
Guest Lecture by Hung-yi Lee

Generative Adversarial Network

Applied Deep Learning

May 19th, 2020 http://adl.miulab.tw

http://adl.miulab.tw/

Generator

“Girl with
red hair”

Generator

−0.3
0.1
⋮
0.9

random vector

Three Categories of GAN
1. Typical GAN

image

2. Conditional GAN

Generator

text
imagepaired data

blue eyes,
red hair,
short hair

3. Unsupervised Conditional GAN

Photo Vincent van
Gogh’s styleunpaired data

x ydomain x domain y

Generative Adversarial Network
(GAN)
• Anime face generation as example

Generator imagevector
high
dimensional
vector

Discri-
minator

scoreimage

Larger score means real,
smaller score means fake.

• Initialize generator and discriminator

• In each training iteration:

DG

sample

generated
objects

G

Algorithm

D

Update

vecto
r

vecto
r

vecto
r

vecto
r

0000

1111

randomly
sampled

Database

Step 1: Fix generator G, and update discriminator D

Discriminator learns to assign high scores to real objects
and low scores to generated objects.

Fix

• Initialize generator and discriminator

• In each training iteration:

DG

Algorithm

Step 2: Fix discriminator D, and update generator G

Discri-
minator

NN
Generator

vector

0.13

hidden layer

update fix

large network

Generator learns to “fool” the discriminator

Backpropagation

• Initialize generator and discriminator

• In each training iteration:

DG

Learning
D

Sample some
real objects:

Generate some
fake objects:

G

Algorithm

D

Update

Learning
G

G D
image

1111

image
image

image
1

update fix

0000

vecto
r

vecto
r

vecto
r

vecto
r

vecto
r

vecto
r

vecto
r

vecto
r

fix

https://crypko.ai/#/

GAN is hard to train ……

• There is a saying ……

(I found this joke from 陳柏文’s facebook.)

Generator

“Girl with
red hair”

Generator

−0.3
0.1
⋮
0.9

random vector

Three Categories of GAN
1. Typical GAN

image

2. Conditional GAN

Generator

text
imagepaired data

blue eyes,
red hair,
short hair

3. Unsupervised Conditional GAN

Photo Vincent van
Gogh’s styleunpaired data

x ydomain x domain y

Target of
NN output

Text-to-Image

• Traditional supervised approach

NN Image

Text: “train”

a dog is running

a bird is flying

A blurry image!

c1: a dog is running

as close as
possible

Conditional GAN

D
(original)

scalar𝑥

G
𝑧Normal distribution

x = G(c,z)
c: train

x is real image or not

Image

Real images:

Generated images:

1

0

Generator will learn to
generate realistic images ….

But completely ignore the
input conditions.

[Scott Reed, et al, ICML, 2016]

Conditional GAN

D
(better)

scalar
𝑐

𝑥

True text-image pairs:

G
𝑧Normal distribution

x = G(c,z)
c: train

Image

x is realistic or not +
c and x are matched or not

(train ,)

(train ,)(cat ,)

[Scott Reed, et al, ICML, 2016]

1

00

Conditional GAN
- Sound-to-image

Gc: sound Image

"a dog barking sound"

Training Data
Collection

video

Conditional GAN
- Sound-to-image
• Audio-to-image

https://wjohn1483.github.io/
audio_to_scene/index.html

The images are generated by Chia-
Hung Wan and Shun-Po Chuang.

Louder

Conditional GAN - Image-to-label

Multi-label Image Classifier = Conditional Generator

Input condition

Generated output

Conditional GAN - Image-to-label
F1 MS-COCO NUS-WIDE

VGG-16 56.0 33.9

+ GAN 60.4 41.2

Inception 62.4 53.5

+GAN 63.8 55.8

Resnet-101 62.8 53.1

+GAN 64.0 55.4

Resnet-152 63.3 52.1

+GAN 63.9 54.1

Att-RNN 62.1 54.7

RLSD 62.0 46.9

The classifiers can have
different architectures.

The classifiers are
trained as conditional
GAN.

[Tsai, et al., submitted to
ICASSP 2019]

Conditional GAN - Image-to-label
F1 MS-COCO NUS-WIDE

VGG-16 56.0 33.9

+ GAN 60.4 41.2

Inception 62.4 53.5

+GAN 63.8 55.8

Resnet-101 62.8 53.1

+GAN 64.0 55.4

Resnet-152 63.3 52.1

+GAN 63.9 54.1

Att-RNN 62.1 54.7

RLSD 62.0 46.9

The classifiers can have
different architectures.

The classifiers are
trained as conditional
GAN.

Conditional GAN
outperforms other
models designed for
multi-label.

