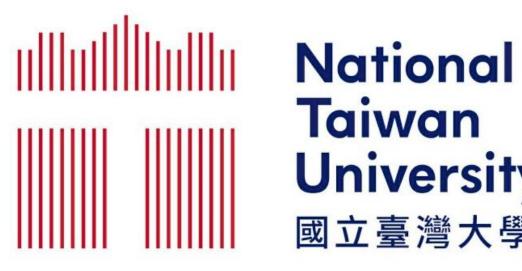


Contextualized Word Embeddings

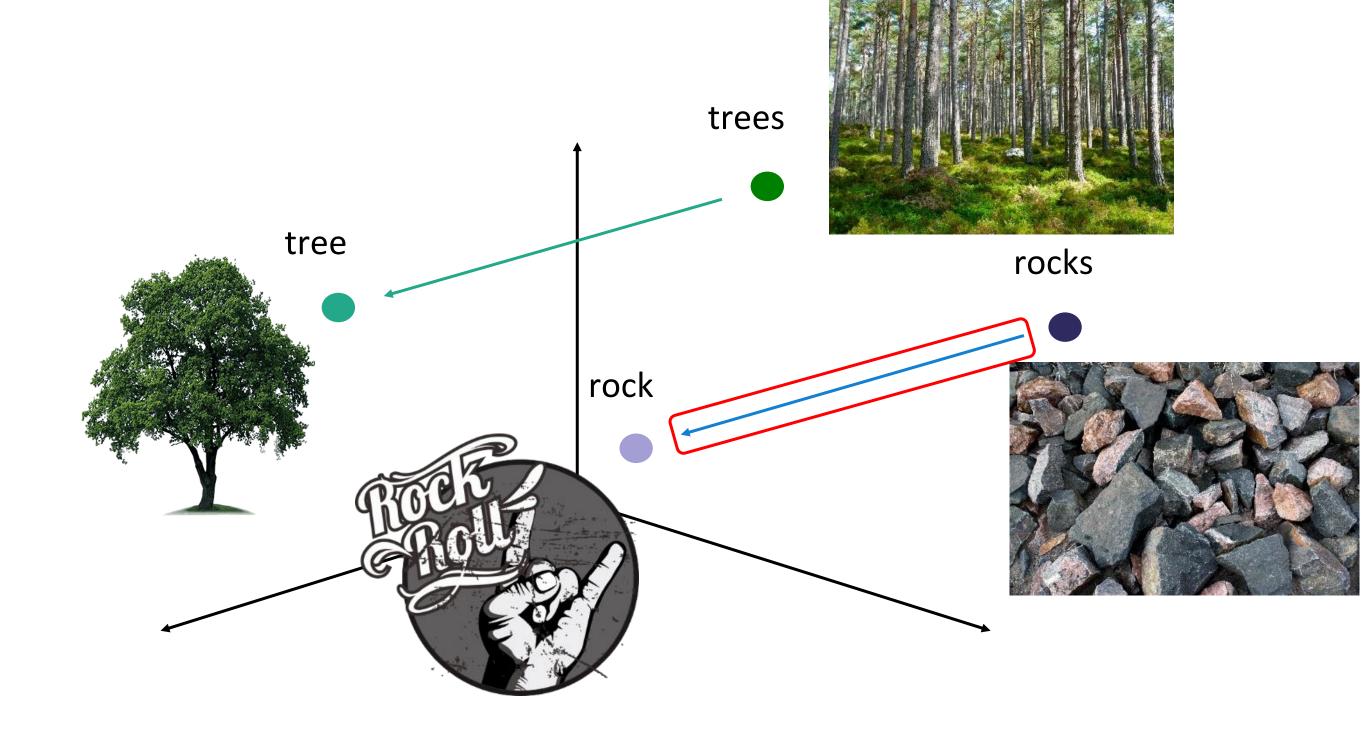
April 12th, 2021 <u>http://adl.miulab.tw</u>



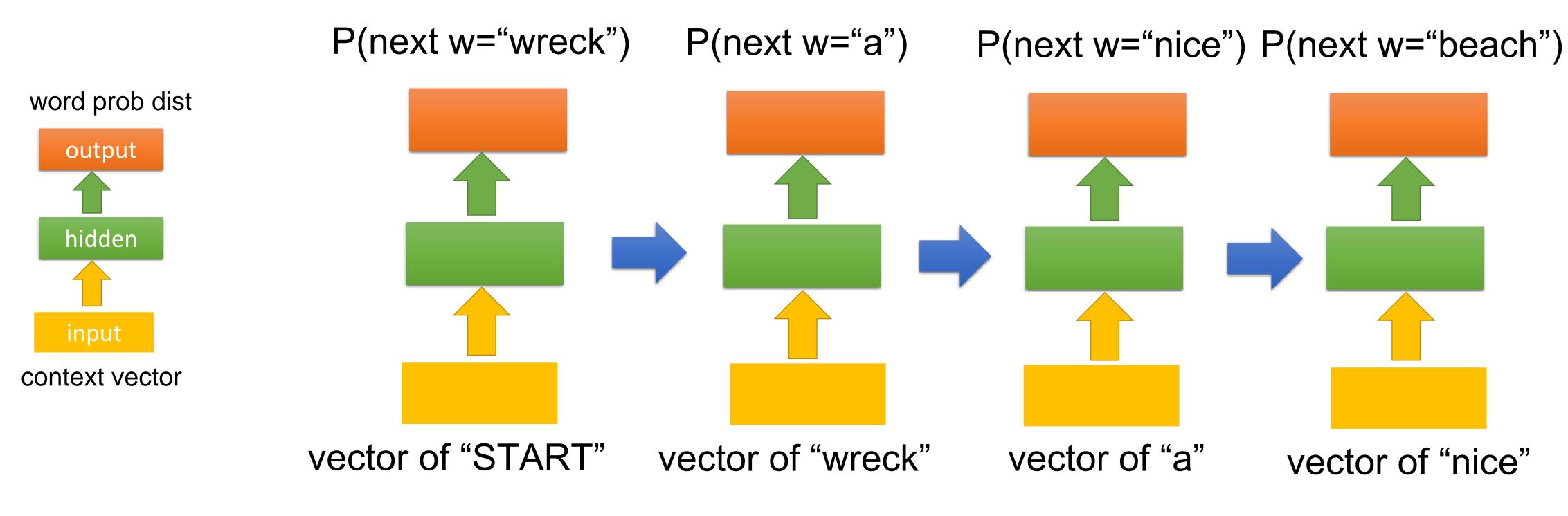


Word Embedding Polysemy Issue 2

- Words are polysemy
 - \checkmark An apple a day, keeps the doctor away.
 - Smartphone companies including apple, …
- However, their embeddings are NOT polysemy
- Issue
 - Multi-senses (polysemy)
 - Multi-aspects (semantics, syntax)



