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© Introduction

@® Big data # Big annotated data

@® Machine learning techniques include:
Supervised learning (if we have labelled data)
Reinforcement learning (if we have an environment for reward)
Unsupervised learning (if we do not have labelled data)



© Semi-Supervised Learning

Labelled Data

Unlabeled Data

(Image of cats and dogs without labeling)



©® Semi-Supervised Learning

® Why semi-supervised learning helps?

The distribution of the unlabeled data provides some cues




© Transfer Learning

Source Data

Target Data

elephant Wele'phant tiger | tiger

Not related to the task considered




©® Transfer Learning

@® Widely used on image processing
Using sufficient labeled data to learn a CNN
Using this CNN as feature extractor

Pixels Layer Layer Layer
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©® Transfer Learning Example
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©® Self-Taught Learning

@® The unlabeled data sometimes is not related to the task

Labelled Data

Unlabeled Data

(Just crawl millions of images from the Internet)



© Self-Taught Learning

@® The unlabeled data sometimes is not related to the task

Labelled Data

Unlabeled Data

Digit g !} 4 o E o
Recognition VlwZl4 Digits s =} & character
Document i
Classification == N News Webpages

Speech (b % English
Recognition ) Youllllll crinese
Taiwanese | ...




@ Self-Taught Learning

® How does self-taught learning work?
@® Why does unlabeled and unrelated data help the tasks?



Latent Factors for Handwritten Digits
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@ Latent Factors for Documents

Topics

gene 0.04
dna 0.02
genetic 0.01

/

Topic proportions and

Documents assignments

life 0.02
evolve 0.01
organism 0.01

o

brain 0.04

neuron 0.02
nerve 0.01
data 0.02

number 0.02
computer 0.01
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@ Latent Factors for Recommendation System
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@ Latent Factor Exploitation

® Handwritten digits

ot £ The handwritten images are
- composed of strokes
v k= +

Strokes (Latent Factors)

‘o || £|Q]| -

No. 1 No. 2 No. 3 No. 4 No. 5




Latent Factor Exploitation

Strokes (Latent Factors)

‘o || Z||Q| -

No. 1 No. 2 No. 3 No. 4 No. 5
28 No. 1 No. 3 No. 5
28 : 7 | - ’ 1 | /
Represented by [1 01 0 1 0 ...l]

28 X 28 = 784 pixels (simpler representation)



(16 Autoencoder

Representation Learning




@ Autoencoder

® Represent a digit using 28 X 28 dimensions
@® Not all 28 X 28 images are digits

NN compact representation of
n» Encoder » code the input object

28 X 28 = 784 t Usually <784

Learn together

NN reconstruct the original
code » » :
Decoder n object




@ Autoencoder

Minimize (x — y)*

As close as possible

encode decode
m a

hidden Iayer
Input layer  Bottleneck layer ~ Outputlayer

a=c(Wx+b) y=cWa+b')



@ Autoencoder

@® De-noising auto-encoder

1 As close as possible 1
Q.

encode decode




@ Deep Autoencoder

As close as
possible

=1
®
c
—
—
Q
@
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Code

Hinton and Salakhutdinov. “Reducing the dimensionality of data with neural networks,” Science, 2006.



@ Deep Autoencoder

Original
Image

PCA

Deep
Auto-encoder
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@ Auto-encoder — Text Retrieval

Vector Space Model Bag-of-word Word string:
“This is an apple”
this [ 1
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document pen & 0
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@ Autoencoder — Text Retrieval
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Interbank markets monetary/economic
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@ Auto-Encoding (AE)

® Objective: reconstructing x from 9?

_ exp (Ho(x), e(z)
mélx log pg(X | X) th log pg (¢ | X) th log S

t=1 D g1 €XP (Ht‘)( )i e 93'))
dimension reduction or denoising (masked LM)
Use the output of the - 0.1% | Aardvark
masked word’s DOS'\HOH ossible classes:

. All English words 10%  Improvisation
to predict the masked word

0% | Zyzzyva

[ FFNN + Softmax ]

BERT

Randomly mask

15% of tokens
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@ Autoencoder — Similar Image Retrieval

@® Retrieved using Euclidean distance in pixel intensity space




@ Autoencoder — Similar Image Retrieval

(crawl millions of images from the Internet)



@ Autoencoder — Similar Image Retrieval

® Images retrieved using Euclidean distance in pixel intensity space

dist: 0.0 dist: 3064.2 dist: 3094.1 dist: 3132.4

‘1.  ' :‘ ]




@ Autoencoder for DNN Pre-Training

® Greedy layer-wise pre-training again

output 10
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€ Autoencoder for DNN Pre-Training

® Greedy layer-wise pre-training again

output 10
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€@ Autoencoder for DNN Pre-Training

® Greedy layer-wise pre-training again

output 10

©
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€@ Autoencoder for DNN Pre-Training

@ Greedy layer-wise pre-training again Find-tune via backprop

output 10 Random

N v W init
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output 10
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@ Variational Autoencoder

Representation Learning and Generation



@ Generation from Latent Codes




@ Latent Code Distribution Constraints

@® Constrain the data distribution for learned latent codes
@® Generate the latent code via a prior distribution