Talking Head

https://arxiv.org/abs/1905.08233

Generator

“Girl with
red hair”

Generator

−0.3
0.1
⋮
0.9

random vector

Three Categories of GAN
1. Typical GAN

image

2. Conditional GAN

Generator

text
imagepaired data

blue eyes,
red hair,
short hair

3. Unsupervised Conditional GAN

Photo Vincent van
Gogh’s styleunpaired data

x ydomain x domain y

?

Cycle GAN

𝐺𝑋→𝑌

Domain X

Domain Y

𝐷𝑌

Domain Y

Domain X

scalar

Input image
belongs to
domain Y or not

Become similar
to domain Y

Cycle GAN

𝐺𝑋→𝑌

Domain X

Domain Y

𝐷𝑌

Domain Y

Domain X

scalar

Input image
belongs to
domain Y or not

Become similar
to domain Y

Not what we want!

ignore input

Cycle GAN

𝐺𝑋→𝑌

𝐷𝑌

Domain Y

scalar

Input image
belongs to
domain Y or not

𝐺Y→X

as close as possible

Lack of information
for reconstruction

[Jun-Yan Zhu, et al., ICCV, 2017]

Cycle consistency

Cycle GAN

𝐺𝑋→𝑌 𝐺Y→X

as close as possible

𝐺Y→X 𝐺𝑋→𝑌

as close as possible

𝐷𝑌𝐷𝑋
scalar: belongs to
domain Y or not

scalar: belongs to
domain X or not

Cycle GAN

𝐺𝑋→𝑌 𝐺Y→X

as close as possible

𝐺Y→X 𝐺𝑋→𝑌

as close as possible

𝐷𝑌𝐷𝑋negative sentence? positive sentence?

It is bad. It is good. It is bad.

I love you. I hate you. I love you.
positive

positive

positivenegative

negative negative

Discrete Issue

𝐺𝑋→𝑌

𝐷𝑌 positive sentence?

It is bad. It is good.
positivenegative

large network

hidden layer

update

fix

Backpropagation

with discrete output

Seq2seq model

Three Categories of Solutions

Gumbel-softmax

• [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

• [Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen
Xu, et al., EMNLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML,
2017]

“Reinforcement Learning”

• [Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv,
2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William
Fedus, et al., ICLR, 2018]

✘ Negative sentence to positive sentence:
✘ it's a crappy day -> it's a great day

i wish you could be here -> you could be here

it's not a good idea -> it's good idea

i miss you -> i love you

i don't love you -> i love you

i can't do that -> i can do that

i feel so sad -> i happy

it's a bad day -> it's a good day

it's a dummy day -> it's a great day

sorry for doing such a horrible thing -> thanks for doing a

great thing

my doggy is sick -> my doggy is my doggy

my little doggy is sick -> my little doggy is my little doggy

文句改寫 感謝王耀賢同學提供實驗結果

✘ Negative sentence to positive sentence:

感謝張瓊之同學提供實驗結果

胃疼 , 沒睡醒 , 各種不舒服 -> 生日快樂 , 睡醒 , 超級舒服

我都想去上班了, 真夠賤的! -> 我都想去睡了, 真帥的 !

暈死了, 吃燒烤、竟然遇到個變態狂 -> 哈哈好 ~ , 吃燒烤 ~ 竟
然遇到帥狂

我肚子痛的厲害 -> 我生日快樂厲害

感冒了, 難受的說不出話來了 ! -> 感冒了, 開心的說不出話
來 !

文句改寫

Speech Recognition
Supervised Learning

This utterance is
“good morning”.

Human
Teacher

I can do speech
recognition

after teaching

• Supervised learning needs lots of annotated speech.
• However, most of the languages are low resourced.

Speech Recognition
Supervised Learning

This utterance is
“good morning”.

Human
Teacher

I can do speech
recognition

after teaching

Unsupervised Learning

Listening to human talking Reading text on the Internet

I can automatically learn
speech recognition

Acoustic Token Discovery

Acoustic tokens: chunks of acoustically similar audio segments
with token IDs [Zhang & Glass, ASRU 09]

[Huijbregts, ICASSP 11]
[Chan & Lee, Interspeech 11]

Acoustic tokens can be discovered from audio collection
without text annotation.

Acoustic Token Discovery

Token 1

Token 1

Token 1Token 2

Token 3

Token 3

Token 3

Acoustic tokens: chunks of acoustically similar audio segments
with token IDs [Zhang & Glass, ASRU 09]

[Huijbregts, ICASSP 11]
[Chan & Lee, Interspeech 11]

Acoustic tokens can be discovered from audio collection
without text annotation.

Token 2

Token 4

Acoustic Token Discovery

Phonetic-level acoustic tokens are obtained by
segmental sequence-to-sequence autoencoder.