each time step



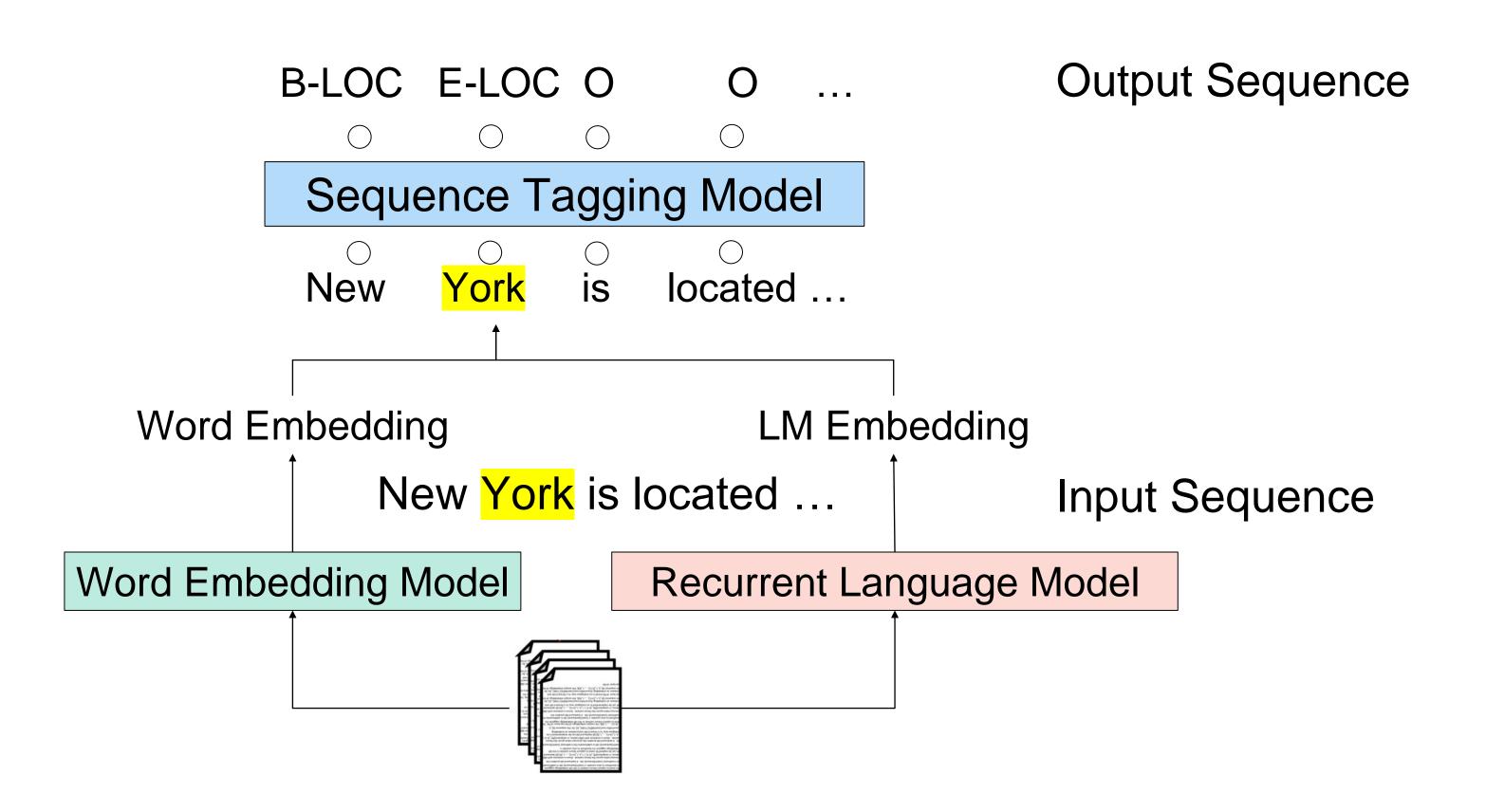
This LM producing context-specific word representations at each position

