Applied Deep Learning

Unsupervised Learning

May 25th, 2020 http://adl.miulab.tw

Introduction

- Big data ≠ Big annotated data
- Machine learning techniques include:
 - Supervised learning (if we have labelled data)
 - Reinforcement learning (if we have an environment for reward)
 - Unsupervised learning (if we do not have labelled data)

What can we do if there is no sufficient training data?

Semi-Supervised Learning

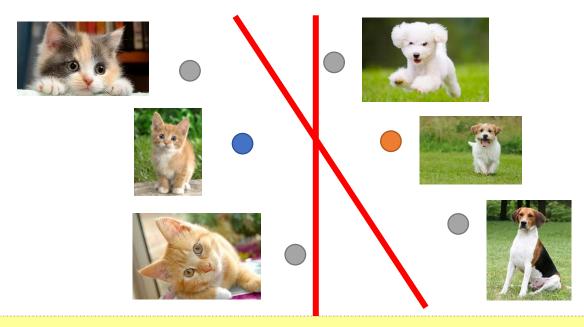
Labelled Data

Unlabeled Data

(Image of cats and dogs without labeling)

Semi-Supervised Learning

Why semi-supervised learning helps?

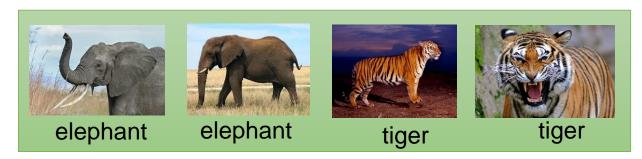


The distribution of the unlabeled data provides some cues

Transfer Learning

Source Data

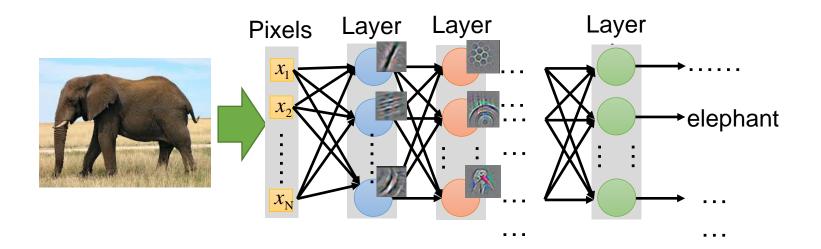
Target Data



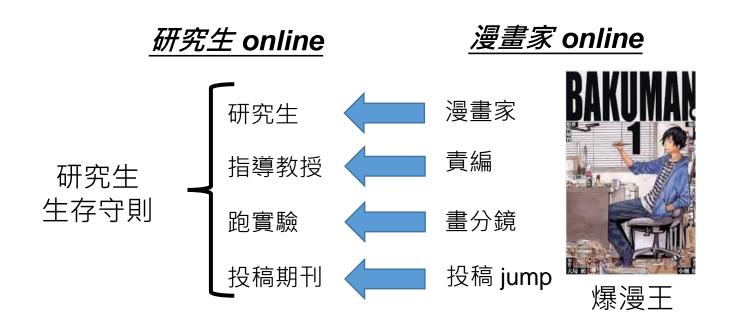
Not related to the task considered

Transfer Learning

- Widely used on image processing
 - Using sufficient labeled data to learn a CNN
 - Using this CNN as feature extractor



Transfer Learning Example



Self-Taught Learning

The unlabeled data sometimes is not related to the task

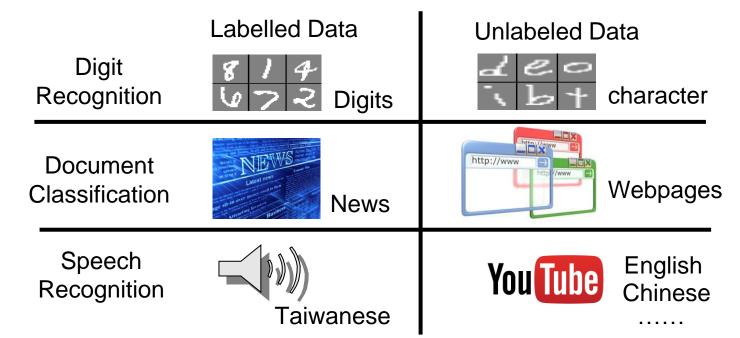
Labelled Data

Unlabeled Data

(Just crawl millions of images from the Internet)

