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Q Recurrent Neural Network Definition
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O Vanishing Gradient: Gating Mechanism

@® RNN: keeps temporal sequence information
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Issue: in theory, RNNs can handle such “long-term dependencies,” but they cannot in practice
= use gates to directly encode the long-distance information 1
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© Long Short-Term Memory

Addressing Vanishing Gradient Problem
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©® Long Short-Term Memory (LSTM)

® LSTMs are explicitly designed to avoid the long-term dependency problem
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©® Long Short-Term Memory (LSTM)
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Hochreiter and Schmidhuber, ‘& J%?. [link]



http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

©® Long Short-Term Memory (LSTM)
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runs straight down the chain with
minor linear interactions

—> easy for information to flow along
it unchanged

Gates are a way to optionally let
information through

—> composed of a sigmoid and a
pointwise multiplication operation

Hochreiter and Schmidhuber, "Long short-term memory,” in Neural Computation, 1997. [link]


http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

© Long Short-Term Memory (LSTM)
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forget gate (a sigmoid layer): decides
what information we’re going to throw
away from the cell state

Jt = O-(Wf'[ht—laxt] + bf)

* 1: “completely keep this”
* 0: “completely get rid of this”

Example: The cell state might include the gender of the present subject, so that the correct
pronouns can be used. When seeing a new subject, we want to forget the old subject’s gender.

Hochreiter and Schmidhuber, "Long short-term memory,” in Neural Computation, 1997. [link]


http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
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@ Long Short-Term Memory (LSTM)
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input gate (a sigmoid layer): decides what
new information we're going to store in
the cell state
i it =0 (W@"[ht_l,il?t] + b%)
‘ étl ~
O | [tanh | [Ct — tanh(WC'[ht_l,CCt] + bC’)]

Vanilla RNN

Example: We want to add the new subject’s gender to the cell state for replacing the old one.

Hochreiter and Schmidhuber, "Long short-term memory,” in Neural Computation, 1997. [link]


http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

@ Long Short-Term Memory (LSTM)
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cell state update: forgets the things we
decided to forget earlier and add the new
candidate values, scaled by how much
we decided to update each state value

Ct:ft*ct—l—l—’it*ét

« f;: decides which to forget
« i decide which to update

where we actually drop the information about the old subject’s gender and add the new information

Hochreiter and Schmidhuber, "Long short-term memory,” in Neural Computation, 1997. [link]


http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf

@ Long Short-Term Memory (LSTM)
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output gate (a sigmoid layer): decides what
new information we’re going to output

O = O'(WO [ht_l,xt] + bo)
hy = o4 * tanh (C})

Tt | Example: It might output whether the subject is singular or plural, so that we know what form a verb should
be conjugated into if that’s what follows next.

Hochreiter and Schmidhuber, "Long short-term memory,” in Neural Computation, 1997. [link]


http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
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@ Variants on LSTM

Addressing Vanishing Gradient Problem
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@ LSTM with Peephole Connections
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|dea: allow gate layers to look at the cell state
fe =0 Wy [Cs_1,hs—1, 4] + by)
i = o (Wi [Cy—1,he—1, 7¢] + b;)
o (W, [C¢, he—1,x¢] + by)
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Hochreiter and Schmidhuber, "Long short-term memory,” in Neural Computation, 1997. [link]


http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
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@ LSTM with Coupled Forget/Input Gates
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LSTM with Coupled Forget/Input Gates
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ldea: instead of separately deciding what

to forget and what we should add new

information to, we make those decisions

together

Ct:ft*ct—1+(1_ft)*ét

|
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We only forget when we’re going to input
something in its place, and vice versa.

Hochreiter and Schmidhuber, "Long short-term memory,” in Neural Computation, 1997. [link]


http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
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@ Gated Recurrent Unit

Addressing Vanishing Gradient Problem
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@ Gated Recurrent Unit (GRU)
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Idea: combine the forget and input gates into a single
“‘update gate”; merge the cell state and hidden state

update gate: zt = o (W. - [hs—1, 7))

reset gate: 1, = o (W, - [hy—1, x])

=0 ignore previous h; = tanh (W - [ry % he_1, z4])
- memory and only stores

- the new word information h; = (1 — Zt) * hp_1 + 24 * ;Lt

GRU is simpler and has less parameters than LSTM

Cho et al., "Learning phrase répresentations using RNN encoder-decoder for statistical machine translation, "a'r'Xi\/”p'r'épr’iht'é’r’Xiv:1406.1078, 2014. [link]


http://arxiv.org/pdf/1406.1078v3.pdf
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@ Concluding Remarks

@® Gating mechanism for vanishing gradient problem

® Gated RNN 6T9 C?D )
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