Slido: #ADL2021

Idea: condition the neural network on all previous words and tie the weights at

TagLM – "Pre-ELMo" 4

embeddings for the target task \rightarrow semi-supervised learning



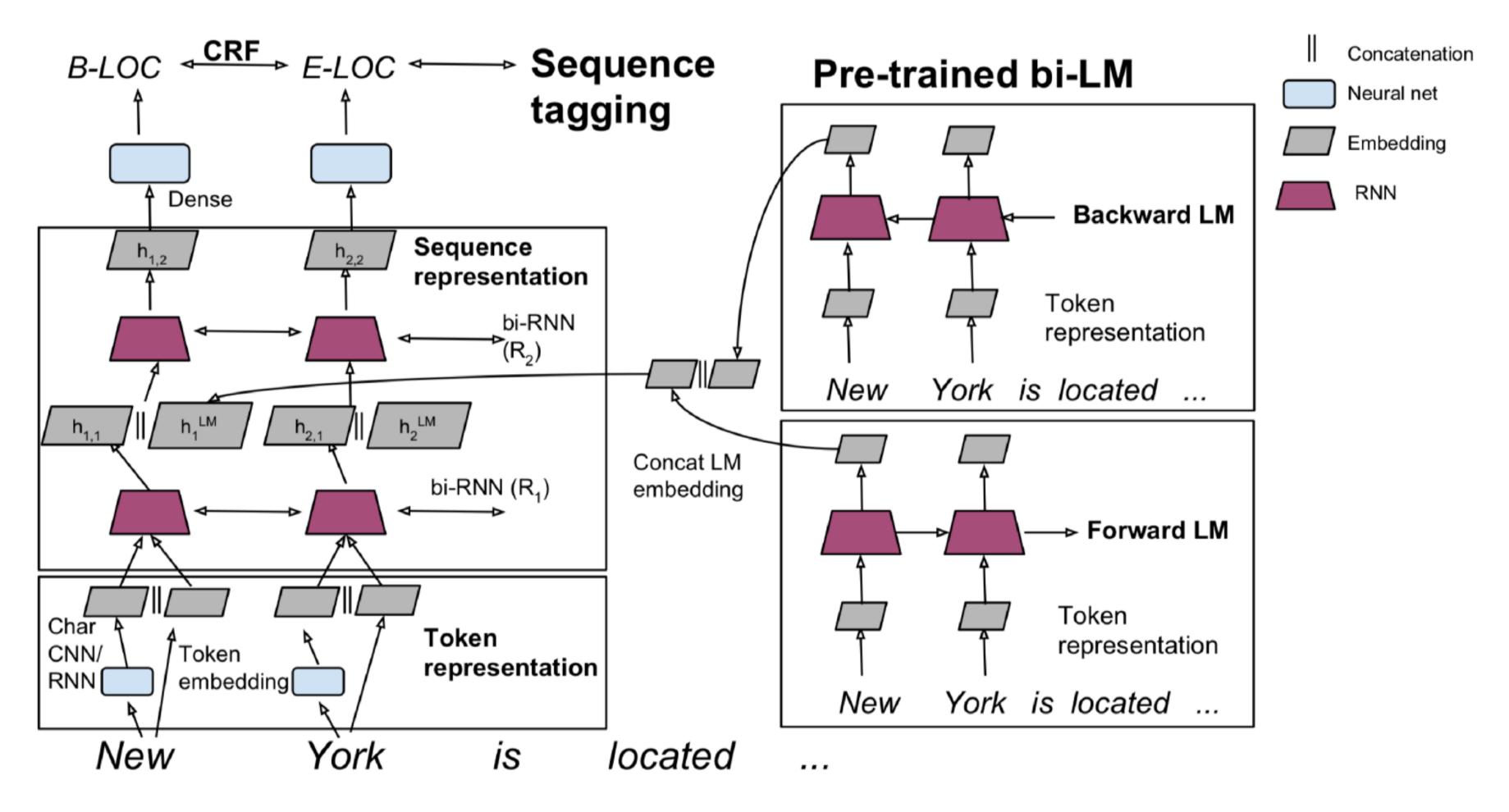
Peters et al., "Semi-supervised sequence tagging with bidirectional language models," in ACL, 2017.

Slido: #ADL2021

Idea: train NLM on big unannotated data and provide the <u>context-specific</u>

TagLM Model Detail 5

Leveraging pre-trained LM information



Peters et al., "Semi-supervised sequence tagging with bidirectional language models," in ACL, 2017.

TagLM on Name Entity Recognition

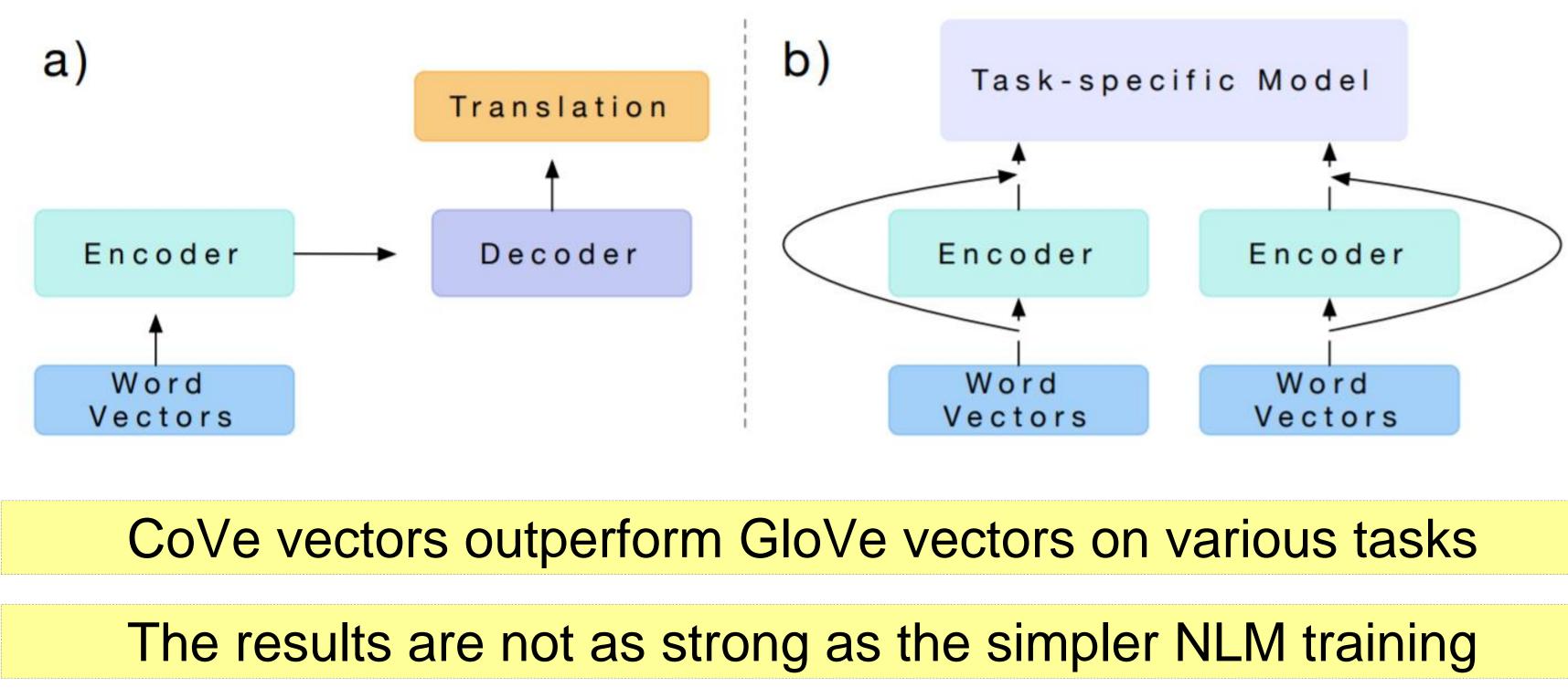
6

The decision by the independent MP Andrew Wilkie to withdraw his support for the minority Labor government sounded dramatic but it should not further threaten its stability. When, after the 2010 election, Wilkie, Rob Oakeshott, Tony Windsor and the Greens agreed to support Labor, they gave just two guarantees: confidence and supply.

