26 Task-Oriented Dialogue Systems (Young, 2000)

27—Natural Language Understanding (NLU)

Parse natural language into structured semantics

28—Natural Language Generation (NLG)

Construct natural language based on structured semantics

Natural Language Semantic Frame McDonald's is a cheap restaurant RESTAURANT="McDonald's" pRICE="cheap" LOCATION= "nearby the station" NLG NLG

29 Duality between NLU and NLG

30 Dual Supervised Learning for NLU & NLG (Su et al., 2019)

31 DSL: Dual Supervised Learning (Xia et al., 2017)

- Proposed for machine translation
- Consider two domains X and Y, and two tasks $X \to Y$ and $Y \to X$

We have P(x, y) = P(x | y)P(y) = P(y | x)P(x)Ideally $P(x, y) = P(x | y; \theta_{y \to x})P(y) = P(y | x; \theta_{x \to y})P(x)$

Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N., & Liu, T. Y., "Dual supervised learning," in *Proc. of ICML*, 2017.

32—Dual Supervised Learning

• Exploit the duality by forcing models to follow the probabilistic constraint $P(x | y; \theta_{y \to x})P(y) = P(y | x; \theta_{x \to y})P(x)$

Objective function

$$\begin{cases} \min_{\theta_{x \to y}} \mathbb{E} [l_1(f(x; \theta_{x \to y}), y)] + \lambda_{x \to y} \ l_{duality} \\ \min_{\theta_{y \to x}} \mathbb{E} [l_2(g(y; \theta_{y \to x}), x)] + \lambda_{y \to x} \ l_{duality} \\ l_{duality} = \left(\log \hat{P}(x) + \log P(y \mid x; \theta_{x \to y}) - \log \hat{P}(y) - \log P(x \mid y; \theta_{y \to x}) \right)^2 \end{cases}$$

How to model the marginal distributions of *X* and *Y*?

Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N., & Liu, T. Y., "Dual supervised learning," in *Proc. of ICML*, 2017.

33 Dual Supervised Learning

Let's go back to NLU and NLG

34—Natural Language $\log \hat{P}(x)$

Language modeling

$$p(x) = \prod_{d}^{D} p(x_d \mid x_1, ..., x_{d-1})$$

- We treat NLU as a multi-label classification problem
- Each label is a slot-value pair

How to model the marginal distributions of y?

()

Semantic Frame $\log \hat{P}(y)$

Naïve approach

- Calculate prior probability for each label $\hat{P}(y_i)$ on training set.
- $\hat{P}(y) = \prod \hat{P}(y_i)$

Assumption: labels are independent

Restaurant: "McDonald's"	Price: "cheap"	Food: "Pizza"
Restaurant: "KFC"	Price: "expensive"	Food: "Hamburger"
Restaurant: "PizzaHut"		Food:"Chinese"

Semantic Frame $\log \hat{P}(y)$

Masked autoencoder for distribution estimation (MADE)

Introduce sequential dependency among labels by masking certain connections

$$M = \begin{cases} 1 & \text{if } m^{l}(k') \ge m^{l-1}(k) \text{ or } m^{L}(d) > m^{L-1}(k) \\ 0 & \text{otherwise} \end{cases}$$

$$p(x) = \prod_{d}^{D} p(x_d \mid S_d)$$

 \rightarrow marginal distribution of y

Germain, M., Gregor, K., Murray, I., & Larochelle, H., "MADE: Masked autoencoder for distribution estimation," in *Proceedings of International Conference on Machine Learning*, 2015.

- E2E NLG data: 50k examples in the restaurant domain
- NLU: F-1 score; NLG: BLEU, ROUGE

- E2E NLG data: 50k examples in the restaurant domain
- NLU: F-1 score; NLG: BLEU, ROUGE

- E2E NLG data: 50k examples in the restaurant domain
- NLU: F-1 score; NLG: BLEU, ROUGE

42—Task-Oriented Dialogue Systems (Young, 2000)

45 Unstructured Knowledge Access

• A machine reads big text data

- serves as a teacher
- A user can ask questions
 - serves as a student
 - in a conversational manner

\rightarrow Conversational QA

Section: Sectio: Section: Section: Section: Section: Section: Section: Sect **STUDENT: What is the origin of Daffy Duck?** TEACHER: \hookrightarrow first appeared in Porky's Duck Hunt STUDENT: What was he like in that episode? TEACHER: \hookrightarrow assertive, unrestrained, combative STUDENT: Was he the star? TEACHER: \rightarrow No, barely more than an unnamed bit player in this short STUDENT: Who was the star? TEACHER: \checkmark No answer STUDENT: Did he change a lot from that first episode in future episodes? TEACHER: \hookrightarrow Yes, the only aspects of the character that have remained consistent (...) are his voice characterization by Mel Blanc STUDENT: How has he changed? TEACHER: \hookrightarrow Daffy was less anthropomorphic STUDENT: In what other ways did he change? TEACHER: \hookrightarrow Daffy's slobbery, exaggerated lisp (...) is barely noticeable in the early cartoons. STUDENT: Why did they add the lisp? TEACHER: \hookrightarrow One often-repeated "official" story is that it was modeled after producer Leon Schlesinger's tendency to lisp. STUDENT: Is there an "unofficial" story? TEACHER: \hookrightarrow Yes, Mel Blanc (...) contradicts that conventional belief . . .

Solution: FlowDelta (Yeh & Chen, 2019)

FlowDelta: Information Gain in Dialogue Flow

Idea: model the difference of hidden states in multi-turn dialogues

Conversation Flow (over Context)

48 FlowDelta (Yeh & Chen, 2019)

Idea: model the difference of hidden states in multi-turn dialogues

Data: QuAC, CoQA

Data: QuAC, CoQA

Data: QuAC, CoQA

52—QuAC Leaderboard

Rank	Model	F1	HEQQ	HEQD
	Human Performance (Choi et al. EMNLP '18)	81.1	100	100
Sep 15, 2019	History-Attentive-TransBERT (single model) Alibaba Al Labs	72.9	69.7	13.6
2 Aug 31, 2019	TransBERT (single model) Anonymous	71.4	68.1	10.0
3 Apr 24, 2019	Bert-FlowDelta (single model) National Taiwan University, MiuLab https://arxiv.org/abs/1908.05117	67.8	63.6	12.1
4 June 13, 2019	Context-Aware-BERT (single model) Anonymous	69.6	65.7	8.1
5 Aug 22, 2019	BertMT (single model) WeChat Al	68.9	65.2	8.9
6 Sep 9, 2019	BertInfoFlow (single model) PINGAN Omni-Sinitic	69.3	65.2	8.5

- Spoken language embeddings are needed for better conversational AI
 - Written texts enough for pre-training embeddings
 - Mismatch when applying to spoken language
- 1) Adapting Transformer to ASR lattices

- 2) Adapting contextualized embeddings robust to misrecognition
- Leveraging the duality of NLU and NLG improves the scalability
 - Apply dual supervised learning to leverage the duality
 - Data distribution property is important
 - Better performance and flexibility for diverse NLU/NLG models

Conversational QA enables unstructured information access

• FlowDelta: information gain in dialogue flow guides better understanding