[Wang, et al., ICASSP, 2018]

Unsupervised Speech Recognition

AY L AH V Y UW

G UH D B AY

HH AW AA R Y UW

T AY W AA N

AY M F AY N
Cycle
GAN

“AY”=

Phone-level Acoustic
Pattern Discovery

p1

p1 p3 p2

p1 p4 p3 p5 p5

p1 p5 p4 p3

p1 p2 p3 p4

Phoneme sequences
from Text

[Liu, et al., INTERSPEECH,
2018]

[Chen, et al., arXiv, 2018]

Model

Experimental Results

The progress of supervised learning

A
cc

u
ra

cy

Unsupervised learning today (2019) is as good
as supervised learning 30 years ago.

The image is modified from: Phone recognition on the TIMIT database Lopes, C. and Perdigão, F., 2011.
Speech Technologies, Vol 1, pp. 285--302.

Generator

“Girl with
red hair”

Generator

−0.3
0.1
⋮
0.9

random vector

Three Categories of GAN
1. Typical GAN

image

2. Conditional GAN

Generator

text
imagepaired data

blue eyes,
red hair,
short hair

3. Unsupervised Conditional GAN

Photo Vincent van
Gogh’s styleunpaired data

x ydomain x domain y

Theory behind GAN

Generation

Drawing?

Using Generative
Adversarial
Network (GAN)

Generation

• We want to find data distribution 𝑃𝑑𝑎𝑡𝑎 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥

High
Probability

Low
Probability

Image
Space

𝑥: an image (a high-
dimensional vector)

Maximum Likelihood Estimation

• Given a data distribution 𝑃𝑑𝑎𝑡𝑎 𝑥 (We can sample from it.)

• We have a distribution 𝑃𝐺 𝑥; 𝜃 parameterized by 𝜃

• We want to find 𝜃 such that 𝑃𝐺 𝑥; 𝜃 close to 𝑃𝑑𝑎𝑡𝑎 𝑥

• E.g. 𝑃𝐺 𝑥; 𝜃 is a Gaussian Mixture Model, 𝜃 are means
and variances of the Gaussians

Sample 𝑥1, 𝑥2, … , 𝑥𝑚 from 𝑃𝑑𝑎𝑡𝑎 𝑥

We can compute 𝑃𝐺 𝑥𝑖; 𝜃

Likelihood of generating the samples

𝐿 =ෑ

𝑖=1

𝑚

𝑃𝐺 𝑥𝑖; 𝜃

Find 𝜃∗ maximizing the likelihood

Maximum Likelihood Estimation
= Minimize KL Divergence

𝜃∗ = 𝑎𝑟𝑔max
𝜃

ෑ

𝑖=1

𝑚

𝑃𝐺 𝑥𝑖; 𝜃 = 𝑎𝑟𝑔max
𝜃

𝑙𝑜𝑔ෑ

𝑖=1

𝑚

𝑃𝐺 𝑥𝑖; 𝜃

= 𝑎𝑟𝑔max
𝜃

෍

𝑖=1

𝑚

𝑙𝑜𝑔𝑃𝐺 𝑥𝑖; 𝜃

≈ 𝑎𝑟𝑔max
𝜃

𝐸𝑥~𝑃𝑑𝑎𝑡𝑎[𝑙𝑜𝑔𝑃𝐺 𝑥; 𝜃]

= 𝑎𝑟𝑔max
𝜃

න

𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝑃𝐺 𝑥; 𝜃 𝑑𝑥 −න

𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝑃𝑑𝑎𝑡𝑎 𝑥 𝑑𝑥

= 𝑎𝑟𝑔min
𝜃

𝐾𝐿 𝑃𝑑𝑎𝑡𝑎||𝑃𝐺

𝑥1, 𝑥2, … , 𝑥𝑚 from 𝑃𝑑𝑎𝑡𝑎 𝑥

How to define a general 𝑃𝐺?

Generator

• A generator G is a network. The network defines a
probability distribution 𝑃𝐺

generator
G𝑧 𝑥 = 𝐺 𝑧

Normal
Distribution

𝑃𝐺(𝑥) 𝑃𝑑𝑎𝑡𝑎 𝑥

as close as possible

How to compute the divergence?

𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎
Divergence between distributions 𝑃𝐺 and 𝑃𝑑𝑎𝑡𝑎

𝑥: an image (a high-
dimensional vector)

Discriminator
𝐺∗ = 𝑎𝑟𝑔min

𝐺
𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎

Although we do not know the distributions of 𝑃𝐺 and 𝑃𝑑𝑎𝑡𝑎,
we can sample from them.

sample

G

vecto
r

vecto
r

vecto
r

vecto
r

sample from
normal

Database

Sampling from 𝑷𝑮

Sampling from 𝑷𝒅𝒂𝒕𝒂

Discriminator 𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎

Discriminator

: data sampled from 𝑃𝑑𝑎𝑡𝑎
: data sampled from 𝑃𝐺

train

𝑉 𝐺,𝐷 = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑥 + 𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑥

Example Objective Function for D

(G is fixed)

𝐷∗ = 𝑎𝑟𝑔max
𝐷

𝑉 𝐷, 𝐺Training:

Using the example objective
function is exactly the same as
training a binary classifier.

