Applied Deep Learning

Guest Lecture by Hung-yi Lee
Generative Adversarial Network

@ May 19th, 2020 http://adl.miulab.tw

http://adl.miulab.tw/

Three Categories of GAN
1. Typical GAN

.
0.1
. | == Generator

1 0.9 |
random vector

blueeves, e with
red hair, ., == Generator
red hair
short hair
text
palred data

3. Unsupervised Conditional GAN

domain x domainy

Generator

. Vlncent van
unpaired data Gogh'’s style

Generative Adversarial Network

(GAN)

* Anime face generation as example

vector ‘

g

Generator

Discri-
minator

-

b

‘ score

v
o

high
dimensional
vector

Larger score means real,
smaller score means fake.

Algorithm

* Initialize generator and discriminator | G D

* In each training iteration:

Step 1: Fix generator G, and update discriminator D

Database

generated
objects

randomly
sampled

Discriminator learns to assign high scores to real objects
and low scores to generated objects.

Algorithm

* Initialize generator and discriminator | G D

* In each training iteration:

Step 2: Fix discriminator D, and update generator G

Generator learns to “fool” the discriminator

hidden layer
NN Discri-
— — =)
I Generator minator \O.ﬂ\
vector update fix

large network

Backpropagation

Algorithm

* Initialize generator and discriminator i
* In each training iteration:

Sample some
real objects:

Learning Generate some
D fake objects:

Learning
G

https://crypko.ai/#/

GAN is hard to train

NO PAIN

NOGA N

Three Categories of GAN

1. Typical GAN

.
0.1
. | == Generator

1 0.9 |
random vector

PIue eves, g with

red hair, . ,, === (Generator

. red hair
short hair text
paired data

3. Unsupervised Conditional GAN

domain x domainy

Generator

. Vlncent van
unpaired data Gogh'’s style

a dog is running 4%
TeXt_tO_l mage a bird is flying ﬁ

* Traditional supervised approach

cl: a dogis running » NN

Text: “train”

as close as
possible

[Scott Reed, et al, ICML, 2016]

Conditional GAN

c: train -

G » Image x = G(c,z)
Normal distribution z »

X is real image or not

- D ‘I Generator will learn to
* (original) » >talar generate realistic images

But completely ignore the
Real images: [J&& input conditions.

Generated images: Image %

[Scott Reed, et al, ICML, 2016]

Conditional GAN

c: train »

G » Image x = G(c,z)
Normal distribution z »

¢ » D X is realistic or not +
scalar

N » (better) c and x are matched or not

True text-image pairs: (train, Hash

(cat, ﬁ) 0 (train, mage) Q

Conditional GAN
- Sound-to-image

G » Image

WWMM c: sound »

"a dog barking sound”

Training Data

Collection WWWMMW

B R QQRY

The images are generated by Chia-

Cond |t|ona | GAN Hung Wan and Shun-Po Chuang.

https://wjohn1483.github.io/

_ SO u n d _tO_i m a ge audio_to_scene/index.html

* Audio-to-image

Conditional GAN - Image-to-label

Multi-label Image Classifier

Input condition

person, sports ball, ‘
baseball bat, baseball glove

Generated output

Positive example :

I
I
Generator person 1 . Discriminator | {pers;?;,mat’]
Wl frisbee 0.9 ; 1 | P '
/ " ™ .. sampling 7 | y
x==| Classifier |==p | J/w=—) 1 5y | Negatlveexample
: : . I iy
sports ball 05 1 — = D@.x) | |]| ,,Tf*,’,‘” —» Discriminator
I
I
-» | Fixed feature extractor : > [|
fext | plzza cup -
I
|

Conditional GAN - Image-to-label

The classifiers can have |VGG-16 56.0 33.9
different architectures. I + GAN 60.4 412 |
The classifiers are l JIe5]olifeln 024 232 l
trained as conditional [+GAN 63.8 55.8 |
GAN. | Resnet-101 62.8 53.1 |
[+GAN 64.0 55.4 |
| Resnet-152 63.3 52.1 |