Self-Taught Learning

The unlabeled data sometimes is not related to the task



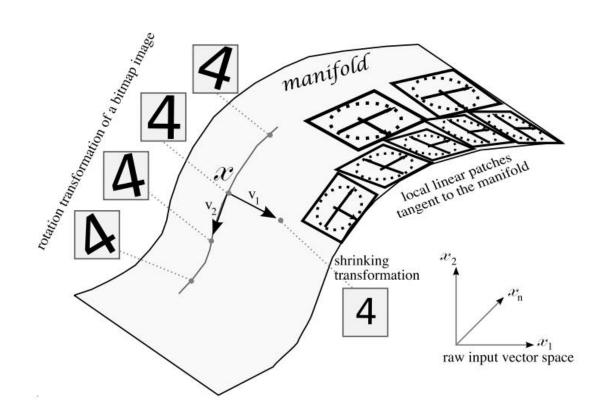
Why can we use unlabeled and unrelated data to help our tasks?

Self-Taught Learning

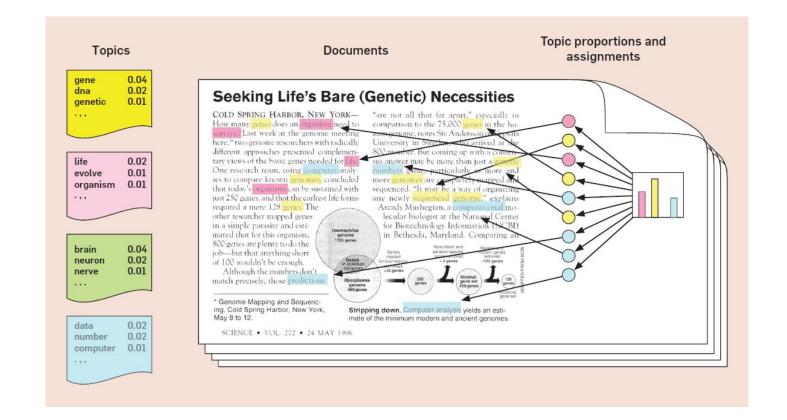
- How does self-taught learning work?
- Why does unlabeled and unrelated data help the tasks?

Finding latent factors that control the observations

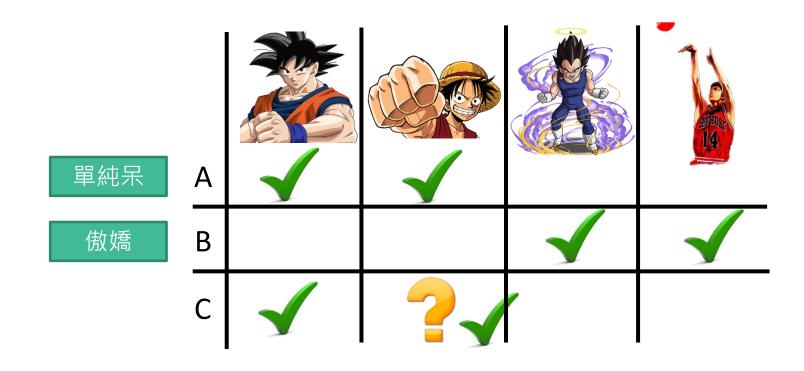
Latent Factors for Handwritten Digits



Latent Factors for Documents



Latent Factors for Recommendation System

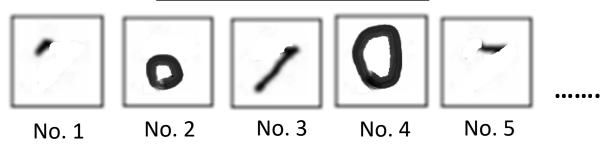


Latent Factor Exploitation

• Handwritten digits

The handwritten images are composed of **strokes**

Strokes (Latent Factors)



