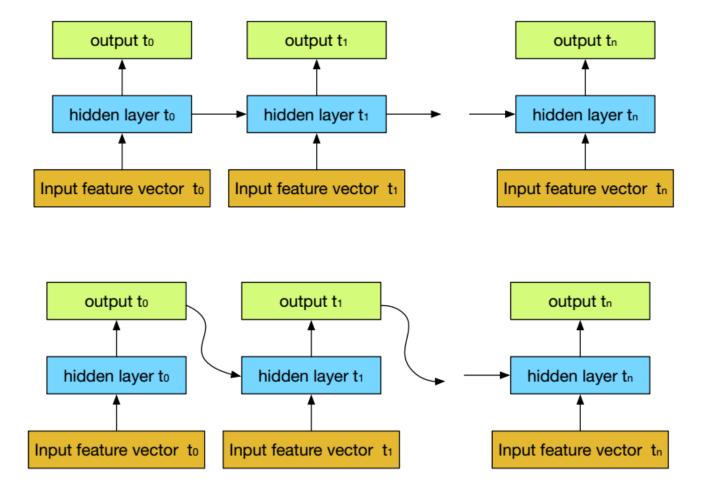
- Sequential models
 - Recurrent neural networks (RNN)

Distribution over dialogue states
 – Dialogue State Tracking

48 Recurrent Neural Network (RNN)

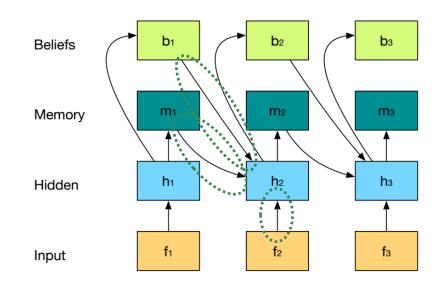
Elman-type

Jordan-type

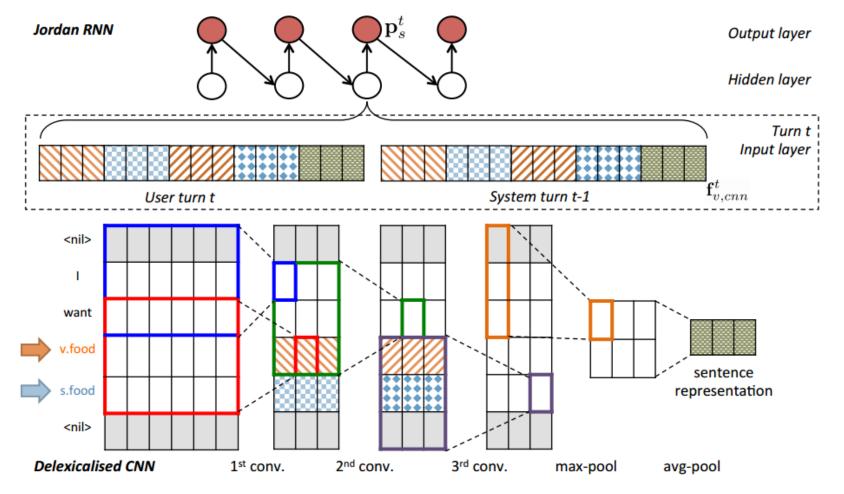


Idea: internal memory for representing <u>dialogue context</u>

- o Input
 - most recent dialogue turn
 - last machine dialogue act
 - dialogue state
 - memory layer
- Output
 - update its internal memory
 - distribution over slot values



50 RNN-CNN DST (Mrkšić+, 2015)

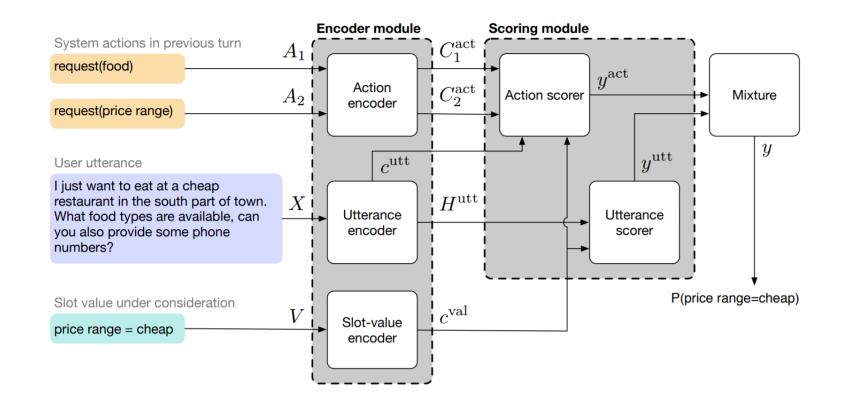


(Figure from Wen et al, 2016)

51 Global-Locally Self-Attentive DST (Zhong+, 2018)

More advanced encoder

- Global modules share parameters for all slots
- Local modules learn slot-specific feature representations



 Generating the state as a sequence (<u>Lei+, 2018</u>) or dialogue state updates (<u>Lin+, 2020</u>)

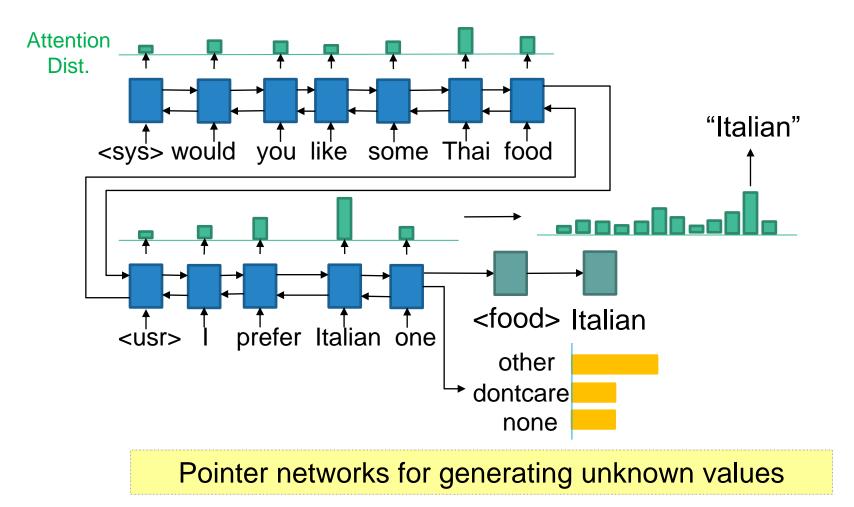
(Dialogue history) \Rightarrow (slot1=val,slot2=val ...)

 Given a dialogue and a slot, generate the value of the slot (<u>Wu+,</u> <u>2019</u>; <u>Gao+, 2019</u>; <u>Ren+, 2019</u>; <u>Zhou & Small, 2019</u>; <u>Kim+, 2019</u>; <u>Le+, 2020</u>) ⇒ requires multiple forwards

