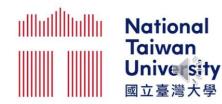
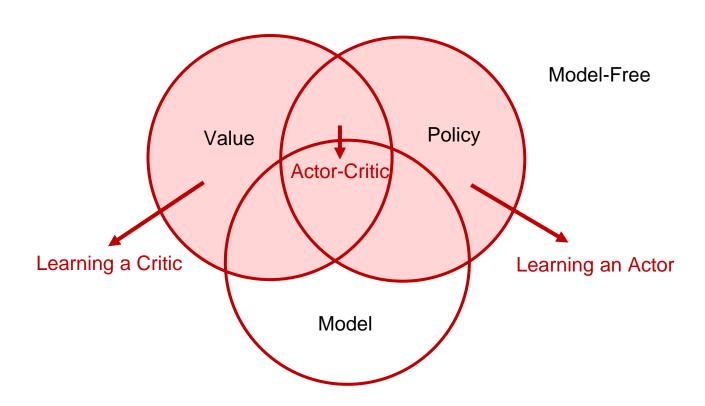
Applied Deep Learning

Value-Based Reinforcement Learning

May 10th, 2021 http://adl.miulab.tw



RL Agent Taxonomy



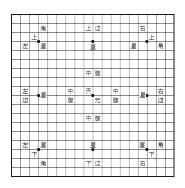
Value-Based Approach

Learning a Critic

Value Function

- A value function is a prediction of future reward (with action a in state s)
- Q-value function gives expected total reward
 - \circ from state S and action $\widehat{\mathcal{U}}$
 - \circ under policy π
 - \circ with discount factor γ

$$Q^{\pi}(s, a) = \mathbb{E}[r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots \mid s, a]$$



Value functions decompose into a Bellman equation

$$Q^{\pi}(s, a) = \mathbb{E}_{s', a'}[r + \gamma Q^{\pi}(s', a') \mid s, a]$$

Optimal Value Function

An optimal value function is the maximum achievable value

$$Q^*(s, a) = \max Q^{\pi}(s, a) = Q^{\pi^*}(s, a)$$

 \bullet The optimal value function allows us act optimally

$$\pi^*(s) = \arg\max Q^*(s, a)$$

• The optimal value informally maximizes over all decisions

$$Q^*(s, a) = r_{t+1} + \gamma \max_{a_{t+1}} r_{t+2} + \gamma^2 \max_{a_{t+2}} r_{t+3} + \dots$$
$$= r_{t+1} + \gamma \max_{a} Q^*(s_{t+1}, a_{t+1})$$

Optimal values decompose into a Bellman equation

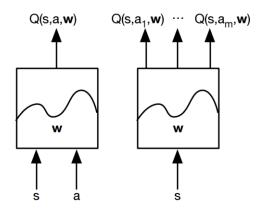
$$Q^*(s, a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q^*(s', a') \mid s, a]$$

Value Function Approximation

Value functions are represented by a lookup table

$$Q(s,a) \ \forall s,a$$

- too many states and/or actions to store
- too slow to learn the value of each entry individually
- Values can be estimated with function approximation

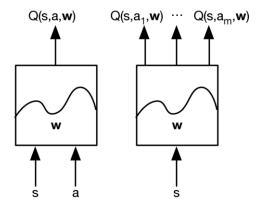


Q-Networks

lacktriangle Q-networks represent value functions with weights w

$$Q(s, a, w) \approx Q^*(s, a)$$

- generalize from seen states to unseen states
- \circ update parameter w for function approximation



Q-Learning

- Goal: estimate optimal Q-values
 - Optimal Q-values obey a Bellman equation

$$Q^*(s, a) = \mathbb{E}_{s'} \underbrace{r + \gamma \max_{a'} Q^*(s', a')}_{\text{learning target}} |s, a|$$

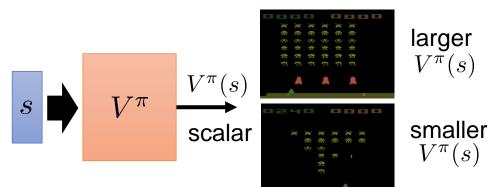
Value iteration algorithms solve the Bellman equation

$$Q_{i+1}(s,a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q_i(s',a') \mid s,a]$$