Latent Factor Exploitation

Strokes (Latent Factors) No. 2 No. 3 No. 5 No. 1 No. 4 28 No. 5 No. 1 No. 3 28 + Represented by $28 \times 28 = 784$ pixels (simpler representation)

16

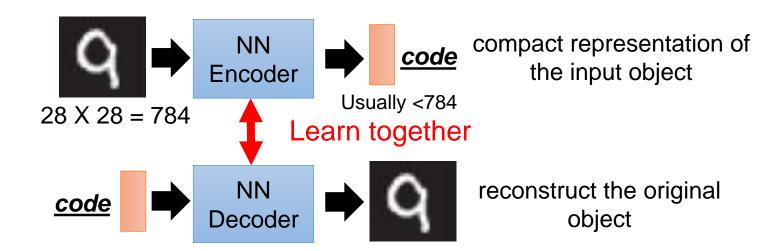
Autoencoder

Representation Learning

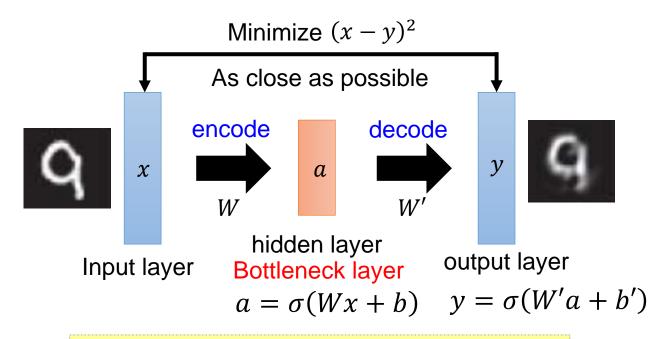
Autoencoder

- Represent a digit using 28 X 28 dimensions
- Not all 28 X 28 images are digits

Idea: represent the images of digits in a more compact way



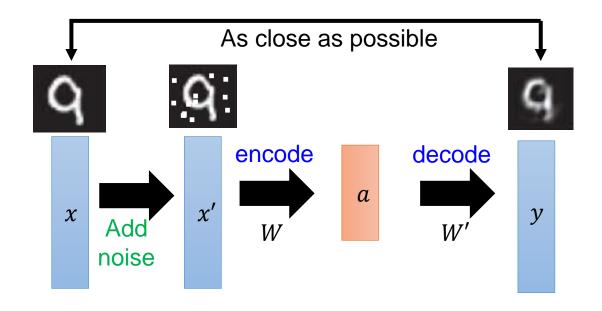
Autoencoder



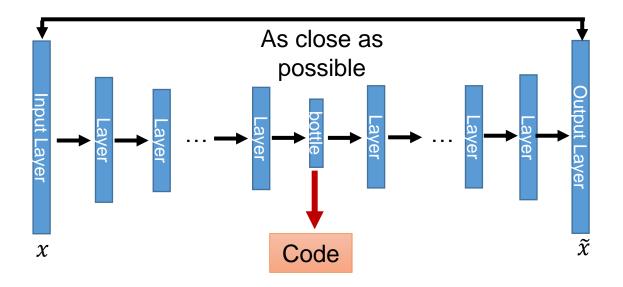
Output of the hidden layer is the code

Autoencoder

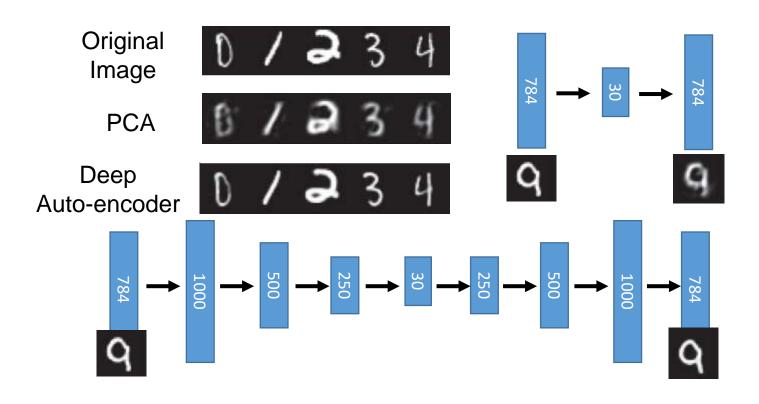
De-noising auto-encoder



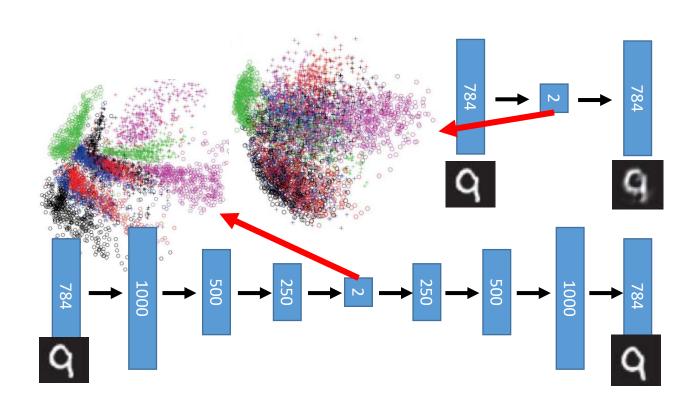
Deep Autoencoder



Deep Autoencoder

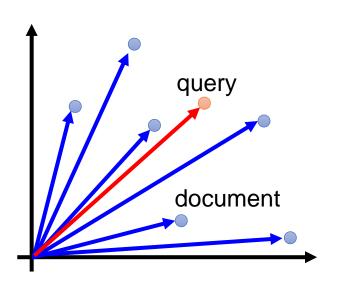


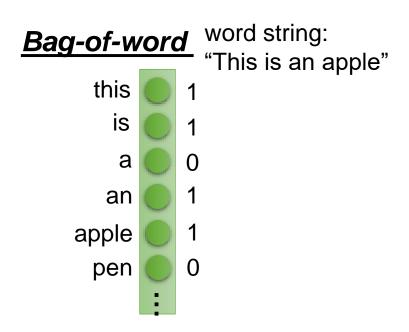