(Dialogue history, slot1) \Rightarrow val

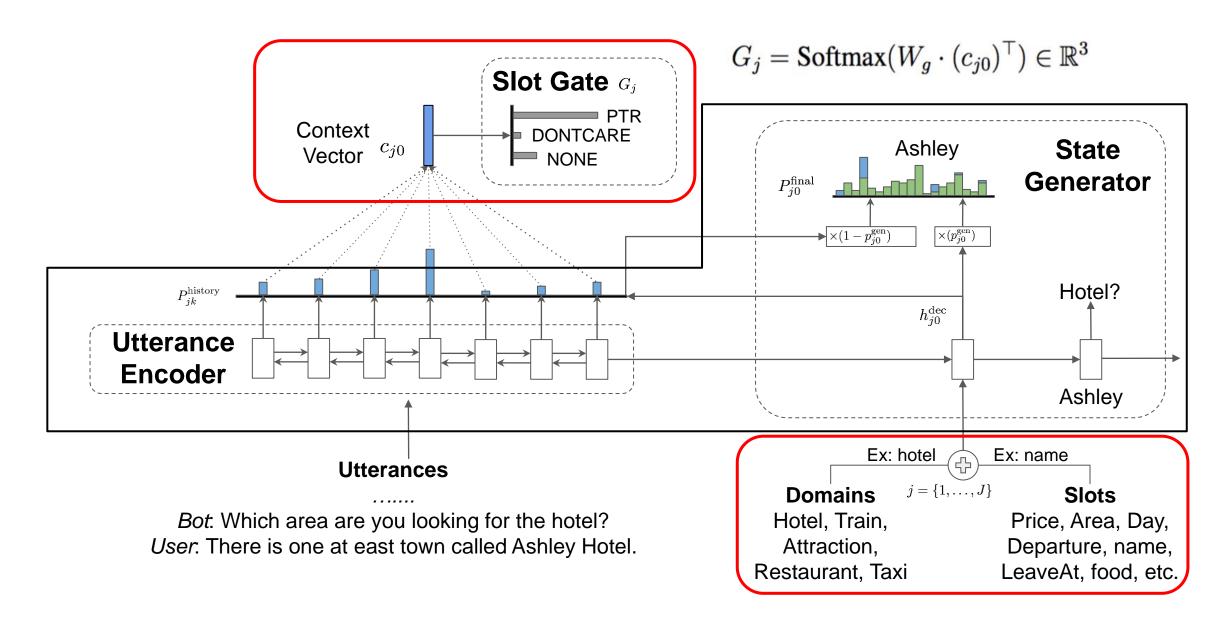
53 Handling Unknown Slot Values (Xu & Hu, 2018)

Issue: fixed value sets in DST

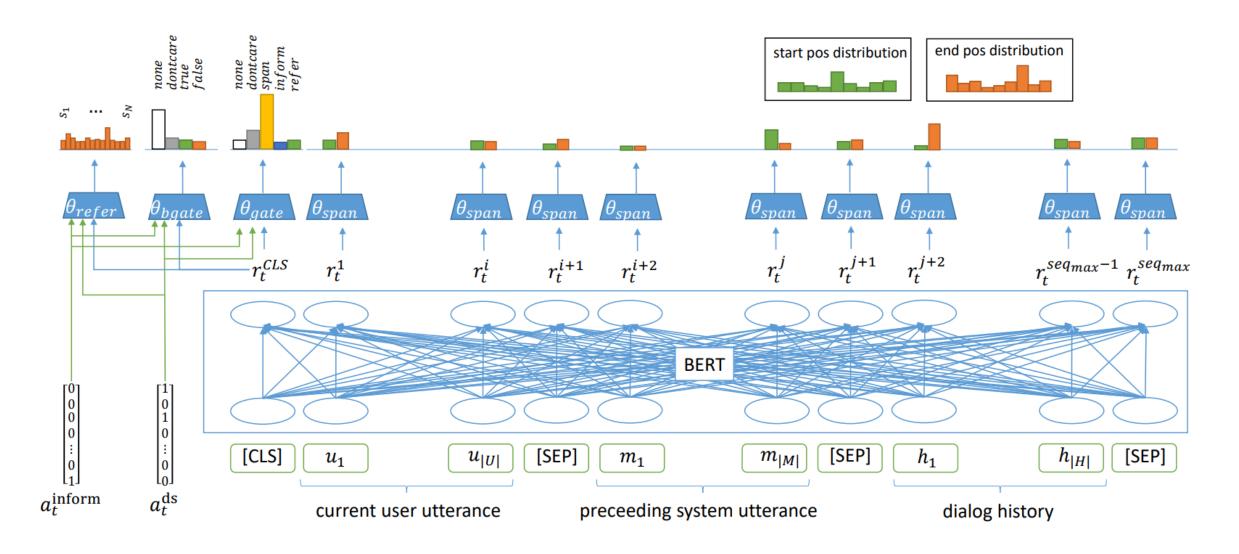


TRADE: Transferable DST (Wu+, 2019)

54



55 TripPy: Handling OOV & Rare Values (Heck+, 2020)



56 DST Evaluation

Input Dialogue: USER: Can you help me book a 5star hotel on Sunday? SYSTEM: For how many people? USER: For two people, thanks!

Output Dialogue State:

```
Hotel_Book (star=5, day=sunday)
```

```
Hotel_Book (star=5, day=sunday, people_num=2)
```

⇒ Slot Acc / Joint Acc

- Dialogue State Tracking Challenges
 - DSTC2-3, human-machine
 - o DSTC4-5, human-human
 - DSTC8, human-machine
- Metric
 - Tracked state accuracy with respect to user goal
 - Recall/Precision/F-measure individual slots

Dialog State Tracking Challenge (DSTC)

(Williams et al. 2013, Henderson et al. 2014, Henderson et al. 2014, Kim et al. 2016, Kim et al. 2016)

Challenge	Туре	Domain	Data Provider	Main Theme
DSTC1	Human-Machine	Bus Route	CMU	Evaluation Metrics
DSTC2	Human-Machine	Restaurant	U. Cambridge	User Goal Changes
DSTC3	Human-Machine	Tourist Information	U. Cambridge	Domain Adaptation
DSTC4	Human-Human	Tourist Information	I2R	Human Conversation
DSTC5	Human-Human	Tourist Information	I2R	Language Adaptation

57

Type: Human-Human

Domain: Tourist Information

{Topic: Accommodation; NAME: InnCrowd Backpackers Hostel; GuideAct: REC; TouristAct: ACK}

Guide: Let's try this one, okay?

- Tourist: Okay.
- **Guide:** It's InnCrowd Backpackers Hostel in Singapore. If you take a dorm bed per person only twenty dollars. If you take a room, it's two single beds at fifty nine dollars.
- Tourist: Um. Wow, that's good.
- **Guide:** Yah, the prices are based on per person per bed or dorm. But this one is room. So it should be fifty nine for the two room. So you're actually paying about ten dollars more per person only.
- **Tourist:** Oh okay. That's- the price is reasonable actually. It's good.

{Topic: Accommodation; Type: Hostel; Pricerange: Cheap; GuideAct: ACK; TouristAct: REQ}

- **Tourist:** Can you give me some uh- tell me some cheap rate hotels, because I'm planning just to leave my bags there and go somewhere take some pictures.
- **Guide:** Okay. I'm going to recommend firstly you want to have a backpack type of hotel, right?
- **Tourist:** Yes. I'm just gonna bring my backpack and my buddy with me. So I'm kinda looking for a hotel that is not that expensive. Just gonna leave our things there and, you know, stay out the whole day.
- **Guide:** Okay. Let me get you hm hm. So you don't mind if it's a bit uh not so roomy like hotel because you just back to sleep.
- **Tourist:** Yes. Yes. As we just gonna put our things there and then go out to take some pictures.
- Guide: Okay, um-
- Tourist: Hm.

