
Task-Oriented Dialogue Systems (Young, 2000)

Speech 
Recognition

Language Understanding (LU)
• Domain Identification
• User Intent Detection
• Slot Filling

Dialogue Management (DM)
• Dialogue State Tracking (DST)
• Dialogue Policy

Natural Language 
Generation (NLG)

Hypothesis
are there any action movies to 
see this weekend

Semantic Frame
request_movie
genre=action, date=this weekend

System Action/Policy
request_location

Text response
Where are you located?

Text Input
Are there any action movies to see this weekend?

Speech Signal

Database
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Natural Language Understanding (NLU)

◉ Parse natural language into structured semantics

NLU

Natural Language

McDonald’s is a cheap restaurant 

nearby the station. 

Semantic Frame

RESTAURANT=“McDonald’s”

PRICE=“cheap”

LOCATION= “nearby the station”
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Natural Language Generation (NLG)

◉ Construct natural language based on structured semantics

Natural Language

McDonald’s is a cheap restaurant 

nearby the station. 

Semantic Frame

RESTAURANT=“McDonald’s”

PRICE=“cheap”

LOCATION= “nearby the station”

NLG
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Duality between NLU and NLG

Natural Language

McDonald’s is a cheap restaurant 

nearby the station. 

Semantic Frame

RESTAURANT=“McDonald’s”

PRICE=“cheap”

LOCATION= “nearby the station”

NLG

NLU

How can we leverage this dual relationship?
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Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natural Language Understanding 

and Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.

Solution: 
Dual Supervised Learning 

for NLU & NLG
(Su et al., 2019)
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DSL: Dual Supervised Learning (Xia et al., 2017)

◉ Proposed for machine translation

◉ Consider two domains 𝑋 and 𝑌, and two tasks 𝑋 → 𝑌 and 𝑌 → 𝑋

𝑋 𝑌

𝜽𝒚→𝒙

𝜽𝒙→𝒚

We have 𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑦)𝑃 𝑦 = 𝑃 𝑦 𝑥)𝑃(𝑥)

Ideally 𝑃 𝑥, 𝑦 = 𝑃 𝑥 𝑦; 𝜽𝒚→𝒙)𝑃 𝑦 = 𝑃 𝑦 𝑥; 𝜽𝒙→𝒚)𝑃(𝑥)

Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N., & Liu, T. Y., “Dual supervised learning,” in Proc. of ICML, 2017.
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Dual Supervised Learning

◉ Exploit the duality by forcing models to follow the probabilistic 

constraint 𝑃 𝑥 𝑦; 𝜽𝒚→𝒙)𝑃 𝑦 = 𝑃 𝑦 𝑥; 𝜽𝒙→𝒚)𝑃(𝑥)

Objective function

ቐ
min𝜃𝑥→𝑦𝔼 𝑙1(𝑓 𝑥; 𝜃𝑥→𝑦 , 𝑦)

min𝜃𝑦→𝑥𝔼 𝑙2(𝑔 𝑦; 𝜃𝑦→𝑥 , 𝑥)

+ 𝜆𝑥→𝑦 𝑙𝑑𝑢𝑎𝑙𝑖𝑡𝑦

+ 𝜆𝑦→𝑥 𝑙𝑑𝑢𝑎𝑙𝑖𝑡𝑦

How to model the marginal distributions of 𝑋 and 𝑌? 

Xia, Y., Qin, T., Chen, W., Bian, J., Yu, N., & Liu, T. Y., “Dual supervised learning,” in Proc. of ICML, 2017.
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Dual Supervised Learning

◉ Let’s go back to NLU and NLG

Natural Language

McDonald’s is a cheap restaurant 

nearby the station. 

Semantic Frame

RESTAURANT=“McDonald’s”

PRICE=“cheap”

LOCATION= “nearby the station”

NLG

NLU

Natural Language

X
Semantic Frame

Y

log𝑷(𝒙) log𝑷(𝒚)

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natural Language Understanding 

and Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.
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Natural Language  log 𝑃(𝑥)

◉ Language modeling

GRU

𝑥𝑑−1

𝑃 𝑥𝑑 𝑥1, … , 𝑥𝑑−1)

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natural Language Understanding 

and Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.
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Semantic Frame  log 𝑃(𝑦)

◉ We treat NLU as a multi-label classification problem

◉ Each label is a slot-value pair

RESTAURANT=“McDonald’s”

PRICE=“cheap”

LOCATION= “nearby the station”

0

1

.

.

.

0

1

How to model the marginal distributions of 𝑦? 
Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natural Language Understanding 

and Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.
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Semantic Frame  log 𝑃(𝑦)

◉ Naïve approach
○ Calculate prior probability for each label 𝑃(𝑦𝑖) on training set.

○ 𝑃 𝑦 = ς 𝑃(𝑦𝑖)

Assumption: labels are independent

Restaurant: “McDonald’s”

Restaurant: “KFC”

Restaurant: “PizzaHut”

Price: “cheap”

Price: “expensive”

Food: “Pizza”

Food: “Hamburger”

Food:”Chinese”

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natural Language Understanding 

and Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.
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Semantic Frame  log 𝑃(𝑦)

◉ Masked autoencoder for distribution estimation (MADE)

2 1 3

1 2 2 1

2 1 3

Introduce sequential dependency among 

labels by masking certain connections

→ marginal distribution of 𝑦

Germain, M., Gregor, K., Murray, I., & Larochelle, H., “MADE: Masked autoencoder for distribution estimation,” 

in Proceedings of International Conference on Machine Learning, 2015.
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GRU

McDonald’s is

…

station

Linear

0

1

.

.

.

0

1

NLU

GRU

<BOS> McDonald’s

…

station

NLG
0

1

.

