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語言模型

Language Modeling3
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Language Modeling

◉ Goal: estimate the probability of a word sequence

◉ Example task: determinate whether a sequence is grammatical or makes more 

sense

5

recognize speech

or

wreck a nice beach Output =  “recognize speech”

If P(recognize speech)

> P(wreck a nice beach)
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N-Gram Language Modeling

◉ Goal: estimate the probability of a word sequence

◉ N-gram language model
○ Probability is conditioned on a window of (n-1) previous words

○ Estimate the probability based on the training data

7

𝑃 beach|nice =
𝐶 nice each

𝐶 nice Count of “nice” in the training data

Count of “nice beach” in the training data

Issue: some sequences may not appear in the training data
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N-Gram Language Modeling

◉ Training data:
○ The dog ran ……

○ The cat jumped ……

8

P( jumped | dog ) = 0

P( ran | cat ) = 0
give some small probability

→ smoothing

0.0001

0.0001

➢ The probability is not accurate.

➢ The phenomenon happens because we cannot collect all the 

possible text in the world as training data.
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Neural Language Modeling

◉ Idea: estimate not from count, but from NN prediction
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Neural 

Network

vector of “START”

P(next word is 

“wreck”)

Neural 

Network

vector of “wreck”

P(next word is “a”)

Neural 

Network

vector of “a”

P(next word is 

“nice”)

Neural 

Network

vector of “nice”

P(next word is 

“beach”)

P(“wreck a nice beach”) = P(wreck | START) P(a | wreck) P(nice | a) P(beach | nice)
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Neural Language Modeling11

Bengio et al., “A Neural Probabilistic Language Model,” in JMLR, 2003.

input

hidden

output

context vector

Probability distribution 

of the next word
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Neural Language Modeling

◉ The input layer (or hidden layer) of the related words are close

○ If P(jump | dog) is large, P(jump | cat) increase accordingly (even there is not 

“… cat jump …” in the data)

12

h1

h2

dog

cat

rabbit

Smoothing is automatically done 

Issue: fixed context window for conditioning
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Recurrent Neural Network

◉ Idea: condition the neural network on all previous words and tie the weights at 

each time step

◉ Assumption: temporal information matters

14
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RNN Language Modeling15

vector of “START”

P(next word is 

“wreck”)

vector of “wreck”

P(next word is 

“a”)

vector of “a”

P(next word is 

“nice”)

vector of “nice”

P(next word is 

“beach”)

input

hidden

output

context vector

word prob dist

Idea: pass the information from the previous hidden layer to leverage all contexts
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詳細解析鼎鼎大名的RNN

Recurrent Neural Network16



Slido: #ADL2021

Outline

◉ Language Modeling
○ N-gram Language Model
○ Feed-Forward Neural Language Model
○ Recurrent Neural Network Language Model (RNNLM)

◉ Recurrent Neural Network
○ Definition
○ Training via Backpropagation through Time (BPTT)
○ Training Issue
○ Extension

◉ RNN Applications
○ Sequential Input
○ Sequential Output

■ Aligned Sequential Pairs (Tagging)
■ Unaligned Sequential Pairs (Seq2Seq/Encoder-Decoder)

17



Slido: #ADL2021

RNNLM Formulation

◉ At each time step,

18

…………

……

……

vector of the current word

probability of the next word
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Recurrent Neural Network Definition20

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

: tanh, ReLU



Slido: #ADL2021

Model Training

◉ All model parameters                                    can be updated by

21

http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/

yt-1 yt+1yt target

predicted
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Backpropagation23
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Backpropagation24
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Backpropagation through Time (BPTT)

◉ Unfold

○ Input: init, x1, x2, …, xt

○ Output: ot

○ Target: yt

25
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Backpropagation through Time (BPTT)

◉ Unfold

○ Input: init, x1, x2, …, xt

○ Output: ot

○ Target: yt

26

init

st yt
xt ot

xt-1 st-1

xt-2

x1 s1

st-2

1

2

n

…

1

2

n

…

( )yC



Slido: #ADL2021

Backpropagation through Time (BPTT)

◉ Unfold

○ Input: init, x1, x2, …, xt

○ Output: ot

○ Target: yt
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Backpropagation through Time (BPTT)

◉ Unfold

○ Input: init, x1, x2, …, xt

○ Output: ot

○ Target: yt
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Backpropagation through Time (BPTT)

◉ Unfold

○ Input: init, x1, x2, …, xt

○ Output: ot

○ Target: yt

29

init

st yt
xt ot

xt-1 st-1

xt-2

x1 s1

st-2

j

i

k

i

k

j

i

j

i

k

j

( )yC
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BPTT30

For 𝐶(1)Backward Pass:
For 𝐶(2)

For 𝐶(3)For 𝐶(4)