• MultiWoZ $\underline{2.0} \Rightarrow \underline{2.1} \Rightarrow \underline{2.2} \Rightarrow \underline{2.3} \Rightarrow \dots$

act type	inform* / request* / select ¹²³ / recommend/ ¹²³ / not found ¹²³ request booking info ¹²³ / offer booking ¹²³⁵ / inform booked ¹²³⁵ / decline booking ¹²³⁵ welcome* /greet* / bye* / reqmore*
slots	address* / postcode* / phone* / name ¹²³⁴ / no of choices ¹²³⁵ / area ¹²³ / pricerange ¹²³ / type ¹²³ / internet ² / parking ² / stars ² / open hours ³ / departure ⁴⁵ destination ⁴⁵ / leave after ⁴⁵ / arrive by ⁴⁵ / no of people ¹²³⁵ / reference no. ¹²³⁵ / trainID ⁵ / ticket price ⁵ / travel time ⁵ / department ⁷ / day ¹²³⁵ / no of days ¹²³

• SGD: natural language described schema for better scalability

service_name: "Payment" Service description: "Digital wallet to make and request payments"		name: "account_type" categorical: True Slots description: "Source of money to make payment" possible_values: ["in-app balance", "debit card", "bank"]
	name: "RequestPayment" description: "Request money from a contact"	name: "amount" categorical: False description: "Amount of money to transfer or request"
	required_slots: ["amount", "contact_name"]	name: "contact_name" categorical: False description: "Name of contact for transaction"

MultiWOZ 2.1 Leaderboard

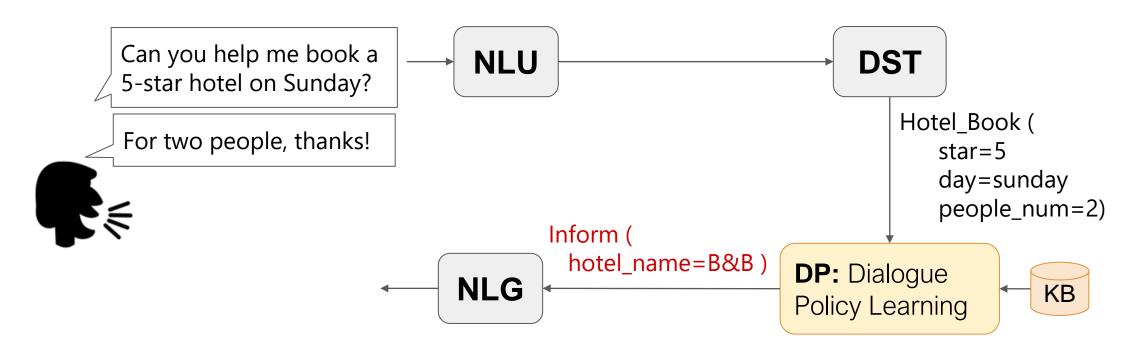
60

Rank	Model	Joint Acc 1	Paper	Code	Result	Year
1	CHAN-DST	58.55	A Contextual Hierarchical Attention Network with Adaptive Objective for Dialogue State Tracking	0	권	2020
2	SimpleTOD	55.76	A Simple Language Model for Task-Oriented Dialogue	0	Ð	2020
3	Transformer-DST	55.35	Jointly Optimizing State Operation Prediction and Value Generation for Dialogue State Tracking	0	순	2020
4	TripPy	55.30	TripPy: A Triple Copy Strategy for Value Independent Neural Dialog State Tracking		군	2020
5	SST	55.23	Schema-Guided Multi-Domain Dialogue State Tracking with Graph Attention Neural Networks		순	2020
6	Graph-DST	53.85	Multi-Domain Dialogue State Tracking based on State Graph		순	2020
7	DS-Picklist	53.30	Find or Classify? Dual Strategy for Slot-Value Predictions on Multi-Domain Dialog State Tracking		순	2019
8	CSFN-DST + BERT	52.88	Efficient Context and Schema Fusion Networks for Multi- Domain Dialogue State Tracking		순	2020
9	SOM-DST	52.57	Efficient Dialogue State Tracking by Selectively Overwriting Memory	0	순	2019
10	DSTQA	51.17	Multi-domain Dialogue State Tracking as Dynamic Knowledge Graph Enhanced Question Answering	0	순	2019
11	NADST	49.04	Non-Autoregressive Dialog State Tracking	0	Ð	2020
12	TRADE	45.60	MultiWOZ 2.1: A Consolidated Multi-Domain Dialogue Dataset with State Corrections and State Tracking Baselines	0	Ð	2019

Dialogue Policy Learning

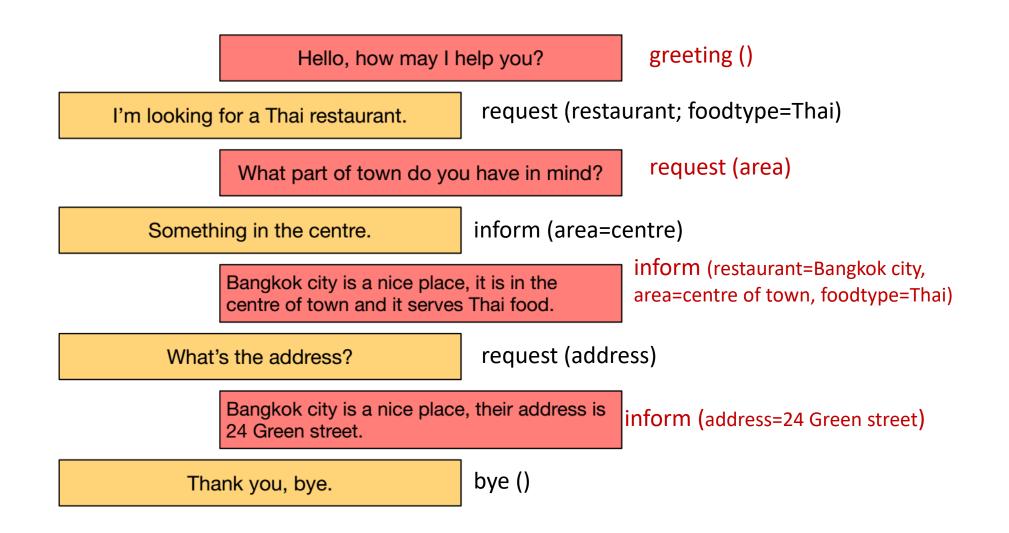
Modular Task-Oriented Dialogue Systems

62 Dialogue Policy Learning



- DP decides the system action for interacting with users based on dialogue states.
 - Input: dialogue state + KB results
 - Output: system action (speech-act + slot-value pairs)

