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©® Machine Learning
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© Supervised v.s. Reinforcement

@ Supervised Learning

@® Reinforcement Learning
Training based on Training only based on reward signal
supervisor/label/annotation Feedback is delayed
Feedback is instantaneous Time matters
Time does not matter

Agent actions affect subsequent data
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6 Supervised v.s. Reinforcement
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©® Reinforcement Learning

@® RL is a general purpose framework for decision making
RL is for an agent with the capacity to act
Each action influences the agent’s future state
Success is measured by a scalar reward signal
Goal: select actions to maximize future reward
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© Deep Learning

@® DL is a general purpose framework for representation learning
Given an objective
Learn representation that is required to achieve objective
Directly from raw inputs
Use minimal domain knowledge

X1 .. > yl
vector vector



_ _ Slido: #ADL2021
Q Deep Reinforcement Learning

@ Al is an agent that can solve human-level task
RL defines the objective
DL gives the mechanism
RL + DL = general intelligence
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@ Deep RL Al Examples

@® Play games: Atari, poker, Go, ...

@® Explore worlds: 3D worlds, ...

@® Control physical systems: manipulate, ...

@ Interact with users: recommend, optimize, personalize, ...
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@ Introduction to RL

Reinforcement Learning
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@ Outline

@®

@® |Introduction to Reinforcement Learning
Agent and Environment
Action, State, and Reward

®
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@ Reinforcement Learning

@® RL is a general purpose framework for decision making
RL is for an agent with the capacity to act
Each action influences the agent’s future state
Success is measured by a scalar reward signal
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Agent and Environment
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@ Agent and Environment

@ Attime step't

The agent
T Executes action a,
AU ¢ ,{;ﬁf\k_ﬁ“‘j‘ action Receives observation o,
g ANV k—fg_‘iﬁ'- 8y Receives scalar reward r;
A= a4 The environment
Receives action a,
Emits observation o,
reward Emits scalar reward r,,,
t increments at env. step
. D
observation \

O¢
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@ state

@® Experience is the sequence of observations, actions, rewards

01,711,081, .-+, A¢—1,0¢t, Tt

@ State is the information used to determine what happens next

what happens depends on the history experience
The agent selects actions
The environment selects observations/rewards

@® The state is the function of the history experience

st = f(o1,71,01, ..., Gt—1, 04, T¢)
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@ Environment State

@® The environment state s¢ is the

environment’s private representation

T e L) , whether data the environment
FO Oz action -

) OO =", uses to pick the next

_ \ T, t

A observation/reward
may not be visible to the agent
may contain irrelevant information
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@ Agent State

o - i‘a ® The agent state s? is the agent’s
iN internal representation
e s («“ e action whether data the agent uses to
ACATY N (ST s . . . .
> AL SEEODSHO ) pick the next action = information
rtsm R0 | ™ used by RL algorithms
= ~ Y

- can be any function of experience

observation \
O,
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@ Information State

@® An information state (a.k.a. Markov state) contains all useful information from
history

@® The future is independent of the past given the present
Ht — {017 ry,ay, ..., ag—1, 0t, Tt}
Hyp — st = Hip1i00

Once the state is known, the history may be thrown away
The state is a sufficient statistics of the future
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(20, Fully Observable Environment

@® Full observability: agent directly observes environment state
a €
Ot = S¢ = 5¢

information state = agent state = environment state
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@ Partially Observable Environment

@® Partial observability: agent indirectly observes environment

a e
St # S¢
agent state # environment state

@® Agent must construct its own state representation s¢
Complete history: s{ = H; . . 1 .
Beliefs of environment state: St = {P(s; =57), ..., P(sy = s")}
Hidden state (from RNN): s¢ = (W - s{' | + W, - 0¢)
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@ Reward

@® Reinforcement learning is based on reward hypothesis

@ Areward r, is a scalar feedback signal
Indicates how well agent is doing at step t

Reward hypothesis: |
~ all agent goals can be desired by maximizing expected cumulative reward
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@ Sequential Decision Making

® Goal: select actions to maximize total future reward
Actions may have long-term consequences
Reward may be delayed
It may be better to sacrifice immediate reward to gain more long-term reward
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@ Scenario of Reinforcement Learning

Observation - __Action
State s+9g. Change the
' environment
Agen? ‘ |

Environment
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Scenario of Reinforcement Learning

Observatlog | Action
State ‘+h Change the

environment
Agent? k of
wh y 4
I Reward - ‘

<
Environment

Agent learns to take actions maximizing expected reward.
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@ Machine Learning = Looking for a Function

o A A
Observation “Actor/Policy ~ Action
> Action = (Observation) | !
Function feton = ~ Function
input 7 ;'& output
|
wd
Used to pick
the best ‘ Reward
function

Environment
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@ Learning to Play Go

Observatiog Action

Environment
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@ Learning to Play Go

. ( .
Observatlog Action

If win, reward =1

If loss, reward = -1
§ <

Environment

Agent learns to take actions maximizing expected reward.