Critic = Value Function

- Idea: how good the actor is
- State value function: when using actor π , the expected total reward after seeing observation (state) s

$$V^{\pi}(s) \ \forall s = \mathbb{E}[G_t \mid s_t = s]$$



A critic does not determine the action An actor can be found from a critic

Monte-Carlo for Estimating $V^{\pi}(s)$

- Monte-Carlo (MC)
 - \circ The critic watches π playing the game
 - O MC learns directly from complete episodes: no bootstrapping

Idea: value = *empirical mean* return

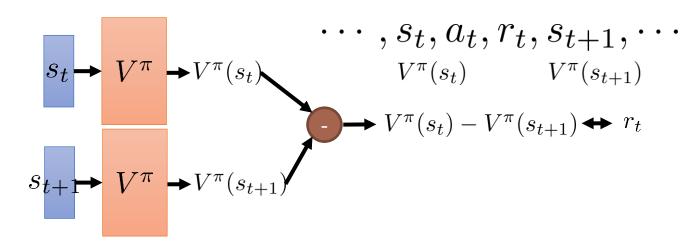
After seeing s_a , until the end of the episode, the cumulated reward is G_a $s_a V^\pi V^\pi(s_a) G_a$ After seeing s_b , until the end of the episode, the cumulated reward is $G_b V^\pi V^\pi(s_b) G_b$

Issue: long episodes delay learning

Temporal-Difference for Estimating $V^{\pi}(s)$

- Temporal-difference (TD)
 - \circ The critic watches π playing the game
 - TD learns directly from incomplete episodes by bootstrapping
 - TD updates a guess towards a guess

Idea: update value toward estimated return

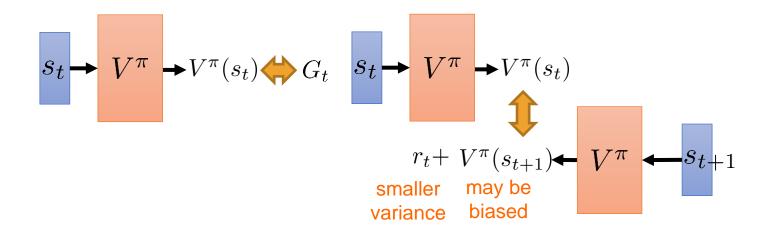


MC v.s. TD

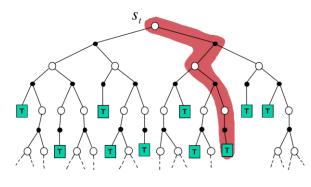
Slido: #ADL2021

- Monte-Carlo (MC)
 - Large variance
 - Unbiased
 - No Markov property

- Temporal-Difference (TD)
 - Small variance
 - Biased
 - Markov property



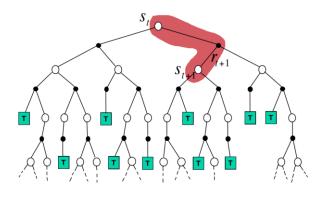
Slido: #ADL2021



$$V'^{\pi}(s_t)$$

$$= V^{\pi}(s_t) + \alpha(G_t - V^{\pi}(s_t))$$

MC v.s. TD



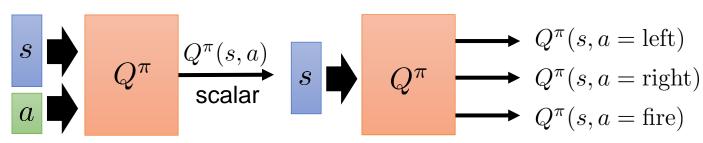
$$V'^{\pi}(s_t)$$

$$= V^{\pi}(s_t) + \alpha(r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t))$$