+GAN 63.9 54.1

Att-RNN 62.1 54.7

[Tsai, et al., submitted to

ICASSP 2019] RLSD 62.0 46.9

Conditional GAN - Image-to-label

The classifiers can have VGG-16 56.0 33.9
different architectures. + GAN 60.4 412
The classifiers are [ICEFIIET £ D2
trained as conditional +GAN 63.8 | 53.8
GAN. Resnet-101 62.8 53.1
+GAN | 640 | 554
Conditional GAN - = c3 3 5 1
outperforms other esnet- : :
models designed for +GAN 63.9 54.1
multi-label. Att-RNN 62.1 54.7

RLSD 62.0 46.9

Talking Head

Landmarks Generator Synthesized

S = N

RGB & landmarks

https://arxiv.org/abs/1905.08233

Three Categories of GAN
1. Typical GAN

T

.
0.1
. | == Generator

& jjﬂ gy 0.9 |
VK = random vector
2. Conditional GAN
blue eyes
0 “Girl with
red hair, . ,, === (Generator
red hair
short hair text

palred data
3. Unsupervised Conditional GAN

domain x domainy

Generator

. Vlncent van
unpaired data Gogh'’s style

Cycle GAN

Domain X

L T e el
LSRR F,,: !

’ Input image

belongs to
domain Y or not

DomainyY

Cycle GAN

Domain X

L i 53 (T ;:7.1
UJH iii o : ‘]T
*1_,.""'-'-?"

Not what we want!

S

Dy »scalar
’ Input image

belongs to
domain Y or not

DomainyY

[Jun-Yan Zhu, et al., ICCV, 2017]

Cycle GAN

as close as possible

Cycle consistency

Lack of information
for reconstruction

’ Input image
belongs to
domain Y or not

DomainyY

Cycle GAN

as close as possible

scalar: belongs to
domain X or not

scalar: belongs to
- domain Y or not

» _JGyx L4 } m) [P =) L

as close as possible

Cycle GAN

as close as possible

1

It is bad.

negative

| love you.

positive

T

- GX—>Y -

4 Ov-x Log

It is good.

posmve

| hate you.

negative

g Ov-x Lag

It is bad.

negative

negative sentence? «m‘ w positive sentence?

- GX—>Y -

| love you.
positive

as close as possible

1

Discrete Issue

Seq2seq model
hidden layer

with discrete output
It is good.

poanve
w positive sentence?
large network
Backpropagation a‘

It is bad. -

negative

update

Three Categories of Solutions

Gumbel-softmax

|

e [Matt J. Kusner, et al, arXiv, 2016]

Continuous Input for Discriminator

e [Sai Rajeswar, et al., arXiv, 2017][Ofir Press, et al., ICML workshop, 2017][Zhen
Xu, et al., EMNLP, 2017][Alex Lamb, et al., NIPS, 2016][Yizhe Zhang, et al., ICML,
2017]

“Reinforcement Learning”

|

* [Yu, et al., AAAI, 2017][Li, et al., EMNLP, 2017][Tong Che, et al, arXiv,
2017][Jiaxian Guo, et al., AAAI, 2018][Kevin Lin, et al, NIPS, 2017][William

Fedus, et al., ICLR, 2018]

o) E R R SR AR RS
X

Negative sentence to positive sentence:

It's a crappy day -> it's a great day

| wish you could be here -> you could be here
It's not a good idea -> it's good idea
| miss you -> |love you

| don't love you -> ilove you

| can't do that -> i can do that

| feel so sad -> | happy

it's a bad day -> it's a good day

it's a dummy day -> it's a great day
sorry for doing such a horrible thing -> thanks for doing a
great thing

my doggy is sick -> my doggy is my doggy

my little doggy is sick -> my little doggy is my little doggy

VO E R SR (ISR R

Negative sentence to positive sentence:
BE, lilEle , STEAETIR > A H R, e , SERET Ak
PAVEEL BE T, BAREHY! -> FEDTEERRE 7, JENHY !

%V? IZBEkE ~ OB EESERENE > IGha4r ~, 1288k ~ 5
7 S RIT:

EIE T RAVESE > A HREES
VB T, SEZHUERA HEEAK T > BUE T, B DHYER A tHEs

I
e 0 e e

Speech Recognition

Supervised Learning Human
Teacher
lcan do speech o /\WW%‘WW Q
recognition 2L This utterance is A

after teaching “wat. “a00d morning” -

e Supervised learning needs lots of annotated speech.
 However, most of the languages are low resourced.