Feature Representation



Auto-encoder – Text Retrieval

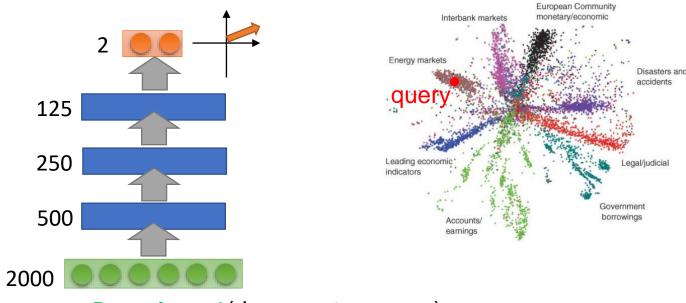
Vector Space Model





Semantics are not considered

Autoencoder – Text Retrieval



Bag-of-word (document or query)

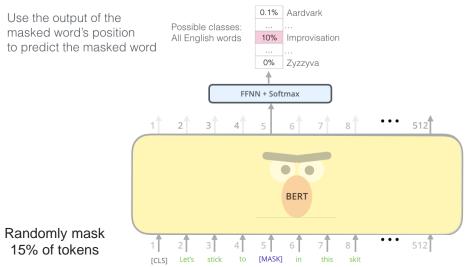
The documents talking about the same thing will have close code

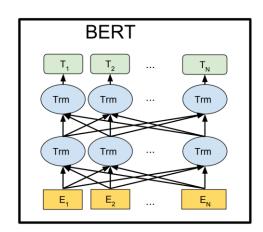
Auto-Encoding (AE)

• Objective: reconstructing \bar{x} from \hat{x}

$$\max_{\theta} \quad \log p_{\theta}(\bar{\mathbf{x}} \mid \hat{\mathbf{x}}) \approx \sum_{t=1}^{T} m_{t} \log p_{\theta}(x_{t} \mid \hat{\mathbf{x}}) = \sum_{t=1}^{T} m_{t} \log \frac{\exp\left(H_{\theta}(\hat{\mathbf{x}})_{t}^{\top} e(x_{t})\right)}{\sum_{x'} \exp\left(H_{\theta}(\hat{\mathbf{x}})_{t}^{\top} e(x')\right)}$$

dimension reduction or denoising (masked LM)