[Goodfellow, et al., NIPS, 2014]

The maximum objective value
is related to JS divergence.

Sigmoid Output

Discriminator 𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎

Discriminator

: data sampled from 𝑃𝑑𝑎𝑡𝑎
: data sampled from 𝑃𝐺

train

hard to discriminatesmall divergence

Discriminator
train

easy to discriminatelarge divergence

𝐷∗ = 𝑎𝑟𝑔max
𝐷

𝑉 𝐷, 𝐺

Training:

(cannot make objective large)

max
𝐷

𝑉 𝐺,𝐷

• Given G, what is the optimal D* maximizing

• Given x, the optimal D* maximizing

𝑉 = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑥 + 𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝐷 𝑥 + 𝑃𝐺 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥

= න

𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝐷 𝑥 𝑑𝑥 + න

𝑥

𝑃𝐺 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥 𝑑𝑥

= න

𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝐷 𝑥 + 𝑃𝐺 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥 𝑑𝑥

Assume that D(x) can be any function

𝑉 = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑥

+𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑥

max
𝐷

𝑉 𝐺,𝐷

• Given x, the optimal D* maximizing

• Find D* maximizing: f 𝐷 = a𝑙𝑜𝑔(𝐷) + 𝑏𝑙𝑜𝑔 1 − 𝐷

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔𝐷 𝑥 + 𝑃𝐺 𝑥 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝑑f 𝐷

𝑑𝐷
= 𝑎 ×

1

𝐷
+ 𝑏 ×

1

1 − 𝐷
× −1 = 0

𝑎 ×
1

𝐷∗
= 𝑏 ×

1

1 − 𝐷∗

𝑎 × 1 − 𝐷∗ = 𝑏 × 𝐷∗

𝑎 − 𝑎𝐷∗ = 𝑏𝐷∗

𝐷∗ =
𝑎

𝑎 + 𝑏
𝐷∗ 𝑥 =

𝑃𝑑𝑎𝑡𝑎 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥

a D b D

0 < < 1

𝑎 = 𝑎 + 𝑏 𝐷∗

𝑉 = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑥

+𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑥

max
𝐷

𝑉 𝐺,𝐷

= 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔
𝑃𝑑𝑎𝑡𝑎 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥

+𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔
𝑃𝐺 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥

= න

𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔
𝑃𝑑𝑎𝑡𝑎 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥
𝑑𝑥

max
𝐷

𝑉 𝐺,𝐷

+න

𝑥

𝑃𝐺 𝑥 𝑙𝑜𝑔
𝑃𝐺 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥
𝑑𝑥

2

2

1

2

1

2

+2𝑙𝑜𝑔
1

2

𝐷∗ 𝑥 =
𝑃𝑑𝑎𝑡𝑎 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥
= 𝑉 𝐺,𝐷∗

𝑉 = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑥

+𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑥

−2𝑙𝑜𝑔2

max
𝐷

𝑉 𝐺,𝐷

= −2log2 + KL Pdata||
Pdata + PG

2

= −2𝑙𝑜𝑔2 + 2𝐽𝑆𝐷 𝑃𝑑𝑎𝑡𝑎||𝑃𝐺 Jensen-Shannon divergence

= −2𝑙𝑜𝑔2 + න

𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 𝑙𝑜𝑔
𝑃𝑑𝑎𝑡𝑎 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥 /2
𝑑𝑥

+න

𝑥

𝑃𝐺 𝑥 𝑙𝑜𝑔
𝑃𝐺 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥 /2
𝑑𝑥

+KL PG||
Pdata + PG

2

max
𝐷

𝑉 𝐺,𝐷 𝐷∗ 𝑥 =
𝑃𝑑𝑎𝑡𝑎 𝑥

𝑃𝑑𝑎𝑡𝑎 𝑥 + 𝑃𝐺 𝑥
= 𝑉 𝐺,𝐷∗

𝐺1 𝐺2 𝐺3

𝑉 𝐺1 , 𝐷 𝑉 𝐺2 , 𝐷 𝑉 𝐺3 , 𝐷

𝐷 𝐷 𝐷
𝑉 𝐺1 , 𝐷1

∗

Divergence between 𝑃𝐺1 and 𝑃𝑑𝑎𝑡𝑎

𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎

The maximum objective value
is related to JS divergence.

𝐷∗ = 𝑎𝑟𝑔max
𝐷

𝑉 𝐷, 𝐺

max
𝐷

𝑉 𝐺, 𝐷

𝐺∗ = 𝑎𝑟𝑔min
𝐺

𝐷𝑖𝑣 𝑃𝐺 , 𝑃𝑑𝑎𝑡𝑎max
𝐷

𝑉 𝐺, 𝐷

The maximum objective value
is related to JS divergence.