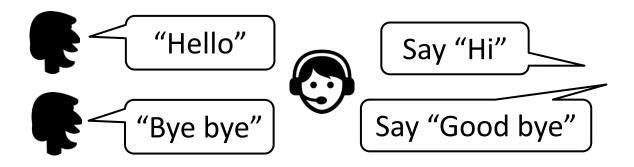
63 Dialogue Policy Learning

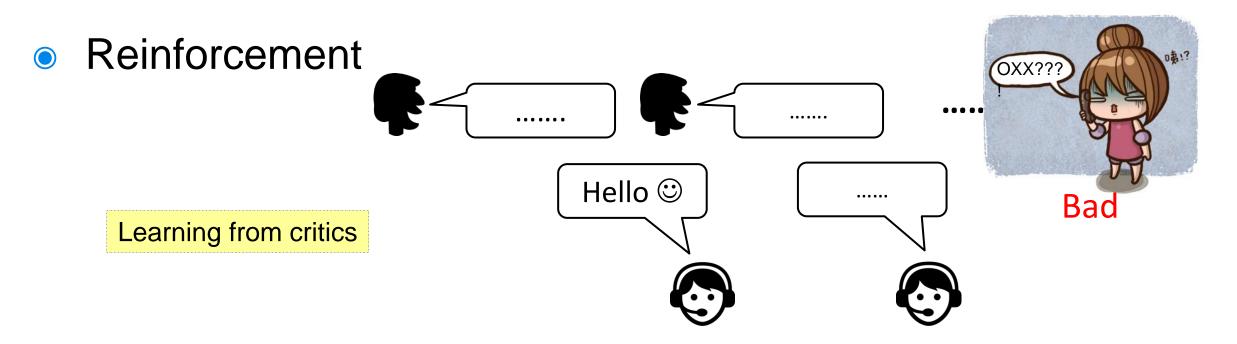


64 Supervised v.s. Reinforcement

Supervised

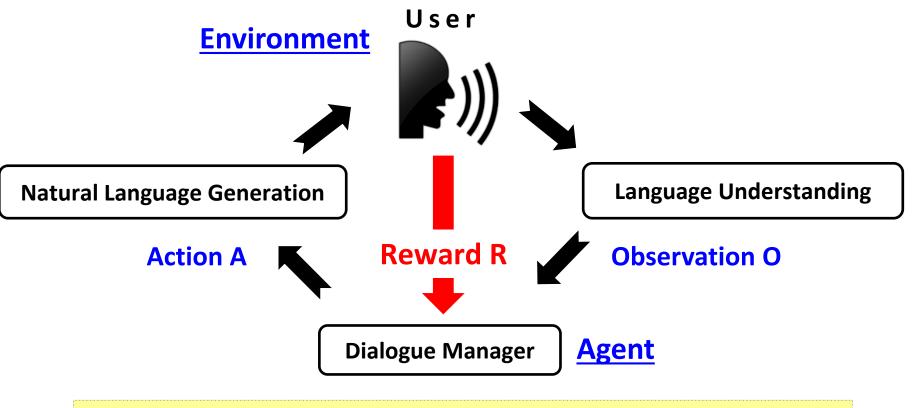
Learning from teacher





65 Dialogue Policy Optimization

• Dialogue management in a RL framework



Select the best action that maximizes the future reward

66 Reward for RL \cong Evaluation for System

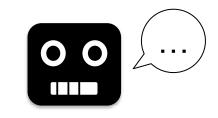
- Dialogue is a special RL task
 - Human involves in interaction and rating (evaluation) of a dialogue
 - Fully human-in-the-loop framework
- Rating: correctness, appropriateness, and adequacy

- Expert rating	high quality, high cost	
- User rating	unreliable quality, medium cost	
- Objective rating	Check desired aspects, low cost	

67 Dialogue Reinforcement Learning Signal

- Typical reward function
 - -1 for per turn penalty
 - Large reward at completion if successful
- Typically requires domain knowledge
 - Simulated user
 - Paid users (Amazon Mechanical Turk)
 - 🗙 Real users

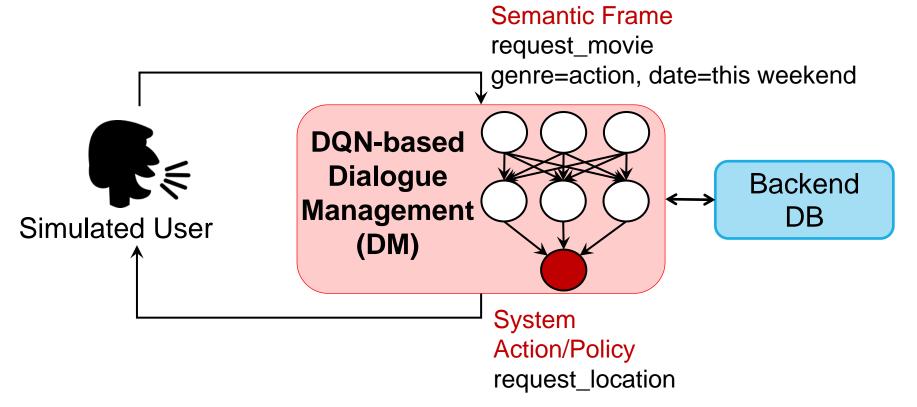
The user simulator is usually required for dialogue system training before deployment



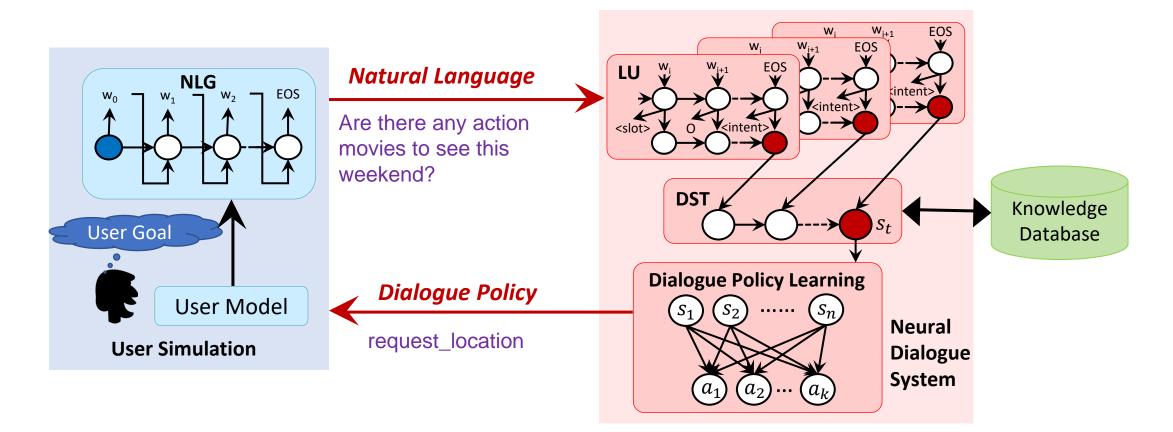
68 — Neural Dialogue Manager (Li et al., 2017)

Deep Q-network for training dialogue policy

- Input: current semantic frame observation, database returned results
- Output: system action



69 E2E Task-Completion Bot (TC-Bot) (Li et al., 2017)



Idea: SL for each component and RL for end-to-end training the neural dialogue system

Reinforcement Learning Agent (Li et al., 2017)

User goal – Two tickets for "Deadpool" tomorrow 9PM at AMC Pacific Place 11 theater, Seattle.

RULE BASED SYSTEM

70

User: Do you have any ticket for movie 'Deadpool' at 9:00 pm? Agent: Which theater do you want? User: AMC pacific place 11 theater, please! Agent: How many tickets do you want? User: Two! Agent: What date? User: Tomorrow! Agent: Which city do you want? User: Seattle! Agent: Do you have any specification for zip code? User: No. I do not care. Agent: Do you have any distance constraint? User: No, I do not care. Agent: How about video format? 2d? Imax 3d? User: Any kind is okay. about what requests Agent: Do you have any constraint to price? User: No! 'Deadpool'. User: Okay,

REINFORCEMENT LEARNING SYSTEM

User: I want two tickets for movie 'Deadpool'. Agent: What is the starttime you prefer? User: 9:00 PM Agent: Which day? User: Tomorrow Agent: Which city? User: Seattle Agent: Which theater do you prefer? User: AMC Pacific Place 11 theater. Agent: Okay, I will issue 2 tickets for you, tomorrow 9:00 pm at AMC pacific place 11 theater. Seattle, movie 'Deadpool'. User: Okay, thanks. Issue: no notion Agent: Thanks!

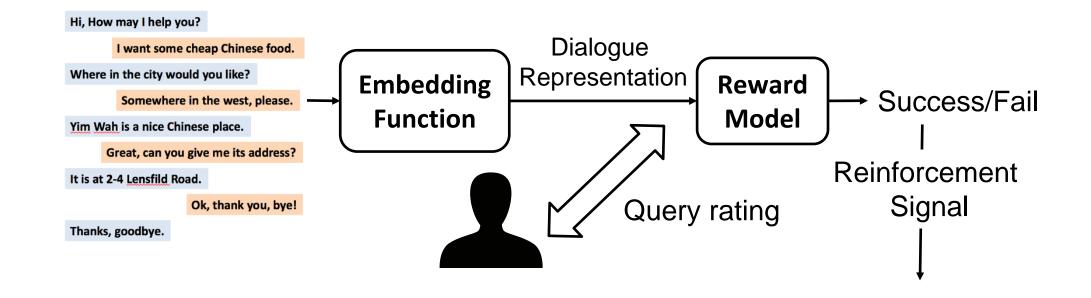
can be skipped

Agent: Okay, I will issue 2 tickets for you, tomorrow 9:00 pm at AMC pacific place 11 theater, Seattle, movie