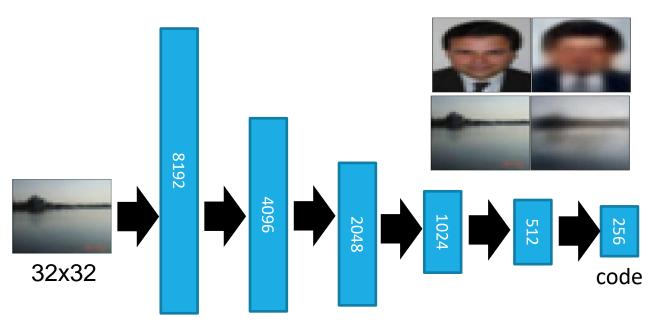




Autoencoder – Similar Image Retrieval

Retrieved using Euclidean distance in pixel intensity space

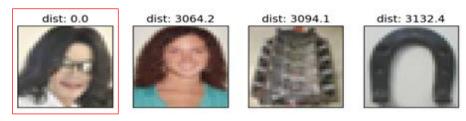
Autoencoder – Similar Image Retrieval



(crawl millions of images from the Internet)

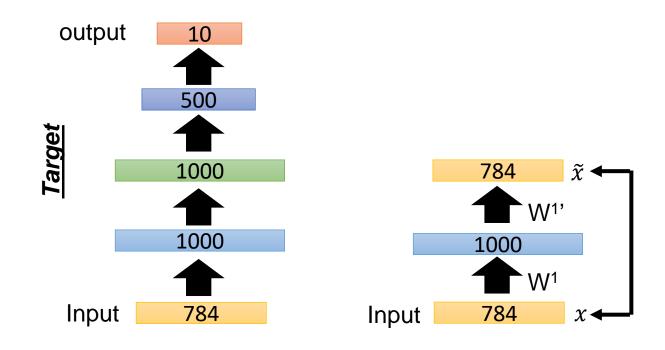
Autoencoder – Similar Image Retrieval

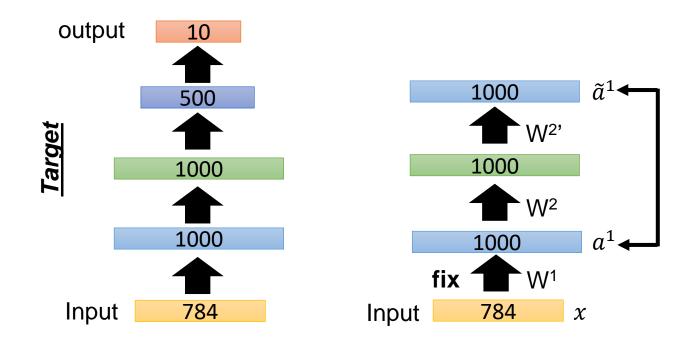
Images retrieved using Euclidean distance in pixel intensity space