• Initialize generator and discriminator

• In each training iteration:

Step 1: Fix generator G, and update discriminator D

Step 2: Fix discriminator D, and update generator G

𝐷∗ = 𝑎𝑟𝑔max
𝐷

𝑉 𝐷, 𝐺

[Goodfellow, et al., NIPS, 2014]

Algorithm

• To find the best G minimizing the loss function 𝐿 𝐺 ,

𝜃𝐺 ← 𝜃𝐺 − 𝜂 Τ𝜕𝐿 𝐺 𝜕𝜃𝐺

𝑓 𝑥 = max{𝑓1 𝑥 , 𝑓2 𝑥 , 𝑓3 𝑥 }
𝑑𝑓 𝑥

𝑑𝑥
=?

𝑓1 𝑥

𝑓2 𝑥

𝑓3 𝑥

Τ𝑑𝑓1 𝑥 𝑑𝑥 Τ𝑑𝑓2 𝑥 𝑑𝑥 Τ𝑑𝑓3 𝑥 𝑑𝑥

Τ𝑑𝑓𝑖 𝑥 𝑑𝑥

If 𝑓𝑖 𝑥 is the
max one

𝐺∗ = 𝑎𝑟𝑔min
𝐺

max
𝐷

𝑉 𝐺,𝐷

𝐿 𝐺

𝜃𝐺 defines G

Algorithm

• Given 𝐺0

• Find 𝐷0
∗ maximizing 𝑉 𝐺0, 𝐷

• 𝜃𝐺 ← 𝜃𝐺 − 𝜂 Τ𝜕𝑉 𝐺,𝐷0
∗ 𝜕𝜃𝐺 Obtain 𝐺1

• Find 𝐷1
∗ maximizing 𝑉 𝐺1, 𝐷

• 𝜃𝐺 ← 𝜃𝐺 − 𝜂 Τ𝜕𝑉 𝐺,𝐷1
∗ 𝜕𝜃𝐺 Obtain 𝐺2

• ……

𝑉 𝐺0, 𝐷0
∗ is the JS divergence between 𝑃𝑑𝑎𝑡𝑎 𝑥 and 𝑃𝐺0 𝑥

𝑉 𝐺1, 𝐷1
∗ is the JS divergence between 𝑃𝑑𝑎𝑡𝑎 𝑥 and 𝑃𝐺1 𝑥

𝐺∗ = 𝑎𝑟𝑔min
𝐺

max
𝐷

𝑉 𝐺,𝐷

𝐿 𝐺

Decrease JS
divergence(?)

Decrease JS
divergence(?)

Using Gradient Ascent

Algorithm

• Given 𝐺0

• Find 𝐷0
∗ maximizing 𝑉 𝐺0, 𝐷

• 𝜃𝐺 ← 𝜃𝐺 − 𝜂 Τ𝜕𝑉 𝐺,𝐷0
∗ 𝜕𝜃𝐺 Obtain 𝐺1

𝑉 𝐺0, 𝐷0
∗ is the JS divergence between 𝑃𝑑𝑎𝑡𝑎 𝑥 and 𝑃𝐺0 𝑥

𝐺∗ = 𝑎𝑟𝑔min
𝐺

max
𝐷

𝑉 𝐺,𝐷

𝐿 𝐺

Decrease JS
divergence(?)

𝑉 𝐺0 , 𝐷

𝐷0
∗

𝑉 𝐺1 , 𝐷

𝐷0
∗

𝑉 𝐺0 , 𝐷0
∗

𝑉 𝐺1 , 𝐷0
∗

smaller

𝑉 𝐺1 , 𝐷1
∗ ……

Assume 𝐷0
∗ ≈ 𝐷1

∗

Don’t update G
too much

In practice …

• Given G, how to compute max
𝐷

𝑉 𝐺,𝐷

• Sample 𝑥1, 𝑥2, … , 𝑥𝑚 from 𝑃𝑑𝑎𝑡𝑎 𝑥 , sample
෤𝑥1, ෤𝑥2, … , ෤𝑥𝑚 from generator 𝑃𝐺 𝑥

෨𝑉 =
1

𝑚
෍

𝑖=1

𝑚

𝑙𝑜𝑔𝐷 𝑥𝑖 +
1

𝑚
෍

𝑖=1

𝑚

𝑙𝑜𝑔 1 − 𝐷 ෤𝑥𝑖Maximize

𝑉 = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑥

+𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑥

Minimize Cross-entropy

Binary Classifier

𝑥1, 𝑥2, … , 𝑥𝑚 from 𝑃𝑑𝑎𝑡𝑎 𝑥

෤𝑥1, ෤𝑥2, … , ෤𝑥𝑚 from 𝑃𝐺 𝑥

D is a binary classifier with sigmoid output (can be deep)

Positive examples

Negative examples

=

• In each training iteration:

• Sample m examples 𝑥1, 𝑥2, … , 𝑥𝑚 from data distribution
𝑃𝑑𝑎𝑡𝑎 𝑥

• Sample m noise samples 𝑧1, 𝑧2, … , 𝑧𝑚 from the prior
𝑃𝑝𝑟𝑖𝑜𝑟 𝑧

• Obtaining generated data ෤𝑥1, ෤𝑥2, … , ෤𝑥𝑚 , ෤𝑥𝑖 = 𝐺 𝑧𝑖

• Update discriminator parameters 𝜃𝑑 to maximize

• ෨𝑉 =
1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔𝐷 𝑥𝑖 +

1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔 1 − 𝐷 ෤𝑥𝑖

• 𝜃𝑑 ← 𝜃𝑑 + 𝜂𝛻 ෨𝑉 𝜃𝑑
• Sample another m noise samples 𝑧1, 𝑧2, … , 𝑧𝑚 from the

prior 𝑃𝑝𝑟𝑖𝑜𝑟 𝑧

• Update generator parameters 𝜃𝑔 to minimize

• ෨𝑉 =
1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔𝐷 𝑥𝑖 +

1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔 1 − 𝐷 𝐺 𝑧𝑖

• 𝜃𝑔 ← 𝜃𝑔 − 𝜂𝛻 ෨𝑉 𝜃𝑔

Algorithm

Repeat
k times

Learning
D

Learning
G

Initialize 𝜃𝑑 for D and 𝜃𝑔 for G

max
𝐷

𝑉 𝐺,𝐷Can only find
lower bound of

Only
Once

Objective Function for Generator
in Real Implementation

𝑉 = 𝐸𝑥∼𝑃𝑑𝑎𝑡𝑎 𝑙𝑜𝑔𝐷 𝑥

𝑉 = 𝐸𝑥∼𝑃𝐺 −𝑙𝑜𝑔 𝐷 𝑥

Real implementation:
label x from PG as positive

−𝑙𝑜𝑔 𝐷 𝑥

𝑙𝑜𝑔 1 − 𝐷 𝑥

+𝐸𝑥∼𝑃𝐺 𝑙𝑜𝑔 1 − 𝐷 𝑥

𝐷 𝑥

Slow at the beginning

Minimax GAN (MMGAN)

Non-saturating GAN (NSGAN)

Tips for Improving GAN

Martin Arjovsky, Soumith Chintala, Léon Bottou, Wasserstein GAN, arXiv prepring, 2017

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville,
“Improved Training of Wasserstein GANs”, arXiv prepring, 2017

JS divergence is not suitable

• In most cases, 𝑃𝐺 and 𝑃𝑑𝑎𝑡𝑎 are not overlapped.

• 1. The nature of data

• 2. Sampling

Both 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺 are low-dim
manifold in high-dim space.

𝑃𝑑𝑎𝑡𝑎
𝑃𝐺

The overlap can be ignored.

Even though 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺
have overlap.

If you do not have enough
sampling ……

𝑃𝑑𝑎𝑡𝑎𝑃𝐺0 𝑃𝑑𝑎𝑡𝑎𝑃𝐺1

𝐽𝑆 𝑃𝐺0 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝑃𝑑𝑎𝑡𝑎𝑃𝐺100

……

𝐽𝑆 𝑃𝐺1 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝐽𝑆 𝑃𝐺100 , 𝑃𝑑𝑎𝑡𝑎
= 0

What is the problem of JS divergence?

……

JS divergence is log2 if two distributions do not overlap.

Intuition: If two distributions do not overlap, binary classifier
achieves 100% accuracy

Equally bad

Same objective value is obtained. Same divergence

Least Square GAN (LSGAN)

• Replace sigmoid with linear (replace classification
with regression)

1 (Real) 0 (Fake)

Binary
Classifier

scalar
Binary

Classifier
scalar

They don’t
move.

0

1

real
generated

Wasserstein GAN (WGAN):
Earth Mover’s Distance
• Considering one distribution P as a pile of earth,

and another distribution Q as the target

• The average distance the earth mover has to move
the earth.

𝑃 𝑄

d

𝑊 𝑃,𝑄 = 𝑑

WGAN: Earth Mover’s Distance

Source of image: https://vincentherrmann.github.io/blog/wasserstein/

𝑃

𝑄

Using the “moving plan” with the smallest average distance to
define the earth mover’s distance.

There many possible “moving plans”.

Smaller
distance?

Larger
distance?

WGAN: Earth Mover’s Distance

Source of image: https://vincentherrmann.github.io/blog/wasserstein/

𝑃

𝑄

Using the “moving plan” with the smallest average distance to
define the earth mover’s distance.

There many possible “moving plans”.