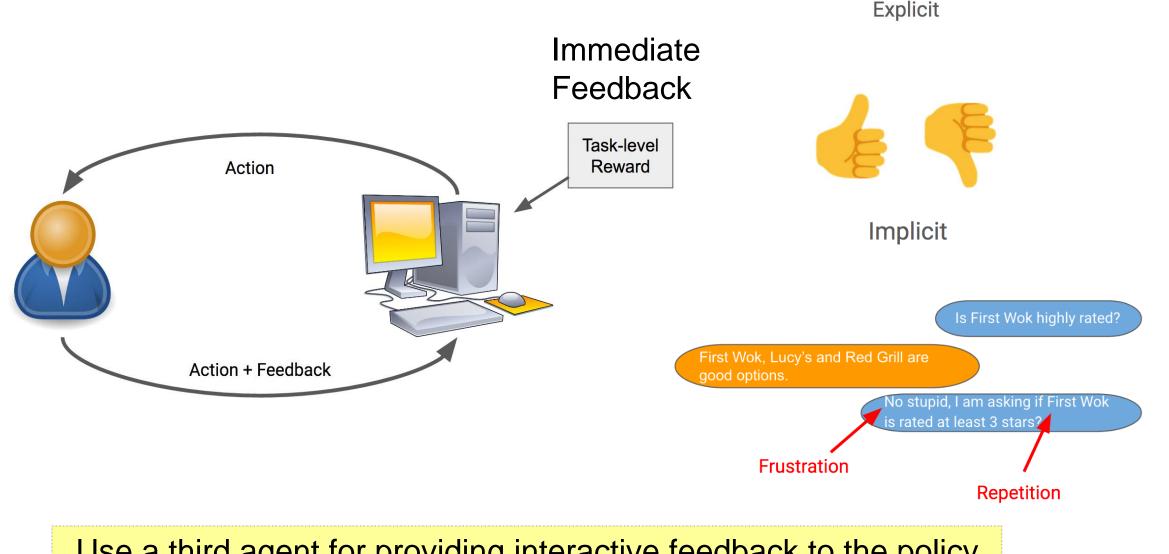
Skip the requests the user may not care about to improve efficiency Agent: Thanks

71 Online Training (Su+, 2015; Su+, 2016)

- Policy learning from real users
 - Infer reward directly from dialogues (Su et al., 2015)
 - User rating (Su et al., 2016)
- Reward modeling on user binary success rating



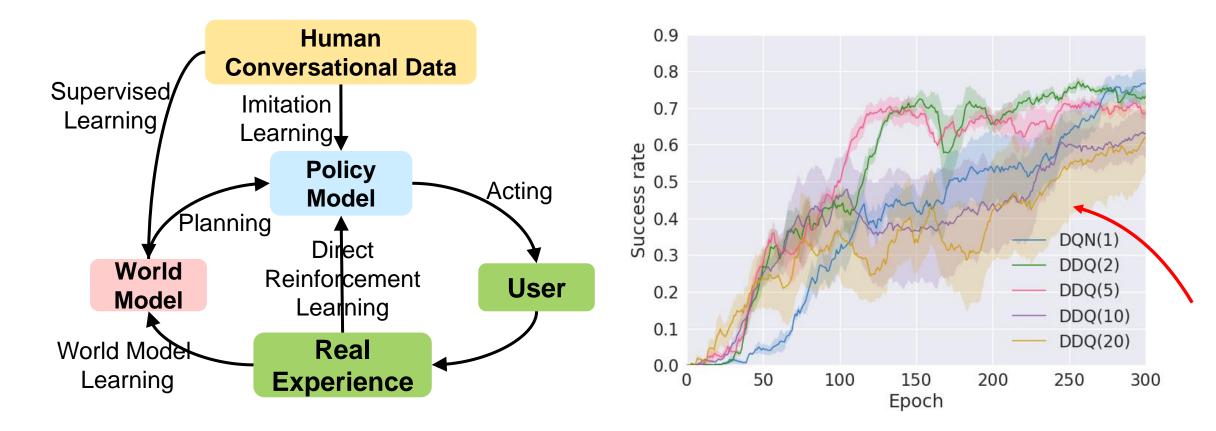
Interactive RL for DP (Shah+, 2016) 72



Use a third agent for providing interactive feedback to the policy

73 Planning – Deep Dyna-Q (Peng+, 2018)

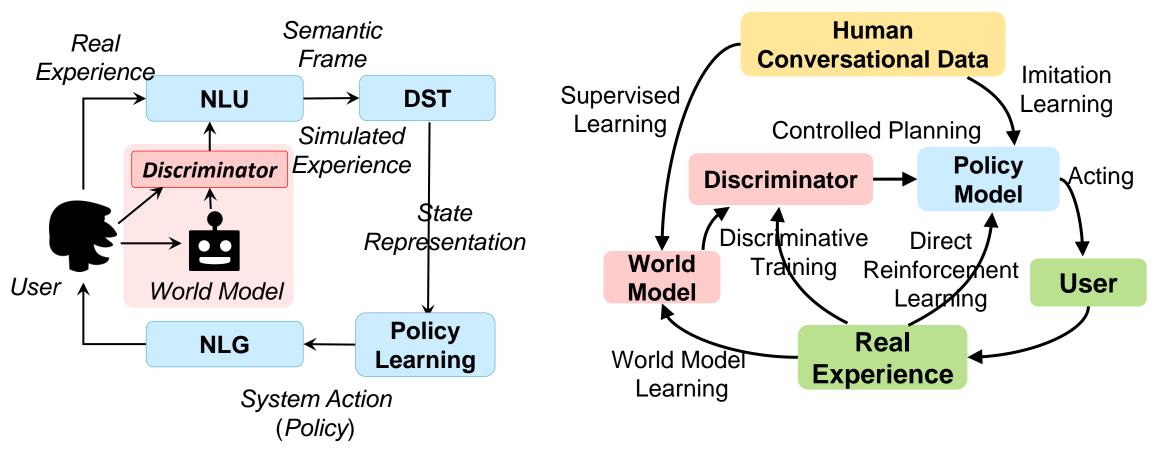
Idea: learning with real users with planning



Policy learning suffers from the poor quality of fake experiences

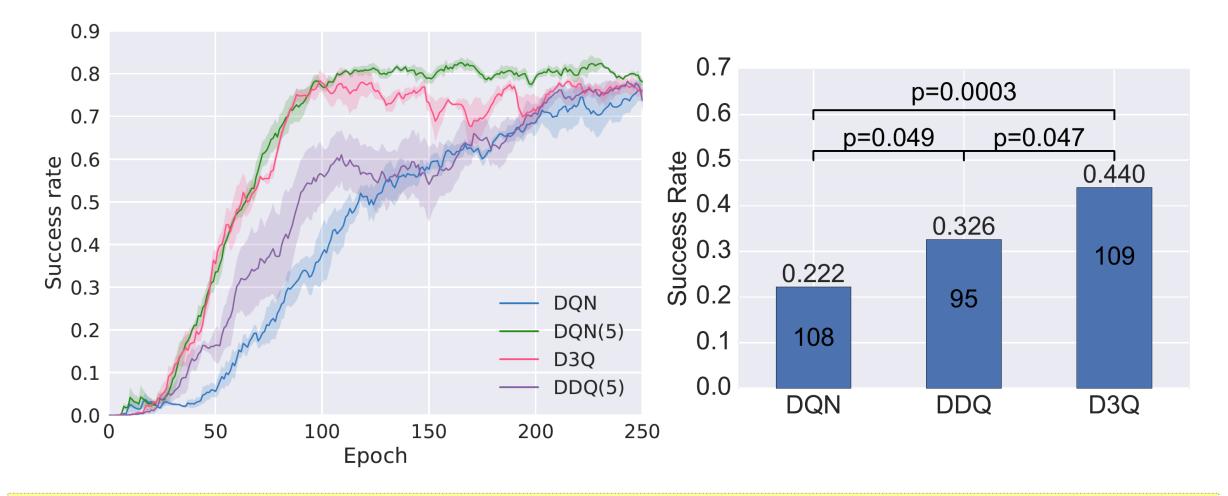
Robust Planning – D3Q (Su+, 2018)