Critic = Value Function

State-action value function: when using actor π , the *expected total reward* after seeing observation (state) s and taking action a

$$Q^{\pi}(s,a) \ \forall s, a = \mathbb{E}[G_t \mid s_t = s, a_t = a]$$



for discrete action only

Q-Learning

• Given $Q^{\pi}(s,a)$, find a new actor π' "better" than π

$$V^{\pi'}(s) \ge V^{\pi}(s) \ \forall s$$

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$

 π' does not have extra parameters (depending on value function)

not suitable for continuous action

 π interacts with the environment

$$\pi = \pi'$$

TD or MC

Find a new actor π' "better" than π

Learning $Q^{\pi}(s,a)$

Q-Learning

- Goal: estimate optimal Q-values
 - Optimal Q-values obey a Bellman equation

$$Q^*(s, a) = \mathbb{E}_{s'} \underbrace{r + \gamma \max_{a'} Q^*(s', a')}_{\text{learning target}} |s, a|$$

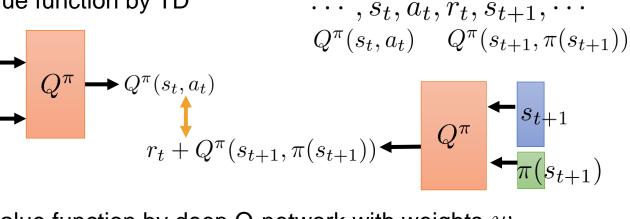
Value iteration algorithms solve the Bellman equation

$$Q_{i+1}(s,a) = \mathbb{E}_{s'}[r + \gamma \max_{a'} Q_i(s',a') \mid s,a]$$

17

Deep Q-Networks (DQN)

Estimate value function by TD



- © Represent value function by deep Q-network with weights w $Q(s,a,\mathbf{w}) \approx Q^*(s,a)$
- Objective is to minimize MSE loss by SGD

$$\mathcal{L}(w) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right)^{2}\right]$$

Deep Q-Networks (DQN)

Objective is to minimize MSE loss by SGD

$$\mathcal{L}(w) = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right)^{2}\right]$$

Leading to the following Q-learning gradient

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right) \frac{\partial Q(s, a, w)}{\partial w}\right]$$

Issue: naïve Q-learning oscillates or diverges using NN due to:
1) correlations between samples 2) non-stationary targets

Stability Issues with Deep RL

- Naive Q-learning oscillates or diverges with neural nets
 - Data is sequential
 - Successive samples are correlated, non-iid (independent and identically distributed)
 - 2. Policy changes rapidly with slight changes to Q-values
 - Policy may oscillate
 - Distribution of data can swing from one extreme to another
 - 3. Scale of rewards and Q-values is unknown
 - Naive Q-learning gradients can be unstable when backpropagated

Stable Solutions for DQN

- DQN provides a stable solutions to deep value-based RL
 - 1. Use experience replay
 - Break correlations in data, bring us back to iid setting
 - Learn from all past policies
 - 2. Freeze target Q-network
 - Avoid oscillation
 - Break correlations between Q-network and target
 - 3. Clip rewards or normalize network adaptively to sensible range
 - Robust gradients

Stable Solution 1: Experience Replay

- To remove correlations, build a dataset from agent's experience
 - \circ Take action at according to ϵ -greedy policy small prob for exploration
 - Store transition (s_t, a_t, r_t, s_{t+1}) in replay memory D
 - Sample random mini-batch of transitions (s, a, r, s') from D

$$\begin{array}{c|c} s_{1}, a_{1}, r_{2}, s_{2} \\ \hline s_{2}, a_{2}, r_{3}, s_{3} \\ \hline s_{3}, a_{3}, r_{4}, s_{4} \\ \hline \\ s_{t}, a_{t}, r_{t+1}, s_{t+1} \end{array} \rightarrow \begin{array}{c|c} s_{t}, a_{t}, r_{t+1}, s_{t+1} \\ \hline \end{array}$$

Optimize MSE between Q-network and Q-learning targets

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s' \sim D} \left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w) \right)^2 \right]$$

Exploration

- $a_1 \quad Q(s,a_1) = 0 \quad \text{never explored} = 0$ $a_2 \quad Q(s,a_2) = 1 \quad \text{always sampled}$ $a_3 \quad Q(s,a_3) = 0 \quad \text{never explored}$
- The policy is based on Q-function

$$a = \arg\max_{a} Q(s,a)$$
 not good for data collection $ightarrow$ inefficient learning