Speech Recognition

Supervised Learning Human
Teacher
| can do speech = /\WW%WW g
;fCOfnltan ? %c \/ This utterance is ‘ 2
alter teathing - “good morning”.
Unsupervised Learning | can automatically learn

Listening to human talking Reading text on the Internet

Acoustic Token Discovery

Acoustic tokens can be discovered from audio collection
without text annotation.

Acoustic tokens: chunks of acoustically similar audio segments

with token IDs [Zhang & Glass, ASRU 09]
[Huijbregts, ICASSP 11]
[Chan & Lee, Interspeech 11]

Acoustic Token Discovery

! Token 3 Token 2 Token 1
Token 2 Token 3 Token 1

Token 1 Tokeﬁ 3

Acoustic tokens can be discovered from audio collection
without text annotation.

Acoustic tokens: chunks of acoustically similar audio segments

with token IDs [Zhang & Glass, ASRU 09]
[Huijbregts, ICASSP 11]
[Chan & Lee, Interspeech 11]

[Wang, et al., ICASSP, 2018]

Acoustic Token Discovery

Z

]

Phonetic-level acoustic tokens are obtained by
segmental sequence-to-sequence autoencoder.

Unsupervised Speech Recognition

sl P, P, Ps3 AY LAHV Y UW

GUHD BAY

WWWWM P1 P3 Py ‘
HH AW AAR Y UW

WW%WW P P; Ps P _
1 : i ” AYM FAYN

Cycle
e W P1 Ps Ps3 GyAN TAY W AA N

Phone-level Acoustic Phoneme sequences
Pattern Discovery from Text

[Liu, et al., INTERSPEECH,
2018]

[Chen, et al., arXiv, 2018]

Segments
Acoustic
Features

Model

Generator

)
s N R e Y. N (P =
lllllllllllllllllllllll _ Q
I Y s B B S 2R,
Ol n..\\“.vlyf.n
llllllllllll B v
3 L S_ S
U Q » <
.......... -1 @|----------- | : (Y]
v o S
3HU | @D &5 5
“vamm | |8 m».ﬁ,gh&
........................ £ Q
—:!|E M." S
o xbleb X = o €
“| o 3L %&anBujm\tﬂHoy.on.
H:frﬂrvm - 3
llllllllllll TR, - e
&HU»I[V > S B S—HEEs s S
o s+| =S e ., 2
.......... Vo w Bt Y o
__J\ J v S E
"
mh
.‘mp

Predicted
Distributions

h 4
Iscrimina

inator

D

<

L 9
©%
- A
S ¢
x W

L)

.I\.I/

m ~

> ®IID -3

L

p—

v

S

S

3 =

a.mIHDo

Q

vy

Q

&

Q 0D =

<

2

Q.

— —

leDu.ﬂ

x, |
B w
T O
s§8
__mm.
ES S
.mp

Experimental Results

Matched
Approaches (all 4000) 000/1000)

FER | PER | FER | PER
(I) Supervised (labeled)

(a) RNN Transducer [23] - 17.7 - -
(b) standard HMMs - 21.5 - -
(c) Phoneme classifier 27.0 | 28.9 - -

(IT) Unsupervised (with oracle boundaries)

(d) Relationship mapping GAN [22] | 40.5 | 40.2 | 43.6 | 434

(e) Segmental Emperical-ODM [23] | 33.3 | 32.5 | 40.0 | 40.1

(f) Proposed: GAN 27.6 | 28,5 | 327 | 343
(IIT) Completely unsupervised (no label at all)

(g) Segmental Emperical-ODM [23] - 36.5 - 41.6

toration | (h) GAN 48.3 | 48.6 | 50.3 | 50.0
= (1) GAN/HMM . 30.7 - 39.5
é toration 2 (j) GAN 41.0 | 41.0 | 443 | 443
S (k) GAN/HMM - 27.0 - 35.5
- (I) GAN 39.7 | 384 | 450 [4472

iteration 3

(m) GAN/HMM 1261 - m

Accuracy

35

a0

79

70

a5

al

95

ad

45

:I:)'

I [I I [I I I

The progress of supervised learning TRAPS: e

RNN/

lattice rese,
'TRAPS CRFS

NN SUMMIT MLP

MLP/ CRF

Unsupervised learning today (2019) is as good
as supervised learning 30 years ago.