Model	Description	CONLL 2003 F1
Klein+, 2003	MEMM softmax markov model	86.07
Florian+, 2003	Linear/softmax/TBL/HMM	88.76
Finkel+, 2005	Categorical feature CRF	86.86
Ratinov and Roth, 2009	CRF+Wiki+Word cls	90.80
Peters+, 2017	BLSTM + char CNN + CRF	90.87
Ma and Hovy, 2016	BLSTM + char CNN + CRF	91.21
TagLM (Peters+, 2017)	LSTM BiLM in BLSTM Tagger	91.93

Peters et al., "Semi-supervised sequence tagging with bidirectional language models," in ACL, 2017.

- MT is to capture the meaning of a sequence a)
- NMT provides the context for target tasks b)



McCann et al., "Learned in Translation: Contextualized Word Vectors", in NIPS, 2017.

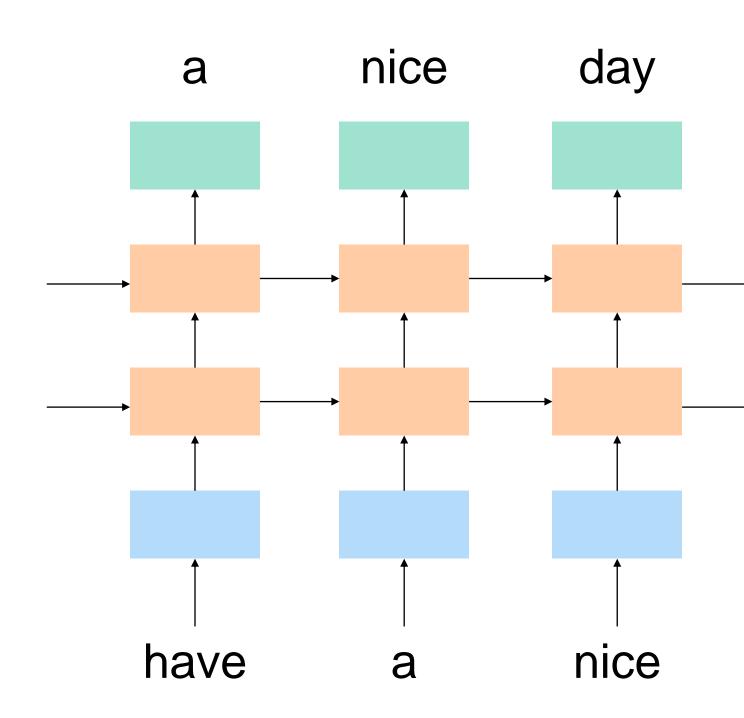
Slido: #ADL2021

Idea: use trained sequence model to provide contexts to other NLP tasks

Contextualized Word Embeddings ELMO

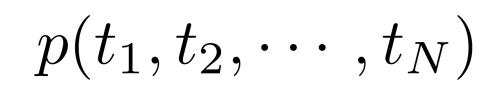
Slido: #ADL2021 **ELMo:** Embeddings from Language Models 9

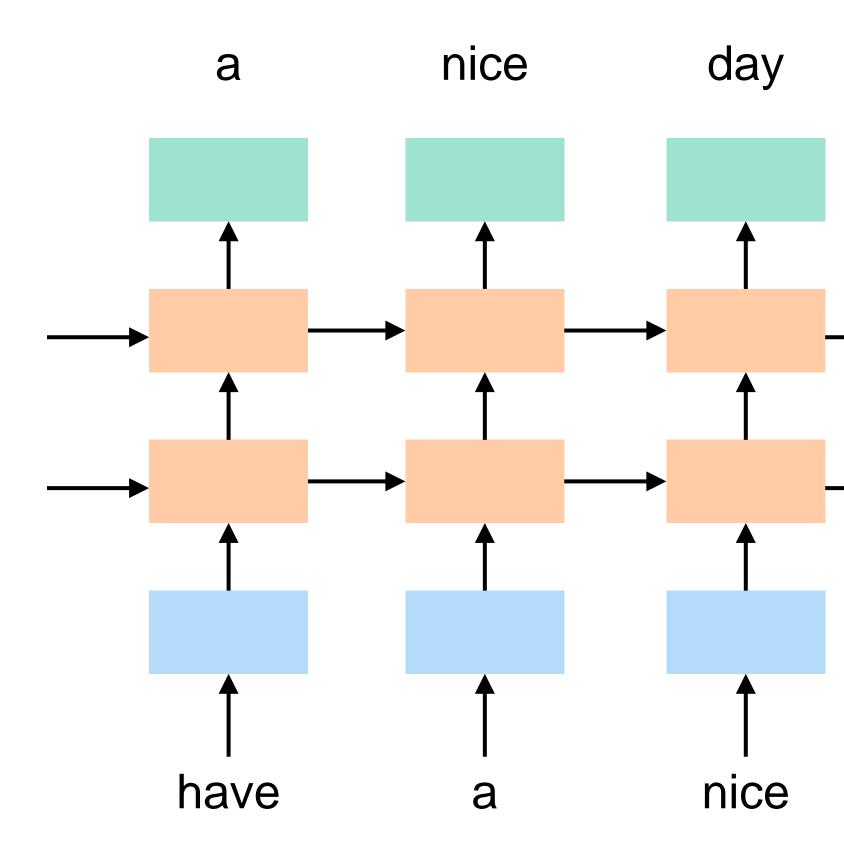
- Idea: contextualized word representations
- Learn word vectors using long contexts instead of a context window
- Learn a deep Bi-NLM and use all its layers in prediction



Peters et al., "Deep Contextualized Word Representations", in NAACL-HLT, 2018.

Bidirectional LM

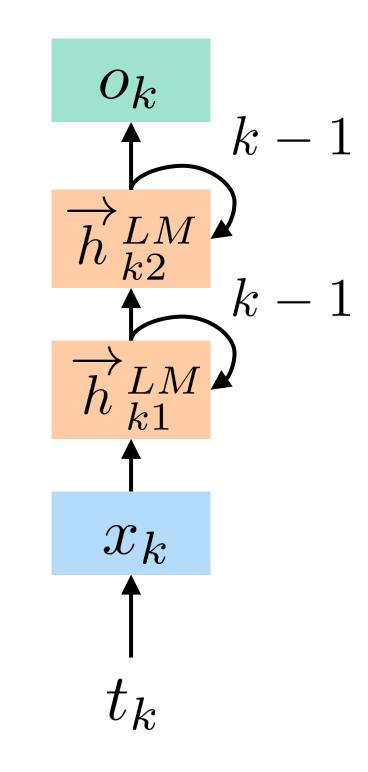




Peters et al., "Deep Contextualized Word Representations", in NAACL-HLT, 2018.