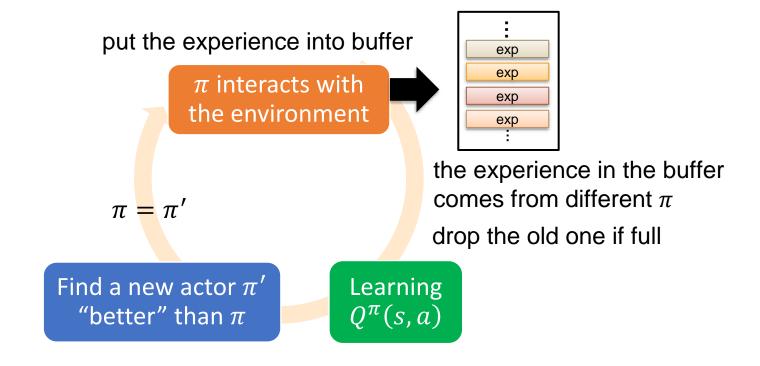
- Exploration algorithms
 - Epsilon greedy

$$a = \begin{cases} \operatorname{arg\,max}_a Q(s,a), & \text{with } p = (1-\epsilon) \\ \operatorname{random}, & \text{otherwise} \end{cases}$$
 ε would decay during learning

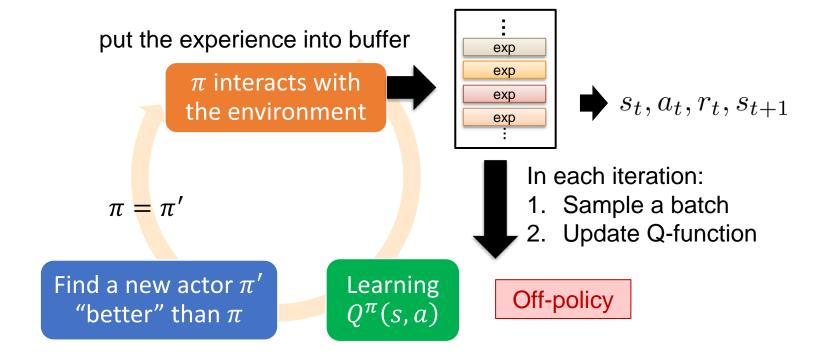
Boltzmann sampling

$$P(a \mid s) = \frac{\exp(Q(s, a))}{\sum_{a} \exp(Q(s, a))}$$

Replay Buffer

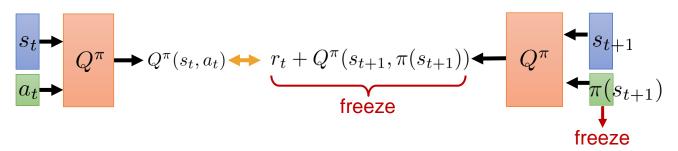


Replay Buffer



Stable Solution 2: Fixed Target Q-Network

To avoid oscillations, fix parameters used in Q-learning target



 \circ Compute Q-learning targets w.r.t. old, fixed parameters w^-

$$r + \gamma \max_{a'} \hat{Q}(s', a', w^-)$$

Optimize MSE between Q-network and Q-learning targets

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \max_{a'} \hat{Q}(s', a', w^{-}) - Q(s, a, w) \right)^{2} \right]$$

 \circ Periodically update fixed parameters $w^- \leftarrow w$

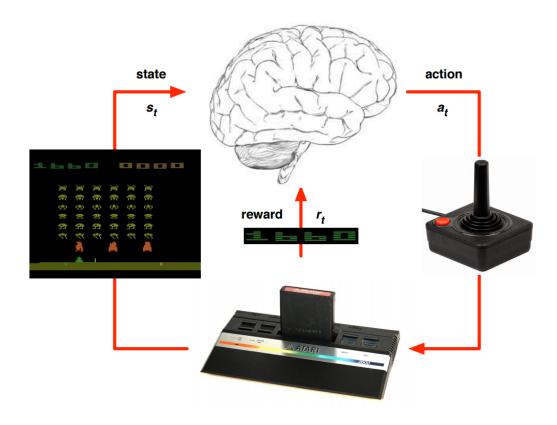
Stable Solution 3: Reward / Value Range

- To avoid oscillations, control the reward / value range
 - DQN clips the rewards to [−1, +1]
 - Prevents too large Q-values
 - Ensures gradients are well-conditioned