Idea: add a discriminator to filter out the bad experiences



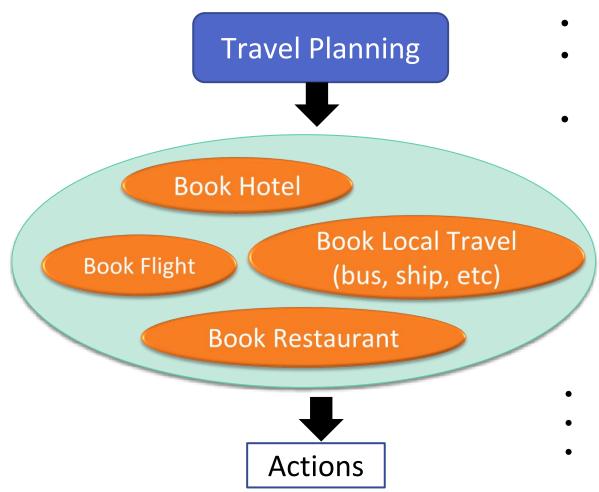
S.-Y. Su, X. Li, J. Gao, J. Liu, and Y.-N. Chen, "Discriminative Deep Dyna-Q: Robust Planning for Dialogue Policy Learning," (to appear) in Proc. of EMNLP, 2018.

75 Robust Planning – D3Q (Su+, 2018)



The policy learning is more robust and shows the improvement in human evaluation

76 Multi-Domain – Hierarchical RL (Peng+, 2017)

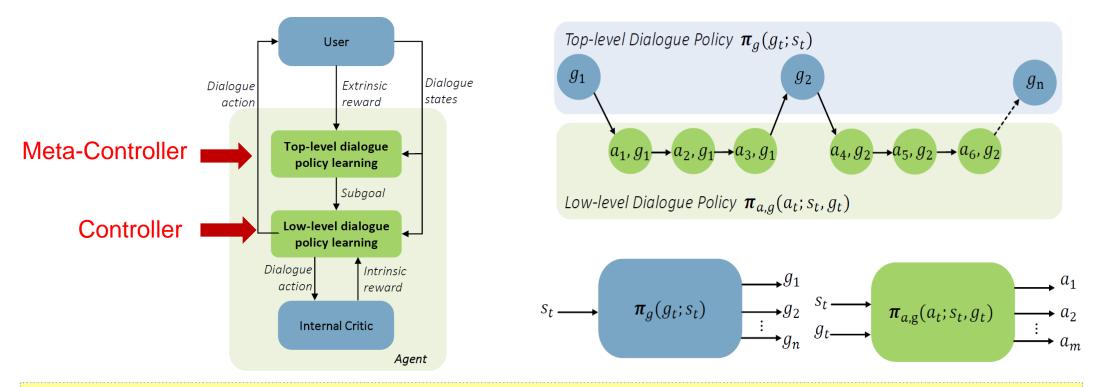


- Set of tasks that need to be fulfilled collectively!
- Build a DM for cross-subtask constraints (slot constraints)
- Temporally constructed goals

- hotel_check_in_time > departure_flight_time
- # flight_tickets = #people checking in the hotel
- hotel_check_out_time< return_flight_time

77 Multi-Domain – Hierarchical RL (Peng+, 2017)

- Model makes decisions over two levels: meta-controller & controller
- The agent learns these policies simultaneously
 - Policy of optimal sequence of goals to follow $\pi_g(g_t, s_t; \theta_1)$
 - Policy $\pi_{a,g}(a_t, g_t, s_t; \theta_2)$ for each sub-goal g_t



Multiple policies need to collaborate with each other for better multi-domain interactions

78 Dialogue Policy Evaluation

Dialogue State: Hotel_Book (star=5, day=sunday, people_num=2) **KB State:** rest1=B&B

System Action:

inform (hotel_name=B&B)

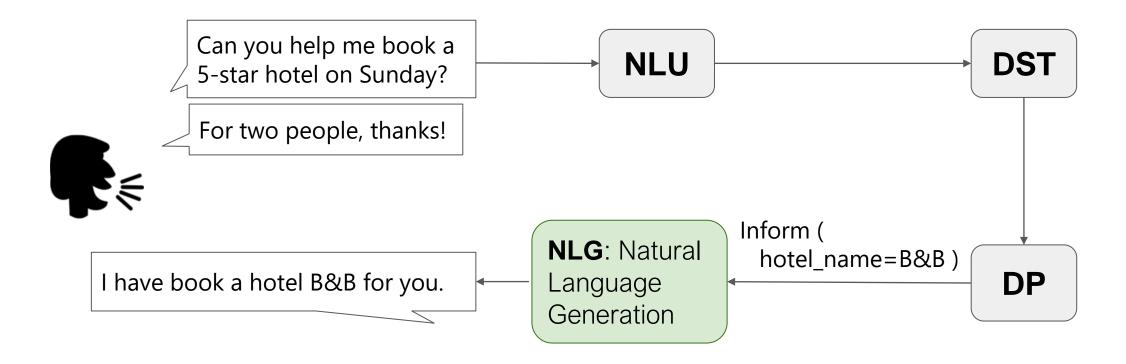
Metrics

- Turn-level evaluation: system action accuracy
- Dialogue-level evaluation: task success rate, reward

79 Natural Language Generation

Modular Task-Oriented Dialogue Systems

Natural Language Generation



NLG is to map system actions to natural language responses.

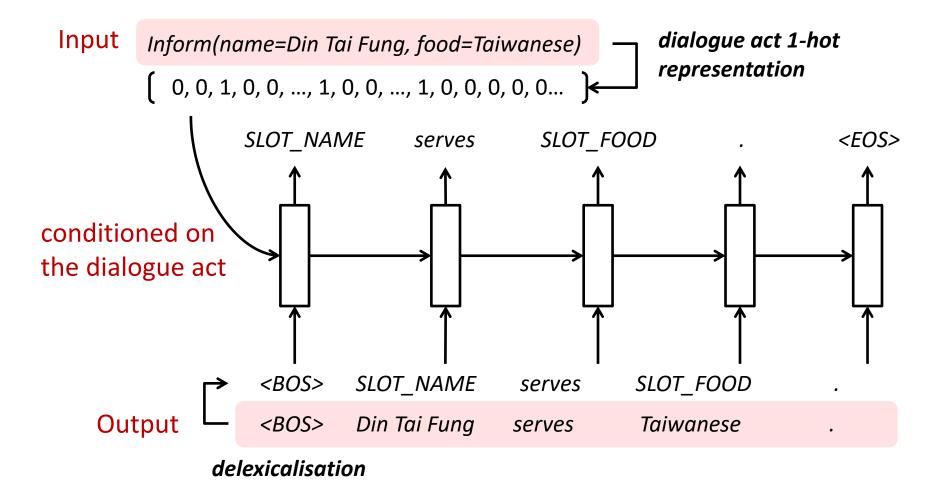
- Input: system speech-act + slot-value (optional)
- Output: natural language response

• Define <u>a set of rules</u> to map frames to natural language

Semantic Frame	Natural Language	
confirm()	"Please tell me more about the product you are looking for."	
confirm(area=\$V)	"Do you want somewhere in the \$V?"	
confirm(food=\$V)	"Do you want a \$V restaurant?"	
confirm(food=\$V,area=\$W)	"Do you want a \$V restaurant in the \$W."	