 $p(t_1, t_2, \cdots, t_N) = \prod p(t_k \mid t_1, \cdots, t_{k-1})$ k=1

Forward LM



11

Bidirectional LM

$$p(t_1, t_2, \cdots, t_N) = \prod_{\substack{k=1 \ N}}^N p(t_k \mid t_1, \cdots, t_{k-1})$$
$$p(t_1, t_2, \cdots, t_N) = \prod_{\substack{k=1 \ k=1}}^N p(t_k \mid t_{k+1}, \cdots, t_N)$$

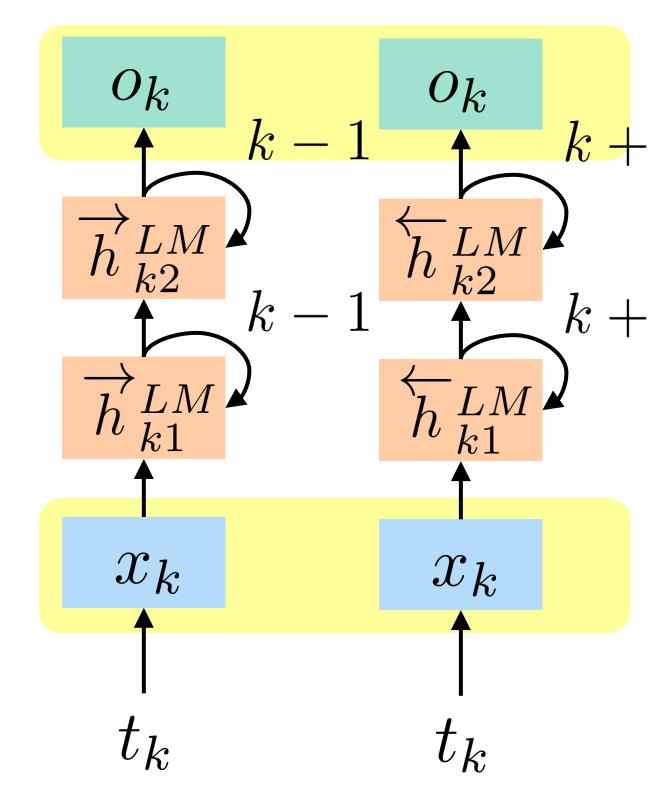
- Character CNN for initial word embeddings Ο 2048 n-gram filters, 2 highway layers, 512 dim projection
- 2 BLSTM layers Ο
- Parameter tying for input/output layers 0

$$O = \sum_{k=1}^{N} \left(\log p(t_k \mid t_1, \cdots, t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s) \right)$$

 $+\log p(t_k \mid t_{k+1}, \cdots, t_N; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s))$

Peters et al., "Deep Contextualized Word Representations", in NAACL-HLT, 2018.

Forward LM Backward LM



 $,t_N)$

12 ELMo: Embeddings from Language Models

2) ELMo

- Learn task-specific linear combination of LM embeddings
- Use multiple layers in LSTM instead of top one

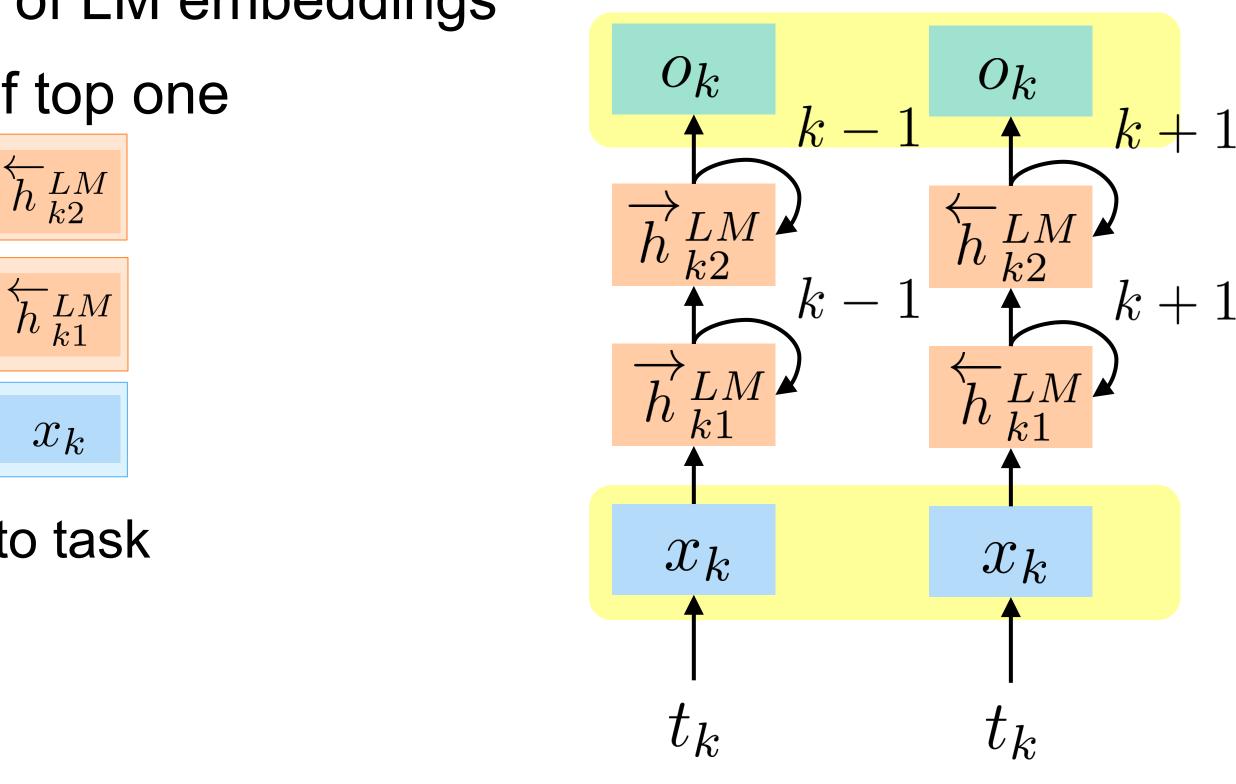
$$\text{ELMo}_{k}^{\text{task}} = \gamma^{\text{task}} \times \sum \left\{ \begin{array}{c} s_{2}^{\text{task}} \times h_{k2}^{LM} & \overrightarrow{h}_{k2}^{LM} \\ s_{1}^{\text{task}} \times h_{k1}^{LM} & \overrightarrow{h}_{k1}^{LM} \\ s_{0}^{\text{task}} \times h_{k0}^{LM} & x_{k} \end{array} \right.$$