Typical Q-Learning Algorithm

- Initialize Q-function Q, target Q-function $\hat{Q} = Q$
- In each episode
 - For each time step t
 - Given state s_t , take action a_t based on Q (epsilon greedy)
 - Obtain reward r_t , and reach new state s_{t+1}
 - Store (s_t, a_t, r_t, s_{t+1}) into buffer
 - Sample (s_i, a_i, r_i, s_{i+1}) from buffer (usually a batch)
 - Update the parameters of Q to make $Q(s_i, a_i) \approx r_i + \max \hat{Q}(s_{i+1}, a)$
 - Every C steps reset $\hat{Q} = Q$

Deep RL in Atari Games ()

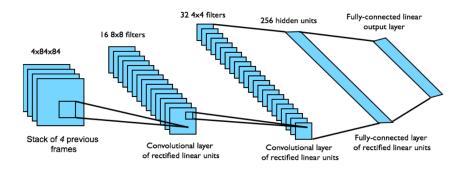


DQN in Atari

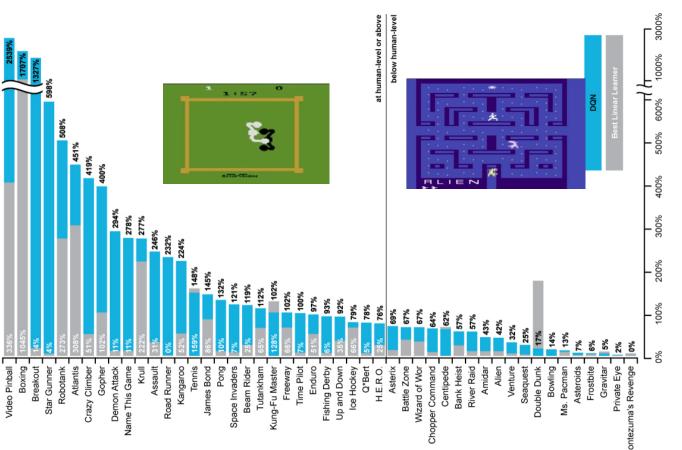
Goal: end-to-end learning of values Q(s, a) from pixels

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s' \sim D} \left[\left(r + \gamma \max_{a'} Q(s', a', w^{-}) - Q(s, a, w) \right)^{2} \right]$$

- Input: state is stack of raw pixels from last 4 frames
- Output: Q(s, a) for all joystick/button positions a
- Reward is the score change for that step

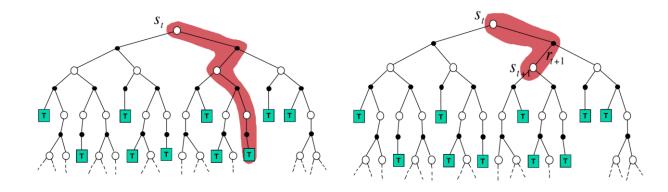


DQN in Atari



Concluding Remarks

- RL is a general purpose framework for decision making under interactions between agent and environment
- A value-based RL measures how good each state and/or action is via a value function
 - Monte-Carlo (MC) v.s. Temporal-Difference (TD)