W,
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€@ Reconstruction

L
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VAE



@ Distant Supervision

Representation Learning by Weak Labels




@ Convolutional Deep Structured Semantic
Models (CDSSM/DSSM)

Semantic Layer: y 300 ) "~ P(D, | Q) P(D,|Q) P(D,|Q)
Semantic Projection Matrix: W

Max Pooling Layer: |,

Max Pooling Operation

Convolutional Layer: |,

Convolution Matrix: W,

/ Documents
Word Hashing Layer: I, 20K 50K 20K s o .
| exp(Cosoim( ),
Word Hashing Matrix: W, | l // P(D| Q)= = xp( E)é HS(Q(Q )l)),))
Word Sequence: x W, W, W, wy prexp(Losoim(/,
[A(@) ~1og [] P(D*| @)J
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" Q.D%)

~ Semantically related documents are close to

the query in the encoded space maximizes the likelihood of clicked
T | documents given queries



© Multi-Task Learning

Representation Learning by Different Tasks




@ Task-Shared Representation

Task 1 Task 2
Query classifi- @y Classiﬁca@ < Web Search) Web search pos-
cation posterior ‘ ' l ' 1 terior probability
probablhtyl com- P(C1|Q) P(C2|Q) P(D1|Q) P(D:|Q) computed by soft-
puted by sigmoid max
Relevance mea-
sured by cosine
Wt Co imil t
l3: Task-Specific R o T sumianty
Representation ! ‘ ‘ Dy l l D; ‘
(128) W= Cl Wi=Cz wi=Sa Twt=Sa Twt=Sq
‘ : Semantic Representation (300) |
Shared W, T
layers ‘ l;: Letter 3gram (50k) |

H]

‘ X: Bag-of-Words Input (500k) |




@ Semi-Supervised Multi-Task SLU (Lan et al., 2018)

@® Idea: language understanding objective can enhance other tasks

Slot

Tagging
Model

B-FromCity York  from

4
@ (Wi-1 ) Algorithm 1: Adversarial Multi-task Learning for SLU
-y \
) ;Y

Input : Labeled training data {(w',t!)}

> T =7 Unlabeled data {w"}
0; D o of._ _! Output: Adversarially enhanced slot tagging model
’ i S 1 Initialize parameters {6°, 0, ', 69} randomly.
= = =T < = T < 7 2 repeat
h; h; h} h} hé hIL_,I /+ Sample from {(w!,t!)} */
4 ! ’ ) 3 Train the STM and shared model by Eq.(8).
4 Train the task discriminator and the shared model
L by Eq.(6) or Eq.(7) as slot tagging task (y = 1).
/+ Sample from {w!} and {w"} */
5 Train the LM and shared models by Eq.(9) (and
@ Eq.(10) for BLM).
6 Train the task discriminator and the shared model
words : ... from New York by Eq.(6) or Eq.(7) as LM task (y = 0).
tags: .. O B-FromCity  I-FromCity ... 7 until convergence;

BLM exploits the unsupervised knowledge, the shared-private framework and
adversarial training make the slot tagging model more generalized

______________________________________________________________________________________________________________



@® MT-DNN (Liu et al., 2019)

Task specific B
layers

Shared
layers

P (c|X)
(e.g., probability of
labeling text X by c)

Sim(Xl, Xz)
(e.g., semantic
similarity between X,

P.(R|P,H)
(e.g., probability of
logic relationship R

Rel(Q,A)
(e.g., relevance score
of candidate answer A
given query Q)

Algorithm 1: Training a MT-DNN model.

and X; ) between P and H)

f f f f

Single-Sentence Pairwise Text Pairwise Text Pairwise
Classification Similarity Classification Ranking
(e.g., ColLA, SST-2) (e.g., STS-B) (e.g., RTE, MINLI, (e.g., QNLI)

WNLI, QQP, MRPC)

i i i i

l,: context embedding vectors, one for each token.

i

Transformer Encoder (contextual embedding layers)

i

11: input embedding vectors, one each token.

i

Lexicon Encoder (word, position and segment)

i

X: asentence or a pair of sentences

https://github.com/namisan/mt-dnn

Initialize model parameters © randomly.

Pre-train the shared layers (i.e., the lexicon
encoder and the transformer encoder).

Set the max number of epoch: epoch,qz-
//Prepare the data for T tasks.

fortinl,2,...,T do
| Pack the dataset ¢ into mini-batch: D;.

end

for epoch in 1,2, ..., epochq: do
1. Merge all the datasets:

D =D;UDs,...UDr

2. Shuffle D

for b, in D do

//by is a mini-batch of task t.

3. Compute loss : L(O)
L(©) = Eq. 6 for classification
L(©) = Eq. 7 for regression
L(©) = Eq. 8 for ranking

4. Compute gradient: V(©)

5. Update model: © = © — eV(O)

end
end



https://github.com/namisan/mt-dnn

@® Concluding Remarks

@ Labeling data is expensive, but we have large unlabeled data

@® Autoencoder
exploits unlabeled data to learn latent factors as representations
learned representations can be transfer to other tasks

@ Distant Labels / Labels from Other Tasks
learn the representations that are useful for other tasks
learned representations may be also useful for the target task