Best “moving plans” of this example

A “moving plan” is a matrix

The value of the element is the
amount of earth from one
position to another.

moving plan 𝛾
All possible plan Π

𝐵 𝛾 = ෍

𝑥𝑝,𝑥𝑞

𝛾 𝑥𝑝, 𝑥𝑞 𝑥𝑝 − 𝑥𝑞

Average distance of a plan 𝛾:

Earth Mover’s Distance:

𝑊 𝑃,𝑄 = min
𝛾∈Π

𝐵 𝛾

The best plan

𝑃

𝑄

𝑥𝑝

𝑥𝑞

𝑃𝑑𝑎𝑡𝑎𝑃𝐺0 𝑃𝑑𝑎𝑡𝑎𝑃𝐺50

𝐽𝑆 𝑃𝐺0 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝑃𝑑𝑎𝑡𝑎𝑃𝐺100

…… ……
𝑑0 𝑑50

𝐽𝑆 𝑃𝐺50 , 𝑃𝑑𝑎𝑡𝑎
= 𝑙𝑜𝑔2

𝐽𝑆 𝑃𝐺100 , 𝑃𝑑𝑎𝑡𝑎
= 0

𝑊 𝑃𝐺0 , 𝑃𝑑𝑎𝑡𝑎
= 𝑑0

𝑊 𝑃𝐺50 , 𝑃𝑑𝑎𝑡𝑎
= 𝑑50

𝑊 𝑃𝐺100 , 𝑃𝑑𝑎𝑡𝑎
= 0

Why Earth Mover’s Distance?

𝐷𝑓 𝑃𝑑𝑎𝑡𝑎||𝑃𝐺

𝑊 𝑃𝑑𝑎𝑡𝑎, 𝑃𝐺

WGAN

𝑉 𝐺, 𝐷
= max

𝐷∈1−𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧
𝐸𝑥~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑥 − 𝐸𝑥~𝑃𝐺 𝐷 𝑥

Evaluate wasserstein distance between 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺

[Martin Arjovsky, et al., arXiv, 2017]

D has to be smooth enough.

real

−∞

generated

D

∞
Without the constraint, the
training of D will not converge.

Keeping the D smooth forces
D(x) become ∞ and −∞

WGAN

𝑉 𝐺, 𝐷
= max

𝐷∈1−𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧
𝐸𝑥~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑥 − 𝐸𝑥~𝑃𝐺 𝐷 𝑥

Evaluate wasserstein distance between 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺

[Martin Arjovsky, et al., arXiv, 2017]

How to fulfill this constraint?D has to be smooth enough.

𝑓 𝑥1 − 𝑓 𝑥2 ≤ 𝐾 𝑥1 − 𝑥2

Lipschitz Function

K=1 for "1 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧"

Output
change

Input
change 1−Lipschitz?

1−Lipschitz?

Do not change fast

Weight Clipping
Force the parameters w between c and -c
After parameter update, if w > c, w = c;
if w < -c, w = -c

𝑉 𝐺, 𝐷
= max

𝐷∈1−𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧
𝐸𝑥~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑥 − 𝐸𝑥~𝑃𝐺 𝐷 𝑥

≈ max
𝐷

{𝐸𝑥~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑥 − 𝐸𝑥~𝑃𝐺 𝐷 𝑥

−𝜆 𝑥׬ 𝑚𝑎𝑥 0, 𝛻𝑥𝐷 𝑥 − 1 𝑑𝑥}

−𝜆𝐸𝑥~𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑚𝑎𝑥 0, 𝛻𝑥𝐷 𝑥 − 1 }

A differentiable function is 1-Lipschitz if and only if it has
gradients with norm less than or equal to 1 everywhere.

𝛻𝑥𝐷 𝑥 ≤ 1 for all x

Improved WGAN (WGAN-GP)

𝑉 𝐺, 𝐷

𝐷 ∈ 1 − 𝐿𝑖𝑝𝑠𝑐ℎ𝑖𝑡𝑧

Prefer 𝛻𝑥𝐷 𝑥 ≤ 1 for all x

Prefer 𝛻𝑥𝐷 𝑥 ≤ 1 for x sampling from 𝑥~𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦

Improved WGAN (WGAN-GP)

𝑃𝑑𝑎𝑡𝑎 𝑃𝐺

Only give gradient constraint to the region between 𝑃𝑑𝑎𝑡𝑎 and 𝑃𝐺
because they influence how 𝑃𝐺 moves to 𝑃𝑑𝑎𝑡𝑎

−𝜆𝐸𝑥~𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑚𝑎𝑥 0, 𝛻𝑥𝐷 𝑥 − 1 }

≈ max
𝐷

{𝐸𝑥~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑥 − 𝐸𝑥~𝑃𝐺 𝐷 𝑥𝑉 𝐺, 𝐷

𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦

“Given that enforcing the Lipschitz constraint everywhere is
intractable, enforcing it only along these straight lines seems
sufficient and experimentally results in good performance.”

“Simply penalizing overly large
gradients also works in theory, but
experimentally we found that this
approach converged faster and to
better optima.”