Slido: #ADL2021

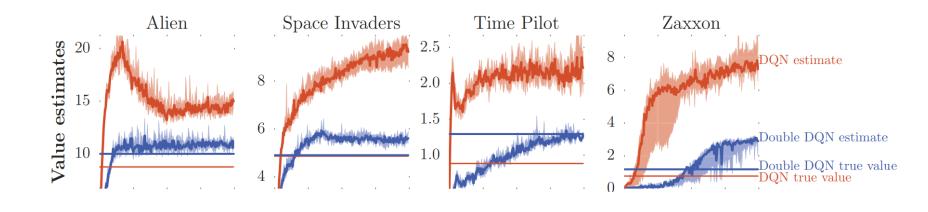
32

Advanced DQN

DQN 進階模型

Double DQN

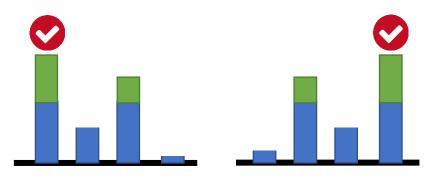
Q value is usually over-estimated



Double DQN

Nature DQN

$$Q(s_t, a_t) \longleftrightarrow r_t + \gamma \max_{a} Q(s_{t+1}, a)$$



$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s' \sim D} \left[\left(r + \gamma \max_{a'} \hat{Q}(s', a', w^{-}) - Q(s, a, w) \right)^{2} \right]$$

Issue: tend to select the action that is over-estimated

Double DQN

Nature DQN

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \max_{a'} \hat{Q}(s', a', w^{-}) - Q(s, a, w) \right)^{2} \right]$$

Ouble DQN: remove upward bias caused by $\max_a Q(s,a,w)$

$$\mathcal{L}(w) = \mathbb{E}_{s,a,r,s'\sim D} \left[\left(r + \gamma \frac{\hat{Q}(s', \arg\max_{a'} Q(s', a', w), w^{-})}{a'} - Q(s, a, w) \right)^{2} \right]$$

- \circ Current Q-network w is used to select actions
- \circ Older Q-network w^- is used to evaluate actions

If Q over-estimate a, so it is selected. \widehat{Q} would give it proper value. How about \widehat{Q} overestimate? The action will not be selected by Q.

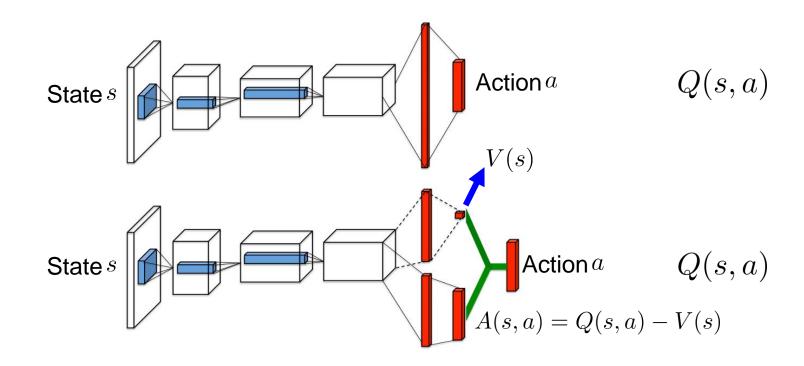
Dueling DQN

Dueling Network: split Q-network into two channels

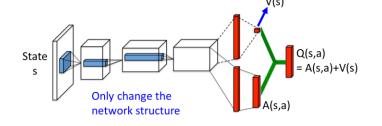
$$Q(s,a) = V(s) + A(s,a)$$

- Action-independent value function
 - lacktriangle Value function estimates how good the state is V(s)
- Action-dependent advantage function
 - Advantage function estimates the additional benefit $\,A(s,a)\,$