- γ^{task} scales overall usefulness of ELMo to task
- s^{task} are softmax-normalized weights
- optional layer normalization

A task-specific embedding with combining weights learned from a downstream task

Peters et al., "Deep Contextualized Word Representations", in NAACL-HLT, 2018.

Forward LM Backward LM



sk

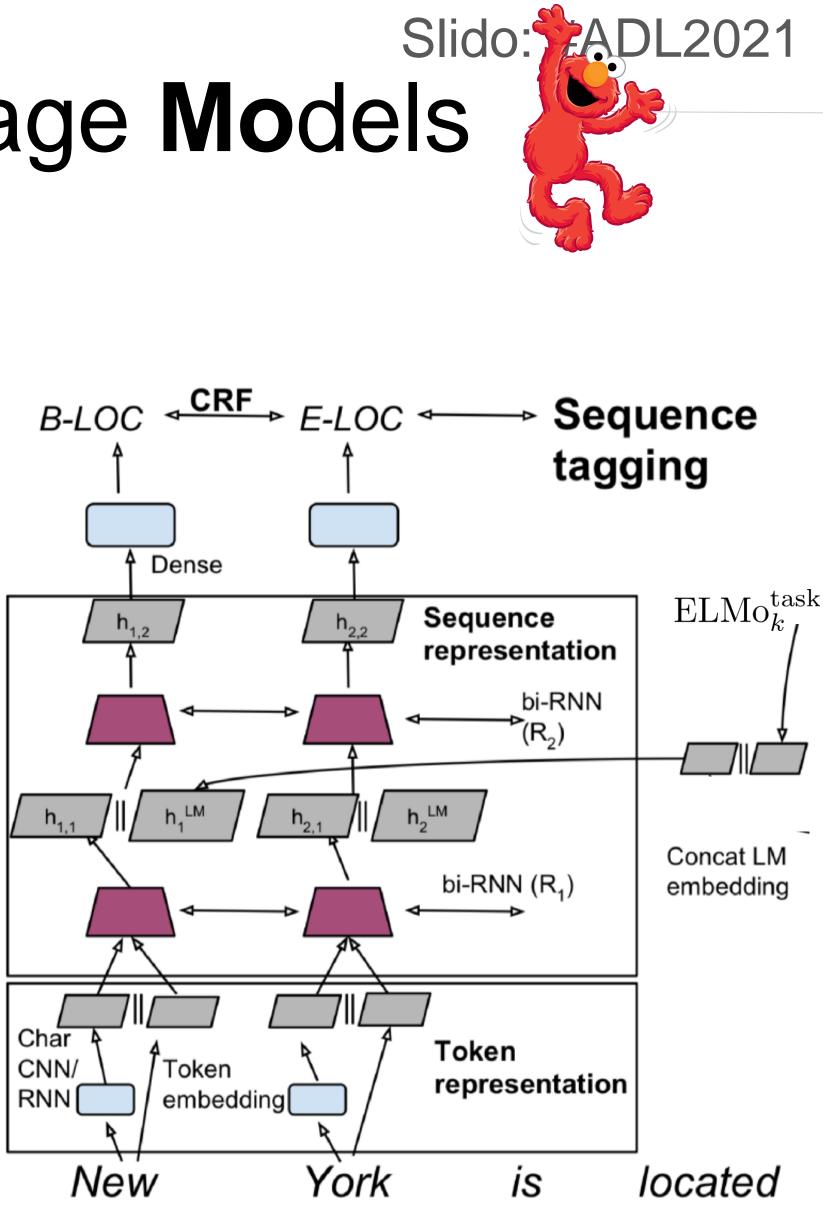
13

3) Use ELMo in Supervised NLP Tasks

- Get LM embedding for each word 0
- Freeze LM weights to form ELMo enhanced embeddings Ο $[h_k; ELMo_k^{task}]$: concatenate ELMo into the intermediate layer $[x_k; ELMo_k^{task}]$: concatenate ELMo into the input layer
- Tricks: dropout, regularization 0

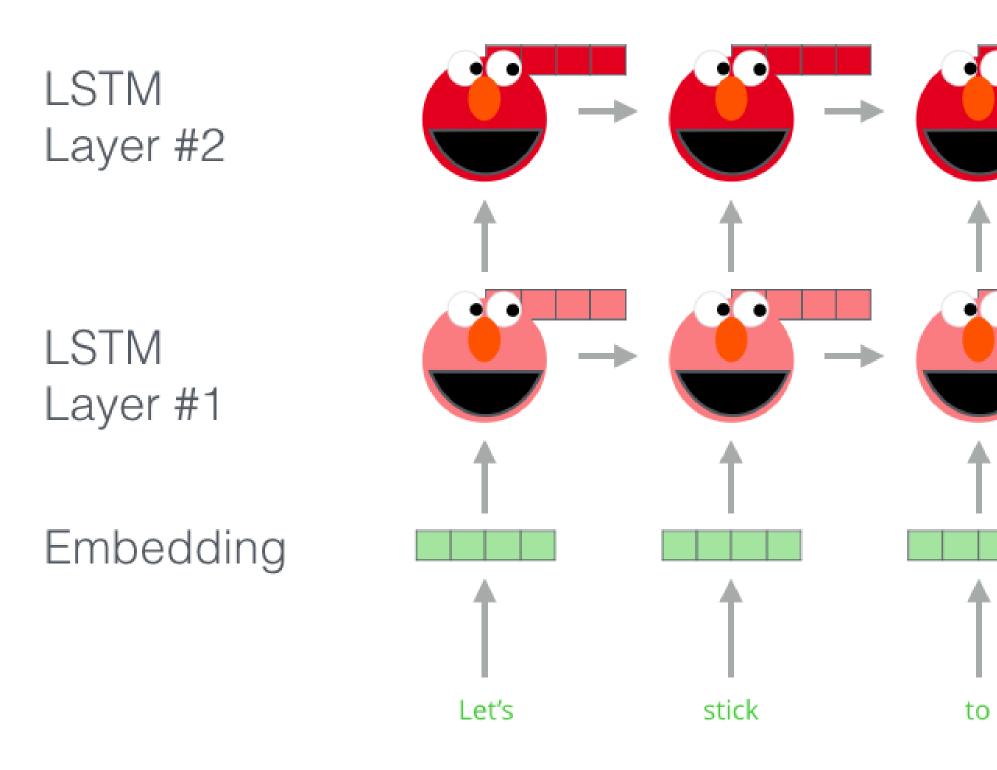
The way for concatenation depends on the task