Improved WGAN (WGAN-GP)

𝑃𝑑𝑎𝑡𝑎

𝑃𝐺

−𝜆𝐸𝑥~𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑚𝑎𝑥 0, 𝛻𝑥𝐷 𝑥 − 1 }

≈ max
𝐷

{𝐸𝑥~𝑃𝑑𝑎𝑡𝑎 𝐷 𝑥 − 𝐸𝑥~𝑃𝐺 𝐷 𝑥𝑉 𝐺, 𝐷

𝑃𝑝𝑒𝑛𝑎𝑙𝑡𝑦

𝛻𝑥𝐷 𝑥 − 1 2

𝐷 𝑥𝐷 𝑥
Largest gradient in

this region (=1)

Spectrum Norm Spectral Normalization → Keep
gradient norm smaller than 1
everywhere [Miyato, et al., ICLR, 2018]

• In each training iteration:

• Sample m examples 𝑥1, 𝑥2, … , 𝑥𝑚 from data distribution
𝑃𝑑𝑎𝑡𝑎 𝑥

• Sample m noise samples 𝑧1, 𝑧2, … , 𝑧𝑚 from the prior
𝑃𝑝𝑟𝑖𝑜𝑟 𝑧

• Obtaining generated data ෤𝑥1, ෤𝑥2, … , ෤𝑥𝑚 , ෤𝑥𝑖 = 𝐺 𝑧𝑖

• Update discriminator parameters 𝜃𝑑 to maximize

• ෨𝑉 =
1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔𝐷 𝑥𝑖 +

1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔 1 − 𝐷 ෤𝑥𝑖

• 𝜃𝑑 ← 𝜃𝑑 + 𝜂𝛻 ෨𝑉 𝜃𝑑
• Sample another m noise samples 𝑧1, 𝑧2, … , 𝑧𝑚 from the

prior 𝑃𝑝𝑟𝑖𝑜𝑟 𝑧

• Update generator parameters 𝜃𝑔 to minimize

• ෨𝑉 =
1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔𝐷 𝑥𝑖 +

1

𝑚
σ𝑖=1
𝑚 𝑙𝑜𝑔 1 − 𝐷 𝐺 𝑧𝑖

• 𝜃𝑔 ← 𝜃𝑔 − 𝜂𝛻 ෨𝑉 𝜃𝑔

Algorithm of Original GAN

Repeat
k times

Learning
D

Learning
G

Only
Once

𝐷 𝑥𝑖 𝐷 ෤𝑥𝑖−

No sigmoid for the output of D

WGAN

Weight clipping /
Gradient Penalty …

𝐷 𝐺 𝑧𝑖−

Energy-based GAN (EBGAN)

• Using an autoencoder as discriminator D

Discriminator

0 for the
best images

Generator is
the same.

-
0.1

EN DE

Autoencoder

X -1 -0.1

[Junbo Zhao, et al., arXiv, 2016]

➢Using the negative reconstruction error of
auto-encoder to determine the goodness

➢Benefit: The auto-encoder can be pre-train
by real images without generator.

EBGAN

realgen gen

Hard to reconstruct, easy to destroy

m

0 is for
the best.

Do not have to
be very negative

Auto-encoder based discriminator
only gives limited region large value.

Outlook:
Loss-sensitive GAN (LSGAN)

D(x)

𝑥

WGAN LSGAN

𝑥′′
𝑥′

D(x)

Δ 𝑥, 𝑥′

Δ 𝑥, 𝑥′′

𝑥′′

𝑥′

𝑥

Reference

• Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative Adversarial
Networks, NIPS, 2014

• Sebastian Nowozin, Botond Cseke, Ryota Tomioka, “f-GAN: Training Generative
Neural Samplers using Variational Divergence Minimization”, NIPS, 2016

• Martin Arjovsky, Soumith Chintala, Léon Bottou, Wasserstein GAN, arXiv, 2017

• Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron
Courville, Improved Training of Wasserstein GANs, NIPS, 2017

• Junbo Zhao, Michael Mathieu, Yann LeCun, Energy-based Generative Adversarial
Network, arXiv, 2016

• Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, Olivier Bousquet, “Are
GANs Created Equal? A Large-Scale Study”, arXiv, 2017

• Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi
Chen Improved Techniques for Training GANs, NIPS, 2016

Reference

• Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp
Hochreiter, GANs Trained by a Two Time-Scale Update Rule Converge to a Local
Nash Equilibrium, NIPS, 2017

• Naveen Kodali, Jacob Abernethy, James Hays, Zsolt Kira, “On Convergence and
Stability of GANs”, arXiv, 2017

• Xiang Wei, Boqing Gong, Zixia Liu, Wei Lu, Liqiang Wang, Improving the
Improved Training of Wasserstein GANs: A Consistency Term and Its Dual Effect,
ICLR, 2018

• Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida, Spectral
Normalization for Generative Adversarial Networks, ICLR, 2018