Forward Pass: Compute s1, s2, s3, s4 ……

y1 y2 y3

x1
x2 x3

o1 o2
o3

init

y4

x4

o4

𝐶(1) 𝐶(2) 𝐶(3) 𝐶(4)

s1 s2 s3
s4
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RNN Training Issue

◉ The gradient is a product of Jacobian matrices, each associated with a step in 

the forward computation

◉ Multiply the same matrix at each time step during backprop

32

The gradient becomes very small or very large quickly

→ vanishing or exploding gradient

Bengio et al., “Learning long-term dependencies with gradient descent is difficult,” IEEE Trans. of Neural Networks, 1994. [link]

Pascanu et al., “On the difficulty of training recurrent neural networks,” in ICML, 2013. [link]

http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
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w2

w1

C
o

s
t

Rough Error Surface33

The error surface is either very flat or very steep

Bengio et al., “Learning long-term dependencies with gradient descent is difficult,” IEEE Trans. of Neural Networks, 1994. [link]

Pascanu et al., “On the difficulty of training recurrent neural networks,” in ICML, 2013. [link]

http://www-dsi.ing.unifi.it/~paolo/ps/tnn-94-gradient.pdf
http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
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Vanishing/Exploding Gradient Example34
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Solution for Exploding Gradient: Clipping35

w2

w1

C
o
s
t

clipped gradient Idea: control the gradient value to avoid exploding

Parameter setting: values from half to ten times 

the average can still yield convergence

Pascanu et al., “On the difficulty of training recurrent neural networks,” in ICML, 2013. [link]

http://www.jmlr.org/proceedings/papers/v28/pascanu13.pdf
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Solution for Vanishing Gradient: Gating

◉ RNN models temporal sequence information
○ can handle “long-term dependencies” in theory

36

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Issue: RNN cannot handle “long-term dependencies” due to vanishing gradient

→ gating directly encodes long-distance information

“I grew up in France…

I speak fluent French.”
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Extension: Bidirectional RNN37

ℎ = ℎ; ℎ represents (summarizes) the past and future around a single token
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Extension: Deep Bidirectional RNN38

Each memory layer passes an intermediate representation to the next
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RNN各式應用情境

RNN Applications39
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How to Frame the Learning Problem?

◉ The learning algorithm f is to map the input domain X into the output domain Y

◉ Input domain: word, word sequence, audio signal, click logs

◉ Output domain: single label, sequence tags, tree structure, probability distribution

41

YXf →:

Network design should leverage input and output domain properties
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Input Domain – Sequence Modeling

◉ Idea: aggregate the meaning from all words into a vector

◉ Method:
○ Basic combination: average, sum

○ Neural combination: 
✓ Recursive neural network (RvNN)

✓ Recurrent neural network (RNN)

✓ Convolutional neural network (CNN)

43

How to compute

規格

(specification)

誠意

(sincerity)

這

(this)

有

(have)

N-dim
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誠意這 規格 有

x4

h4

Sentiment Analysis

◉ Encode the sequential input into a vector using RNN

44

1x

2x

……

1y

2y

… …

…

…

…

Input Output

My
Nx

RNN considers temporal information to learn sentence vectors as classifier’s input
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Output Domain – Sequence Prediction

◉ POS Tagging

◉ Speech Recognition

◉ Machine Translation

46

“推薦我台大後門的餐廳” 推薦/VV我/PN台大/NR後門/NN的/DEG餐廳/NN

“大家好”

“How are you doing today?” “你好嗎?”

The output can be viewed as a sequence of classification
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POS Tagging

◉ Tag a word at each timestamp
○ Input: word sequence

○ Output: corresponding POS tag sequence

48

四樓 好 專業

N VA AD
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Natural Language Understanding (NLU)

◉ Tag a word at each timestamp
○ Input: word sequence

○ Output: IOB-format slot tag and intent tag

49

<START>  just   sent   email   to   bob   about   fishing   this   weekend     <END>

O O O O

B-contact_name

O

B-subject I-subjectI-subject

→ send_email(contact_name=“bob”, subject=“fishing this weekend”)

O

send_email

Temporal orders for input and output are the same
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超棒 的 醬汁

Machine Translation

◉ Cascade two RNNs, one for encoding and one for decoding
○ Input: word sequences in the source language

○ Output: word sequences in the target language

51

encoder

decoder
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Chit-Chat Dialogue Modeling

◉ Cascade two RNNs, one for encoding and one for decoding
○ Input: word sequences in the question

○ Output: word sequences in the response

52

Temporal ordering for input and output may be different
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Sci-Fi Short Film - SUNSPRING53

https://www.youtube.com/watch?v=LY7x2Ih

qj
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Concluding Remarks
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○ Vanishing/Exploding Gradient

◉ RNN Applications
○ Sequential Input: Sequence-Level Embedding

○ Sequential Output: Tagging / Seq2Seq (Encoder-Decoder)

54