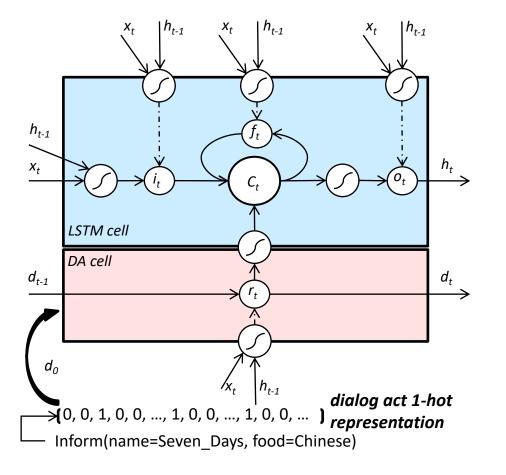
Pros: simple, error-free, easy to control *Cons:* time-consuming, rigid, poor scalability

82 RNN-Based LM NLG (Wen et al., 2015)



83 Semantic Conditioned LSTM (Wen et al., 2015)

- Issue: semantic repetition
 - Din Tai Fung is a great Taiwanese restaurant that serves Taiwanese.
 - Din Tai Fung is a child friendly restaurant, and also allows kids.



Idea: using gate mechanism to control the generated semantics (dialogue act/slots)

Structural NLG (Sharma+, 2017; Nayak+, 2017)

Delexicalized slots do not consider the word level information

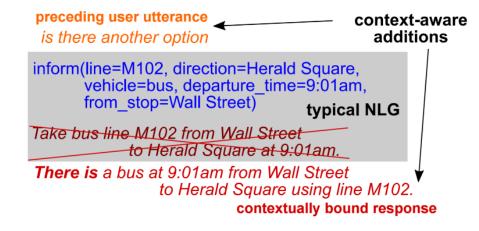
Generated output:There are no restaurants around which serve INFORM-FOOD food.Delexicalized slot input:INFORM-FOOD Lexicalized value input:chineseINFORM-FOOD pizza

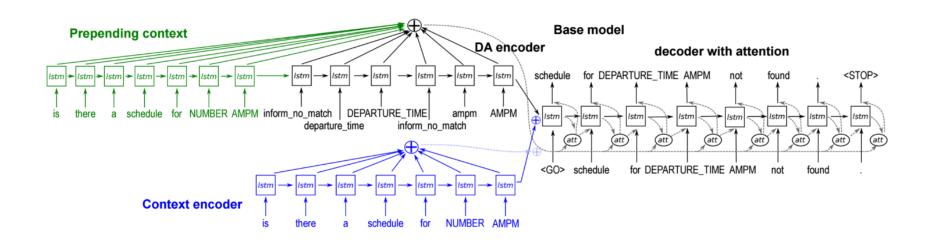
Slot value-informed sequence to sequence models

Mention rep.	Input sequence					
SEQ	x_i	x_{i+1}	x_{i+2}	x_{i+3}	x_{i+4}	
	decor	decent	service	good	cuisine	
JOINT	x _i		x_{i+1}		x_{i+2}	
		, decent \rangle	\langle service, good \rangle		\langle cuisine, null \rangle	
CONCAT	$x_{i,1}$	$x_{i,2}$	$x_{i+1,1}$	$x_{i+1,2}$	$x_{i+2,1}$	$x_{i+2,2}$
CONCAT	$\mathcal{N}_{l,1}$	$n_{l, Z}$	$\iota + 1, 1$	1 1,2	$\iota + \omega, \iota$	1 2,2

85 Contextual NLG (Dušek and Jurčíček, 2016)

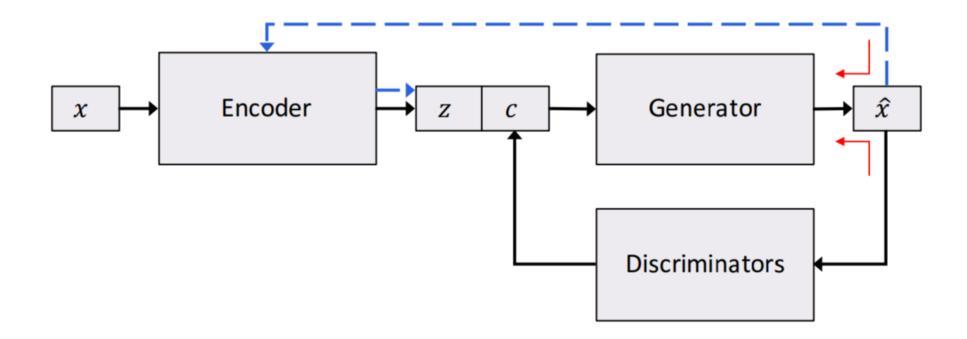
- Goal: adapting users' speaking way, providing context-aware responses
 - Context encoder
 - Seq2Seq model





66 Controlled Text Generation (Hu et al., 2017)

Idea: NLG based on generative adversarial network (GAN) framework
 c: targeted sentence attributes



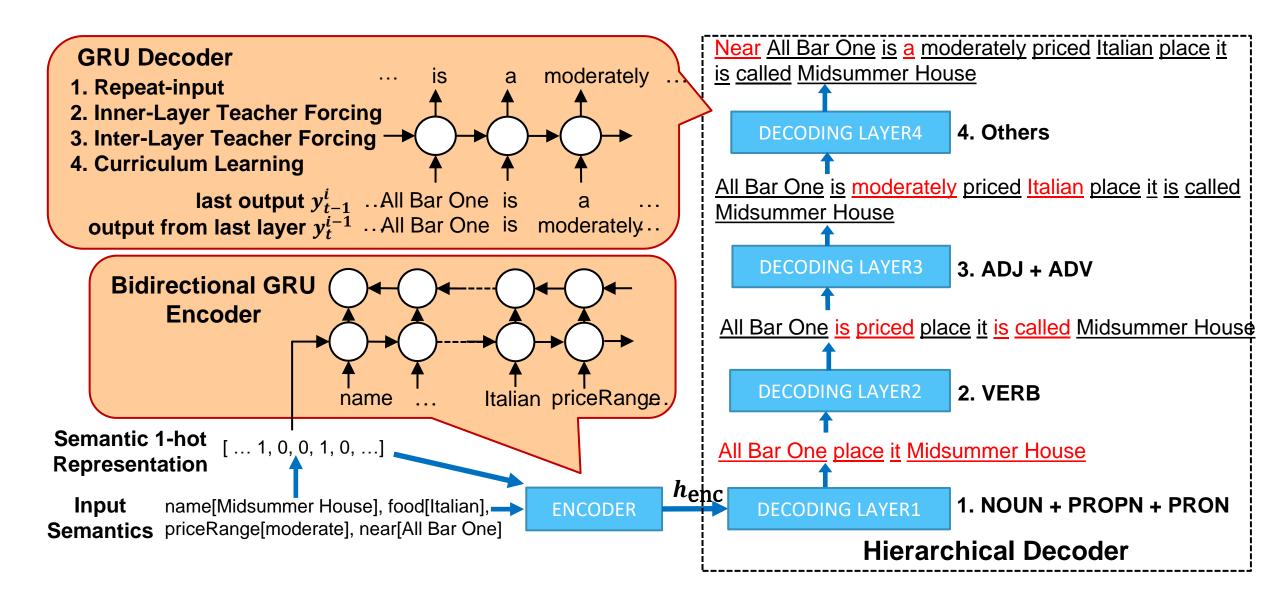
⁸⁷—Issues in NLG

- Issue
 - NLG tends to generate shorter sentences
 - NLG may generate grammatically-incorrect sentences
- Solution
 - Generate word patterns in an order
 - Consider linguistic patterns

Hierarchical NLG w/ Linguistic Patterns

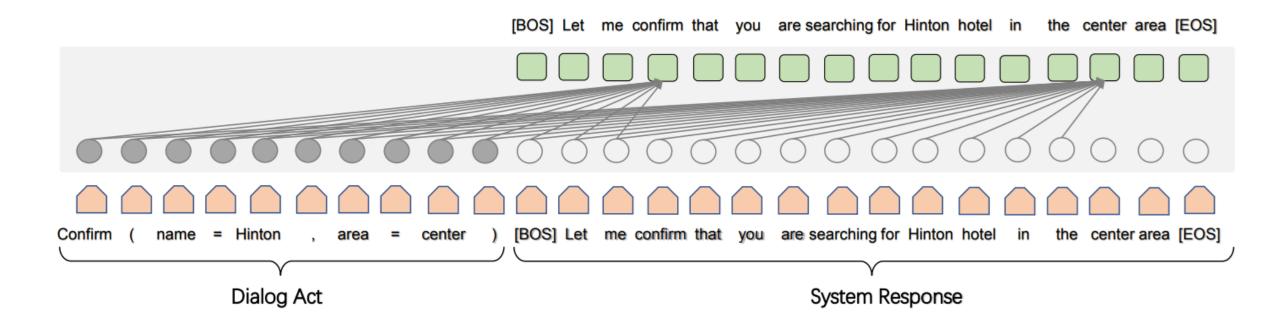
(Su et al., 2018)

88



⁸⁹ Fine-Tuning Pre-Trained GPT-2

• Fine-tuning for conditional generation



Pre-trained models have better capability of generating fluent sentences

System Action inform(name=B&B) System Response I have book a hotel B&B for you.