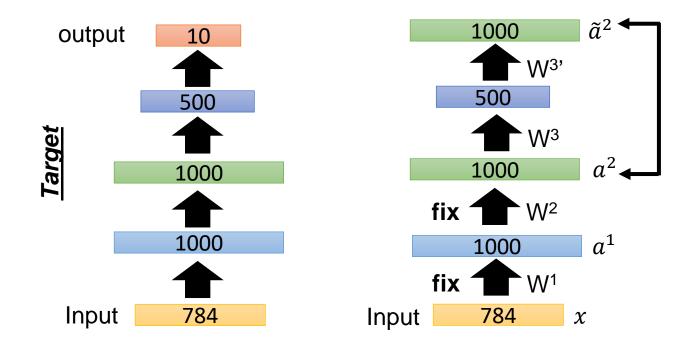


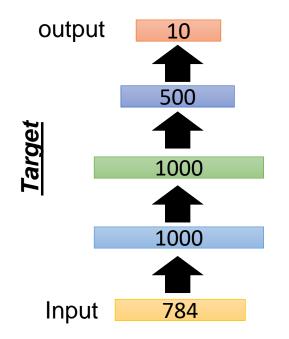
Images retrieved using 256 codes

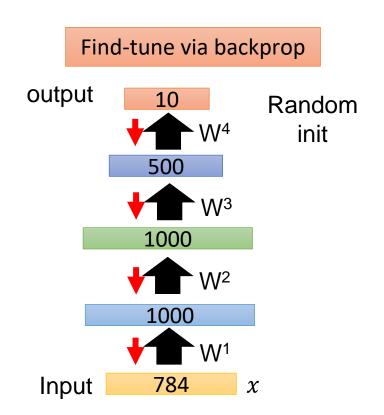
Learning the useful latent factors









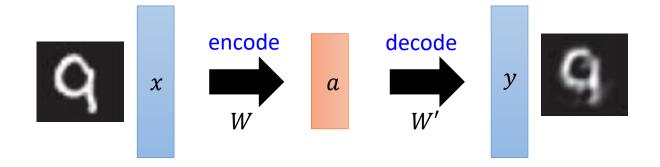


33

Variational Autoencoder

Representation Learning and Generation

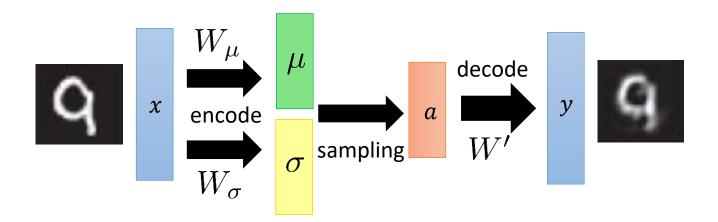
Generation from Latent Codes



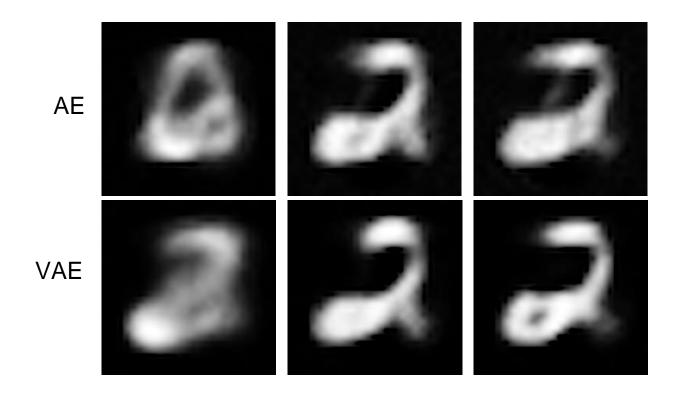
How can we set a latent code for generation?

Latent Code Distribution Constraints

- Constrain the data distribution for learned latent codes
- Generate the latent code via a prior distribution



Reconstruction



Distant Supervision

Representation Learning by Weak Labels

Convolutional Deep Structured Semantic Models (CDSSM/DSSM)

Semantic Layer: y

Semantic Projection Matrix: W_s

Max Pooling Layer: I_m

Max Pooling Operation

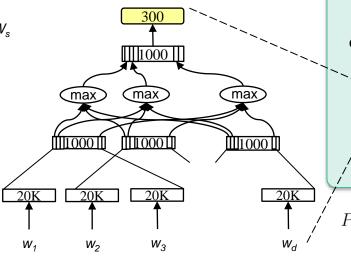
Convolutional Layer: Ic

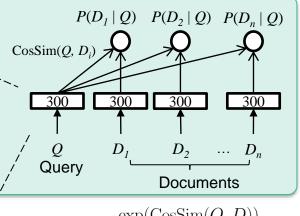
Convolution Matrix: W_c

Word Hashing Layer: In

Word Hashing Matrix: W_h

Word Sequence: x





$$P(D \mid Q) = \frac{\exp(\mathrm{CosSim}(Q, D))}{\sum_{D'} \exp(\mathrm{CosSim}(Q, D'))}$$