Peters et al., "Deep Contextualized Word Representations", in NAACL-HLT, 2018.



Embedding of "stick" in "Let's stick to" - Step #1

Forward Language Model



Peters et al., "Deep Contextualized Word Representations", in NAACL-HLT, 2018.

• • Let's stick to

Backward Language Model

ELMo Illustration

Embedding of "stick" in "Let's stick to" - Step #2

1- Concatenate hidden layers

2- Multiply each vector by a weight based on the task

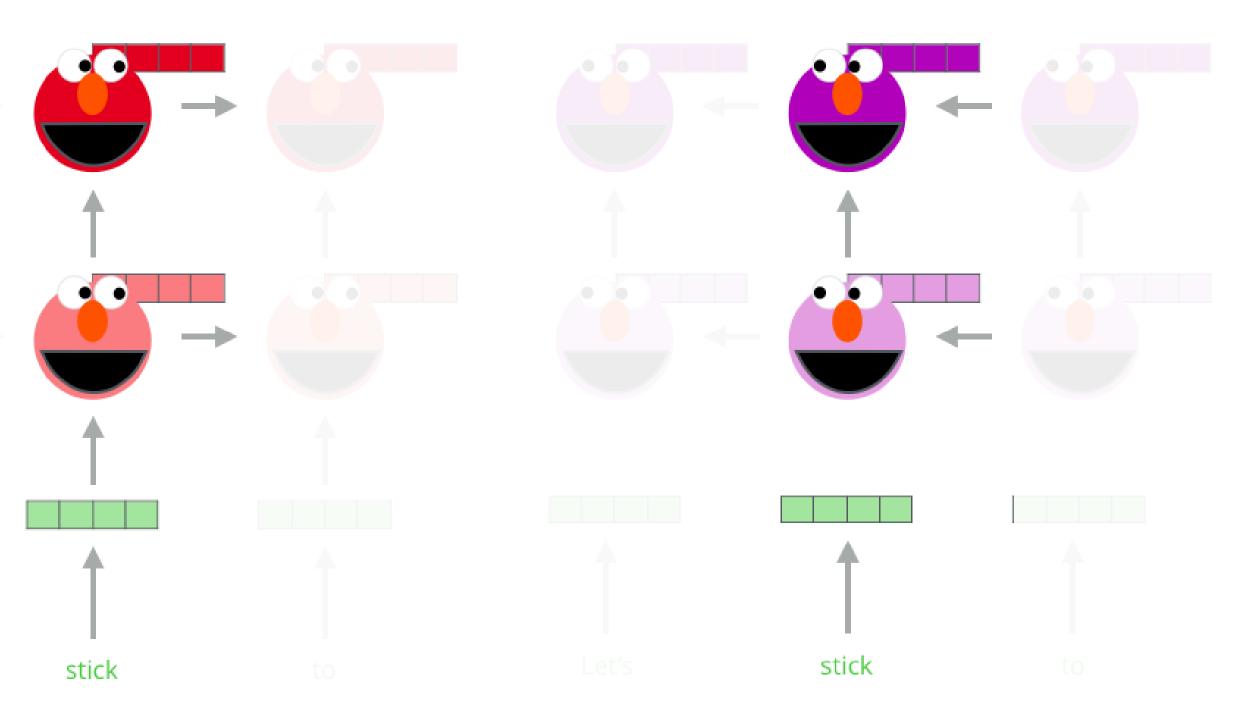
3- Sum the (now weighted) vectors

ELMo embedding of "stick" for this task in this context

Peters et al., "Deep Contextualized Word Representations", in NAACL-HLT, 2018.

Forward Language Model

Backward Language Model



ELMo on Name Entity Recognition

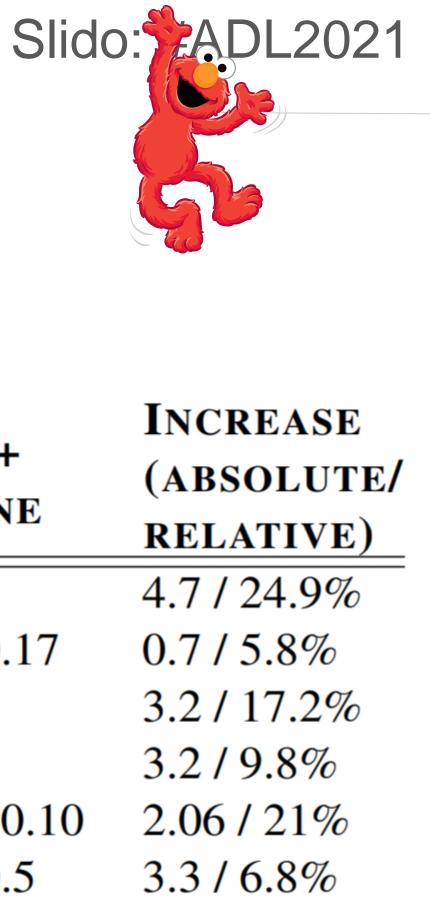
Model	Description	CONLL 2003 F1
Klein+, 2003	MEMM softmax markov model	86.07
Florian+, 2003	Linear/softmax/TBL/HMM	88.76
Finkel+, 2005	Categorical feature CRF	86.86
Ratinov and Roth, 2009	CRF+Wiki+Word cls	90.80
Peters+, 2017	BLSTM + char CNN + CRF	90.87
Ma and Hovy, 2016	BLSTM + char CNN + CRF	91.21
TagLM (Peters+, 2017)	LSTM BiLM in BLSTM Tagger	91.93
ELMo (Peters+, 2018)	ELMo in BLSTM	92.22

Peters et al., "Deep Contextualized Word Representations", in NAACL-HLT, 2018.