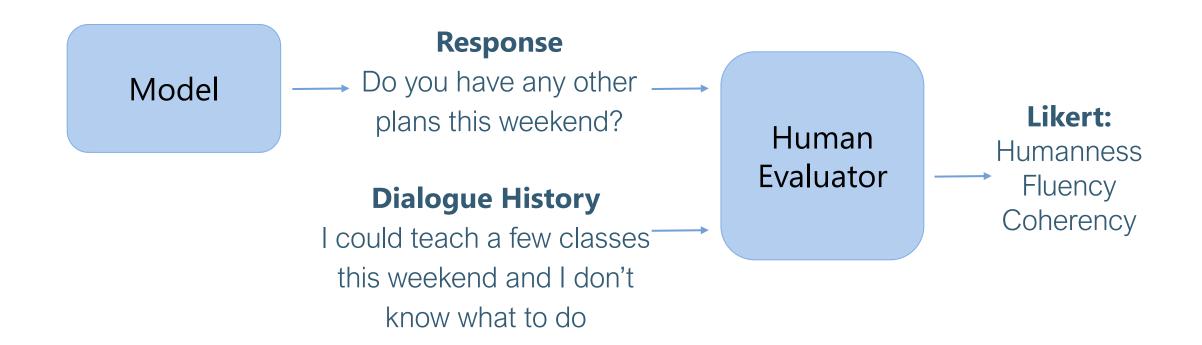
- Automatic metrics
- Human evaluation

Automatic Evaluation

• Perplexity \Rightarrow how likely the model is to generate the gold response

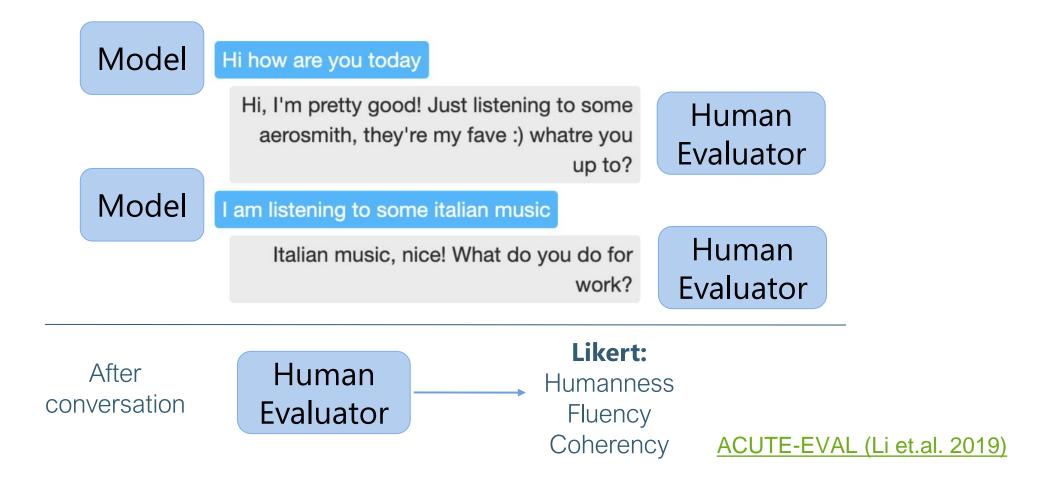
- N-gram overlapping \Rightarrow BLEU etc.
- Slot error rate \Rightarrow whether the given slots are mentioned
- Distinct N-grams \Rightarrow response diversity

92—Human Evaluation Likert

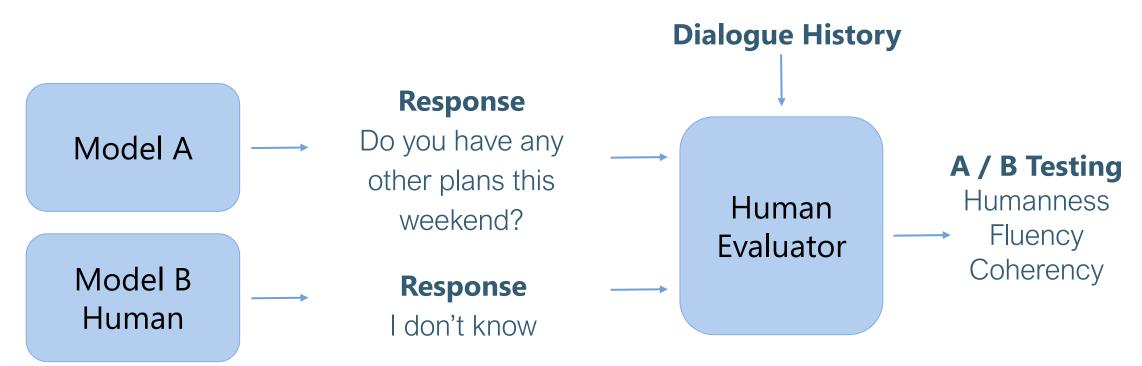


 Judges are asked to give ratings 0-5 according to "Humanness, Fluency and Coherence"

93 Human Evaluation Dynamic Likert



 Human judge interacts with the model and give ratings 0-5 according to "Humanness, Fluency and Coherence"



 Judges are asked to choose the best one according to "Humanness, Fluency and Coherence"

Helle there have are you?

95 Human Evaluation A/B Dynamic

- Judges interacts with two <u>systems</u> and chooses which is better according to "Humanness, Fluency and Coherence"
 - → <u>dialogue-level evaluation</u>

FIT HOW are you today	Hello there, now are you?		
Hi, I'm pretty good! Just listening to some	I am doing great. How are you?		
aerosmith, they're my fave :) whatre you up to?	I am great, I did something crazy for me and colored my hair blue!		
I am listening to some italian music	I have a daughter and a son who also love		
Italian music, nice! What do you do for work?	blue colored balls. You should meet them		
I'm a professional wrestler	Well that neat, I got a new car my mother gave so maybe I could see them!		
Oh wow! I'm a construction worker, I've been doing it since I was 16.	It is a beautiful city. And, I try to be Just cannot afford a bigger house atm.		
What do you do for a living	I am sorry to hear that, I feel bad going out of town for spring break now. Ok. I going to school in the spring for casino manager		
I'm a construction worker haha, just told you! Whats your favorite type of food?			
My favorite is garlic bread	Well I turn 29 next week, I wonder if tha		
Yum! I love mexican food, so good :) do you have any hobbies?	is a good age to apply as one.		
I like to workout and go to the gym	My grandmother just died from lung cancer, sucks		
We're a bit different- I love watching nascar and ufc. They're so fun!			
Who would you prefer to talk to for a lo	ng conversation?		
 I would prefer to talk to Speaker 1 	 I would prefer to talk to Speaker 2 		

Please provide a brief justification for your choice (a few words or a sentence) Please enter here...

ACUTE-EVAL (Li et.al. 2019)