Dueling DQN

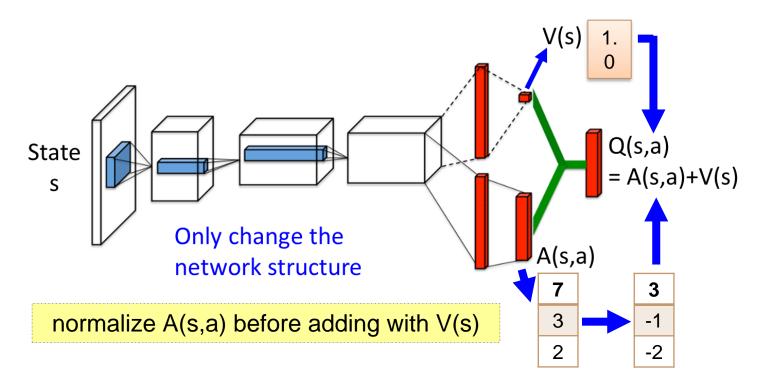


Dueling DQN

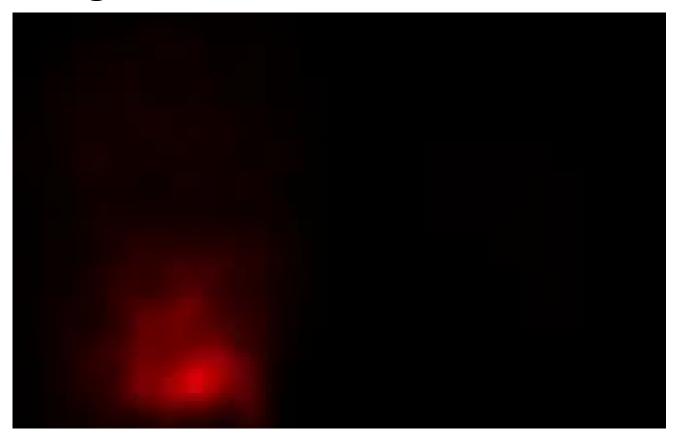


	state			
	3	3, 4	3	1
Q(s,a) action	1	-\ 0	6	1
	2	-2 -1	3	1
II	II			
V(s) average of column	2	8 1	4	1
+	+			
A (1	3	-1	0
A(s,a) sum of column = 0	-1	-1	2	0
	0	-2	-1	0

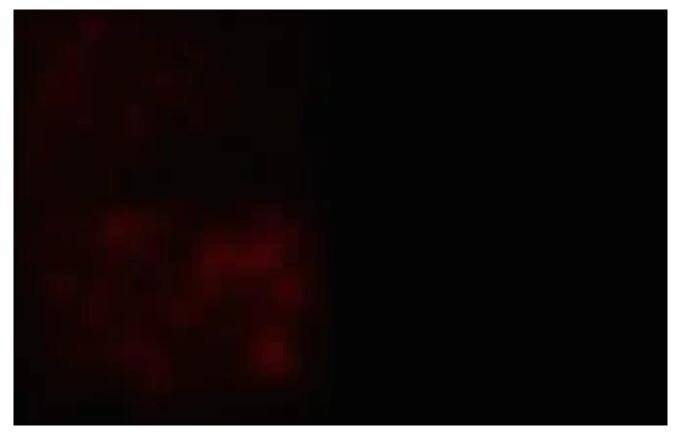
Dueling DQN



Dueling DQN - Visualization



Dueling DQN - Visualization

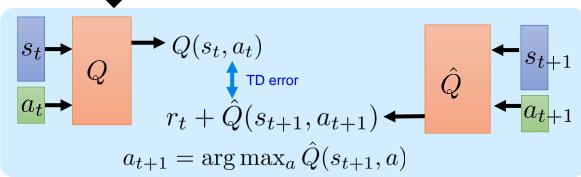


Prioritized Replay

- Prioritized Replay: weight experience based on surprise
 - Store experience in priority queue according to the error

$$r + \gamma \max_{a'} Q(s', a', w^{-}) - Q(s, a, w)$$

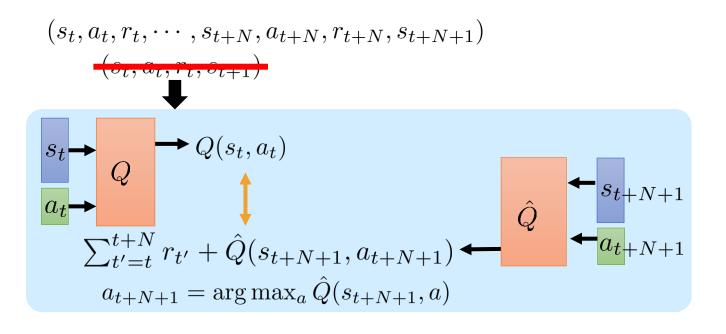
 $(s_t, a_t, r_t, s_{t+1}) \text{ The data with larger TD error in previous training has higher probability to be sampled.}$



Parameter update procedure is also modified.