.

.

0

1

McDonald’s is <EOS>

Shang-Yu Su, Chao-Wei Huang, and Yun-Nung Chen, “Dual Supervised Learning for Natural Language Understanding 

and Generation,” in Proceedings of The 57th Annual Meeting of the Association for Computational Linguistics (ACL), 2019.
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NLU/NLG Results

◉ E2E NLG data: 50k examples in the restaurant domain

◉ NLU: F-1 score; NLG: BLEU, ROUGE

50 55 60 65 70 75

F1

BLEU

ROUGE-1

NLG Baseline

NLG Baseline

NLU Baseline
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NLU/NLG Results

◉ E2E NLG data: 50k examples in the restaurant domain

◉ NLU: F-1 score; NLG: BLEU, ROUGE

50 55 60 65 70 75

F1

BLEU

ROUGE-1

NLU Baseline

DSL w/o MADE

DSL w/o MADE

DSL w/o MADE

NLG Baseline

NLG Baseline
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NLU/NLG Results

◉ E2E NLG data: 50k examples in the restaurant domain

◉ NLU: F-1 score; NLG: BLEU, ROUGE

50 55 60 65 70 75

F1

BLEU

ROUGE-1

NLU Baseline

DSL w/ MADE

DSL w/ MADE

DSL w/o MADE

DSL w/ MADE

DSL w/o MADE

DSL w/o MADE

NLG Baseline

NLG Baseline

41



Task-Oriented Dialogue Systems (Young, 2000)

Speech 
Recognition

Language Understanding (LU)
• Domain Identification
• User Intent Detection
• Slot Filling

Dialogue Management (DM)
• Dialogue State Tracking (DST)
• Dialogue Policy

Natural Language 
Generation (NLG)

Hypothesis
are there any action movies to 
see this weekend

Semantic Frame
request_movie
genre=action, date=this weekend

System Action/Policy
request_location

Text response
Where are you located?

Text Input
Are there any action movies to see this weekend?

Speech Signal

Database
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Unstructured Knowledge Access

◉ A machine reads big text data
○ serves as a teacher

◉ A user can ask questions 
○ serves as a student

○ in a conversational manner

→ Conversational QA
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Solution: FlowDelta

(Yeh & Chen, 2019)

Yi-Ting Yeh and Yun-Nung Chen, "FlowDelta: Modeling Flow Information Gain in Reasoning for Conversational Machine 

Comprehension," in Proceedings of Machine Reading for Question Answering Workshop at EMNLP (MRQA), 2019.
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FlowDelta: Information Gain in Dialogue Flow

◉ Idea: model the difference of hidden states in multi-turn dialogues

Conversation Flow (over Context)

Time (Question Turns)

Δ Δ Δ Δ… …

Δ Δ Δ Δ… …

ℎ𝑡−1,𝑗

ℎ𝑡,𝑗

𝑐𝑡,𝑗

FlowDelta: Modeling Flow Information Gain

ℎ𝑡,2

𝑐𝑡,2

ℎ𝑡−1,2

ℎ𝑡,1

𝑐𝑡,1

ℎ𝑡−1,1

… …

Q1

Q2

Q3

… …

… …

Yi-Ting Yeh and Yun-Nung Chen, "FlowDelta: Modeling Flow Information Gain in Reasoning for Conversational Machine 

Comprehension," in Proceedings of Machine Reading for Question Answering Workshop at EMNLP (MRQA), 2019.
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FlowDelta (Yeh & Chen, 2019)

◉ Idea: model the difference of hidden states in multi-turn dialogues

i-th Question Context

i-th AnswerFlowQA
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Conversational QA Results

◉ Data: QuAC, CoQA

60 62 64 66 68 70 72 74 76 78 80

CoQA

QuAC

FlowQA

BERT

FlowQA

BERT

Yi-Ting Yeh and Yun-Nung Chen, "FlowDelta: Modeling Flow Information Gain in Reasoning for Conversational Machine 

Comprehension," in Proceedings of Machine Reading for Question Answering Workshop at EMNLP (MRQA), 2019.
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Conversational QA Results

◉ Data: QuAC, CoQA

60 62 64 66 68 70 72 74 76 78 80

CoQA

QuAC

FlowQA

+ Flow
BERT

FlowQA

+ Flow
BERT

Yi-Ting Yeh and Yun-Nung Chen, "FlowDelta: Modeling Flow Information Gain in Reasoning for Conversational Machine 

Comprehension," in Proceedings of Machine Reading for Question Answering Workshop at EMNLP (MRQA), 2019.
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Conversational QA Results

◉ Data: QuAC, CoQA

60 62 64 66 68 70 72 74 76 78 80

CoQA

QuAC

FlowQA
+ FlowDelta

+ FlowDelta
+ Flow

BERT

FlowQA
+ FlowDelta

+ FlowDelta
+ Flow

BERT

Yi-Ting Yeh and Yun-Nung Chen, "FlowDelta: Modeling Flow Information Gain in Reasoning for Conversational Machine 

Comprehension," in Proceedings of Machine Reading for Question Answering Workshop at EMNLP (MRQA), 2019.
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Summary

◉ Spoken language embeddings are needed for better 

conversational AI 
○ Written texts enough for pre-training embeddings

○ Mismatch when applying to spoken language

1) Adapting Transformer to ASR lattices

2) Adapting contextualized embeddings robust to misrecognition

◉ Leveraging the duality of NLU and NLG improves the scalability
○ Apply dual supervised learning to leverage the duality

○ Data distribution property is important

○ Better performance and flexibility for diverse NLU/NLG models

◉ Conversational QA enables unstructured information access
○ FlowDelta: information gain in dialogue flow guides better understanding
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