$$\Lambda(\theta) = \log \prod_{(Q,D^+)} P(D^+ \mid Q)$$

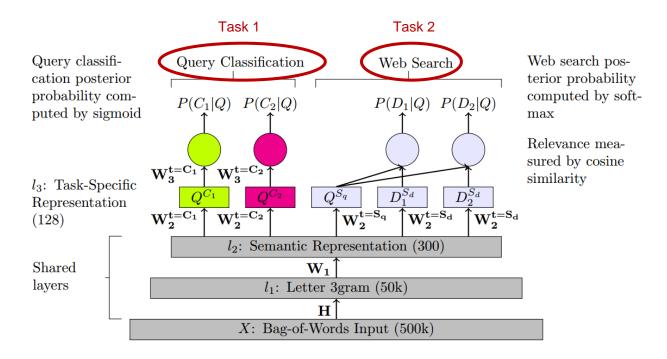
maximizes the likelihood of clicked documents given queries

Semantically related documents are close to the query in the encoded space

Multi-Task Learning

Representation Learning by Different Tasks

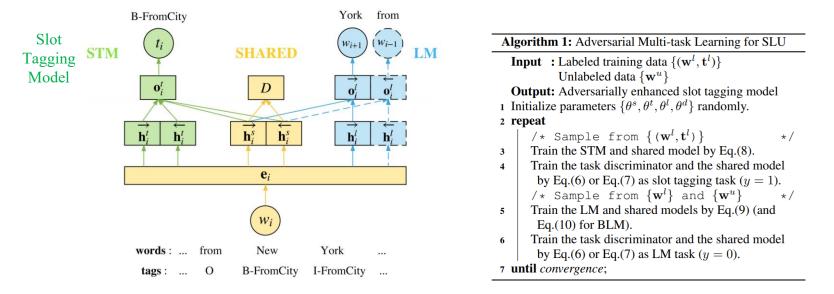
Task-Shared Representation



The latent factors can be learned by different tasks

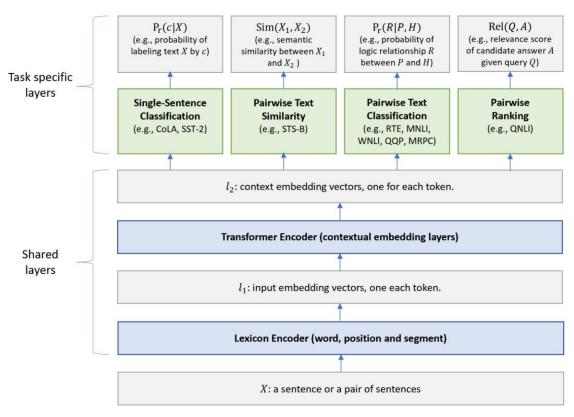
Semi-Supervised Multi-Task SLU (Lan et al., 2018)

Idea: language understanding objective can enhance other tasks



BLM exploits the *unsupervised knowledge*, the *shared-private framework* and *adversarial training* make the slot tagging model more generalized

MT-DNN (Liu et al., 2019)



Algorithm 1: Training a MT-DNN model.

Initialize model parameters Θ randomly. Pre-train the shared layers (i.e., the lexicon encoder and the transformer encoder). Set the max number of epoch: $epoch_{max}$.

for t in 1, 2, ..., T do

Pack the dataset t into mini-batch: D_t .

end

for epoch in $1, 2, ..., epoch_{max}$ do

//Prepare the data for T tasks.

1. Merge all the datasets:

$$D = D_1 \cup D_2 ... \cup D_T$$

2. Shuffle D

for b_t in D do

 $//b_t$ is a mini-batch of task t.

- 3. Compute loss : $L(\Theta)$
 - $L(\Theta) = \text{Eq. 6}$ for classification
 - $L(\Theta) = \text{Eq. 7 for regression}$
 - $L(\Theta) = \text{Eq. 8 for ranking}$
- 4. Compute gradient: $\nabla(\Theta)$
- 5. Update model: $\Theta = \Theta \epsilon \nabla(\Theta)$

end

end

Concluding Remarks

- Labeling data is expensive, but we have large unlabeled data
- Autoencoder
 - exploits unlabeled data to learn latent factors as representations
 - learned representations can be transfer to other tasks
- Distant Labels / Labels from Other Tasks
 - learn the representations that are useful for other tasks
 - learned representations may be also useful for the target task