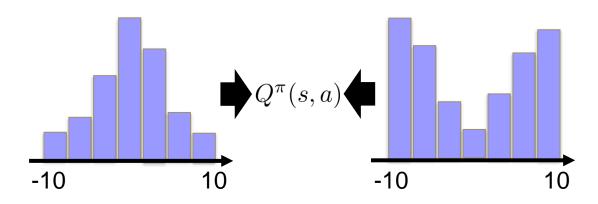
Multi-Step

Idea: balance between MC and TD



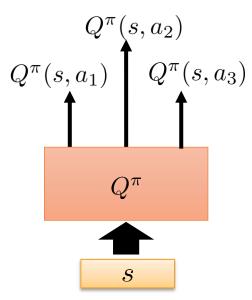
Distributional Q-function

- lacktriangle State-action value function $Q^{\pi}(s,a)$
 - When using actor π , the *cumulated* reward expects to be obtained after seeing observation s and taking a

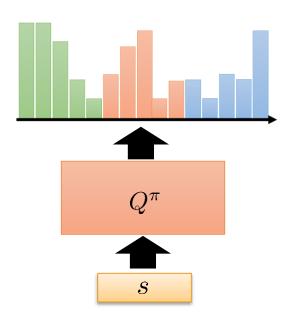


Different distributions can have the same values.

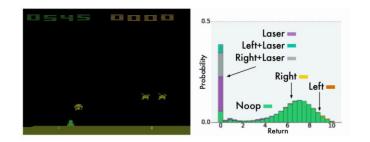
Distributional Q-function

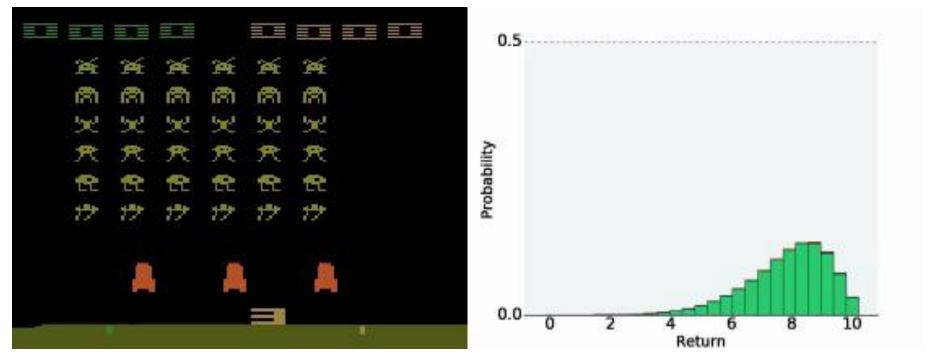


A network with 3 outputs



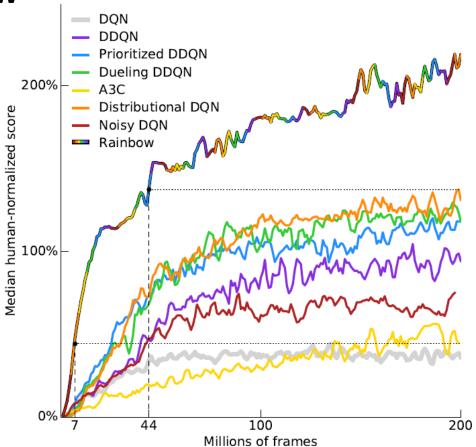
A network with 15 outputs (each action has 5 bins)



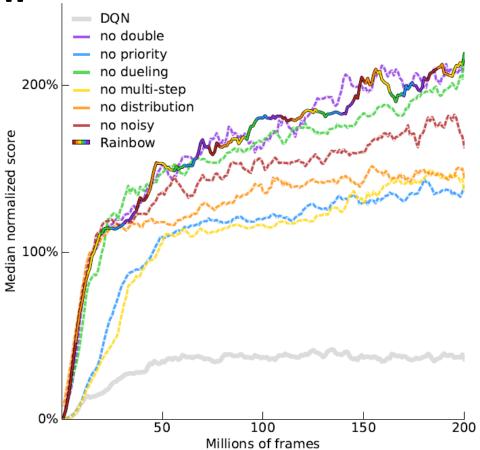


https://youtu.be/yFBwyPuO2Vg

Rainbow



Rainbow



Concluding Remarks

- DQN training tips
 - Double DQN
 - Dueling DQN
 - Prioritized replay
 - Multi-step
 - Distributional DQN