Improvement on various NLP tasks

	TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + baseline	INCREA (ABSOL RELATI
Machine Comprehension	SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.
Textual Entailment	SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8
Semantic Role Labeling	SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.
Coreference Resolution	Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2/9.8
Name Entity Recognition	NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21
Sentiment Analysis	SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8

Peters et al., "Deep Contextualized Word Representations", in NAACL-HLT, 2018.



Good transfer learning in NLP (similar to computer vision)

Word embeddings v.s. contextualized embeddings

	Source	Nea
GloVe	play	play Play
biLM	Chico Ruiz made a spec- tacular <u>play</u> on Alusik 's grounder {} Olivia De Havilland signed to do a Broadway <u>play</u> for Garson {}	Kie for exc { a su con

The biLM is able to disambiguate both the PoS and word sense in the source sentence

Peters et al., "Deep Contextualized Word Representations", in NAACL-HLT, 2018.

arest Neighbors

- ying, game, games, played, players, plays, player, y, football, multiplayer
- effer, the only junior in the group, was commended his ability to hit in the clutch, as well as his all-round cellent play.
- . } they were actors who had been handed fat roles in uccessful play, and had talent enough to fill the roles mpetently, with nice understatement.

ELMo Analysis 19

The two NLM layers have differentiated uses/meanings

- syntactic dependencies, NER)
- \checkmark labeling, question answering, SNLI)

PoS Tagging

Model	Acc.
Collobert et al. (2011)	97.3
Ma and Hovy (2016)	97.6
Ling et al. (2015)	97.8
CoVe, First Layer	<u>93.3</u>
CoVe, Second Layer	92.8
biLM, First Layer	97.3
biLM, Second Layer	96.8

Lower layer is better for lower-level **syntax**, etc. (e.g. Part-of-speech tagging,

Higher layer is better for higher-level **semantics** (e.g. sentiment, semantic role

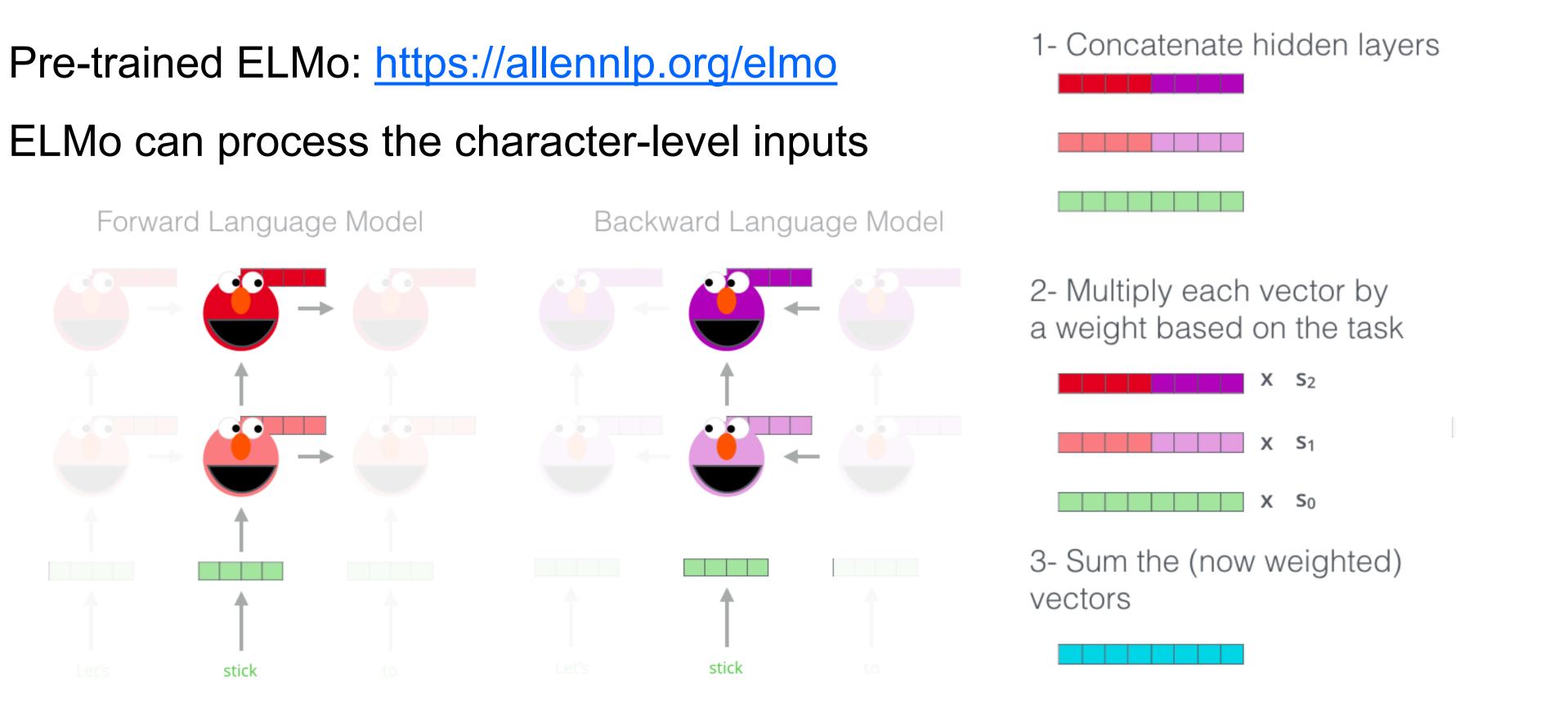
Word Sense Disambiguation

Model	\mathbf{F}_1
WordNet 1st Sense Baseline	65.9
Raganato et al. (2017a)	69.9
Iacobacci et al. (2016)	70.1
CoVe, First Layer	59.4
CoVe, Second Layer	64.7
biLM, First layer	67.4
biLM, Second layer	69.0

Concluding Remarks

20

- representations from biLMs
 - \checkmark
 - \checkmark



Slido: #ADL2021

Contextualized embeddings learned from LM provide informative cues ELMo – a general approach for learning high-quality deep context-dependent