Slido: #ADL2021

@ Learning to Play Go

® Supervised

Learning from teacher EE Next Next
g F W

ALR" ™ move: move:

~Z - . “5_5” “3_3”

@® Reinforcement Learning

: : First » ...... many moves ...... » win!
Learning from experience
move

(Two agents play with each other.)

AlphaGo uses supervised learning + reinforcement learning.




€ Learning a Chatbot

@® Machine obtains feedback from user

)
How

are you?
Jar, Bye

& gl
) b
gg} N bye ®

v

Chatbot learns to maximize the expected reward
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@ Learning a Chatbot

@® Let two agents talk to each other (sometimes generate good dialogue,
sometimes bad)

W’ How old are you? jn}' How old are you?
~¢qu ‘V‘Y"’ o
m g
Seeyou. 5% lam 16. %¥g¢
& See you. s I'though you were 12.
iy k gy
D e Dl S
144! {g;g
See you. 5% What make you think so? §g

(
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€@ Learning achat-bot

@ By this approach, we can generate a lot of dialogues.
@® Use pre-defined rules to evaluate the goodness of a dialogue

Machine learns from the evaluation as rewards
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@ Learning to Play Video Game

@® Space invader: terminate when all aliens are killed, or your spaceship is
destroyed

SCOre
(reward)

Kill the
aliens

shield

Play yourself: http://www.26000nline.com/spaceinvaders.html
How about machine: https://gym.openai.com/evaluations/eval_Eduozx4HRyqgTCVk9ltw
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Learning to Play Video Game

Start with observation Observation s, Observation s;

\ 4 Obtaln reward Obtain

@O r, =0 Q reward Ty =5
4‘*‘"/! 'H‘
2§ B 2k

wod| . bl (k|II an alien)

Usually there is some randomness in the environment
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€@ Learning to Play Video Game

Start with observation Observation s, Observation s;

After many
turns

This is an episode.

Game Over | .
(Spaceship destroyed) expected cumulative
ﬁ ] Obtain reward

reward per episode
It
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@ More Applications

@® Flying Helicopter

https://www.youtube.com/watch?v=0JL04JJjocc

@® Driving

https://www.youtube.com/watch?v=0x01Ldx3L5Q

® Robot
https://www.youtube.com/watch?v=370cT-OAzzM

® Google Cuts Its Giant Electricity Bill With DeepMind-Powered Al
http://www.bloomberg.com/news/articles/2016-07-19/google-cuts-its-giant-electricity-bill-with-
deepmind-powered-ai

@® Text Generation
https://www.youtube.com/watch?v=pbQ4qe8EwLo0
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€ Reinforcement Learning



Slido: #ADL2021

@ Outline

@®

@®

@® Reinforcement Learning
Value-Based
Policy-Based
Model-Based
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@ Major Components in an RL Agent

@® An RL agent may include one or more of these components
Value function: how good is each state and/or action
Policy: agent’s behavior function
Model: agent’s representation of the environment
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@ Reinforcement Learning Approach

@® Value-based RL .
Estimate the optimal value function Q (S, CL)

@® Policy-based RL
Search directly for optimal policy ’7T

@® Model-based RL
Build a model of the environment
Plan (e.g. by lookahead) using model
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@ Maze Example

® Rewards: -1 per time-step
@ Actions: N, E, S, W
@® States: agent’s location

Start

Goal
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® Maze Example: Value Function

® Rewards: -1 per time-step
@ Actions: N, E, S, W

11 @ States: agent’s location
-12
-17 6 | -7

-16
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® Maze Example: Value Function

® Rewards: -1 per time-step
@ Actions: N, E, S, W

- 5 @ States: agent’s location
:
-1 -1

-1

Grid layout represents transition model P
-Numbers represent immediate reward R from each state s (same for all a)



@ Maze Example: Policy

Start

-

Slido: #ADL2021

® Rewards: -1 per time-step
@ Actions: N, E, S, W
@® States: agent’s location
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® cCategorizing RL Agents

@® Value-Based @® Model-Free
Policy and/or Value Function
Value Function

@® Policy-Based ® Model-Based
Policy Policy and/or Value Function
Model

@ Actor-Critic
Policy
Value Function
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® RL Agent Taxonomy

Model-Free

Learning a Critic Learning an Actor
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@ cConcluding Remarks

@ RL is a general purpose framework for decision making under interactions
between agent and environment
RL is for an agent with the capacity to act - action

Each action influences the agent’s future state  state

Success is measured by a scalar reward signal eward
Goal: select actions to maximize future reward ?

® An RL agent may include one or more of these components

Value function: how good is each state and/or action édekFrde
Policy: agent’s behavior function »

y . . Value Function c‘tci)é Policy
Model: agent’s representation of the environment o

\ Value-Based Policy-Based
\\ Magdel-Baset

Model
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® References

@ Course materials by David Silver:
http://wwwO.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html

@® ICLR 2015 Tutorial:

http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:silver-iclr2015.pdf
® ICML 2016 Tutorial: http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf
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