Cieep B elief|
Metworks |

Eoltzmann
Machines

| * Milestones in phone recognition aceuracy using the TIMIT database

| [| | [| | | |

1380

1992 1994 1994 1993 2000 2002 2004 2004 2008
Date (22 vears)

The image is modified from: Phone recognition on the TIMIT database Lopes, C. and Perdigao, F., 2011.
Speech Technologies, Vol 1, pp. 285--302.

2010

2012

Three Categories of GAN
1. Typlcal GAN

0.1
2 .~ | == Generator

Zank
>)
“"fwz 2 0.9 |
random vector

2. Conditional GAN

2 1 {

blue eyes
-7 “Girl with
red hair, ., === Generator
. red hair
short hair toxt

paired data
3. Unsupervised Conditional GAN

domain x domainy

Generator

— Vincent van
unpaired data Gogh'’s style

Theory behind GAN

Using Generative

Adversarial
Network (GAN)

Generation

» Drawing?

Generation

x: an image (a high-
dimensional vector)

* We want to find data distribution P,:,(x)

-

High
Probability

Image
Space 2

Pyata (x)

Probability

Maximum Likelihood Estimation

* Given a data distribution Py, (x) (We can sample from it.)

* We have a distribution P;(x; 8) parameterized by 6
* We want to find 6 such that P;(x; 6) close to P ¢4(x)

* E.g. P (x; 0) is a Gaussian Mixture Model, 8 are means
and variances of the Gaussians

Sample {x1,x?,...,x™} from Py 4, (x)
We can compute P, (xi; 9)

Likelihood of generating the samples

m
L = HPG(Xi; 9)
=1

Find 8™ maximizing the likelihood

Maximum Likelihood Estimation
= Minimize KL Divergence

m m
0" = arg mglxl_[PG(xi; 9) = arg max log HPG(xi; 8)
i=1 i=1

m
= arg m@axz logP(x%0) {xt,x?, ..., x™} from Pygrq (%)
i=1

~ arg max Ex-p,,. [logPs(x;0)]

= arg m@axj Pigia(x)logP;(x; 0)dx —j Piagia(X)logP,uiq(x)dx

X X

= arg mgin KL(Pi,:4l|Pg) How to define a general P,.?

x: an image (a high-
dimensional vector)

Generator

* A generator G is a network. The network defines a
probability distribution P,

Normal PG(x) Pdata(x)

Distribution

as close as possible

G* =arg mGin Div(Pg, Pigra)
Divergence between distributions P; and P44
How to compute the divergence?

Discriminator

G* = arg mGjn DiU(PG;Pdata)

Although we do not know the distributions of P; and P44,
we can sample from them.

-4 ’Wﬁw
{,/ } ‘

Sampling from P ;,;,

-

Sampling from P

sample from
normal

Discriminator 6" = arg min Div(Pg, Paata)

* : data sampled from Py4q4 Using the example objective
* . data sampled from P function is exactly the same as

training a binary classifier.
* * N
* * *

Discriminator

* train
Sigmoid Output
Example Objective Function for D g
V(G,D) = Exp,,. [logD(x)] + Exp.|log(1 — D(x))]
- (G is fixed)

Training: D* = arg‘mglx V(D, G)‘ The maximum objective value
is related to JS divergence.

[Goodfellow, et al., NIPS, 2014]

Discriminator 6" = arg min Div(Pg, Paata)

* : data sampled from Pi,¢4 Training:
- : data sampled from Pg D* = arg‘mglx V(D, G)‘

* *

small dlvergence hard to discriminate

* (cannot make objective large)
* ok
AR
) ¢ * train

Discriminator

large divergence easy to discriminate

V= Ex~Pdata [logD(x)]

max V(G,D) By [l0g(1 = D(O)]

* Given G, what is the optimal D* maximizing

V = ExpygallogD (x)] + Exp;[log(1 — D(x))]

— [Pacallogd @ dx + [PoG)log(1 - DGo)) dx

X X
= f [Pdam(x)logD(x) + P, (x)log(l — D(x))] dx
x Assume that D(x) can be any function

* Given x, the optimal D* maximizing
Paata(¥)logD(x) + Pg(x)log(1 — D (x))

V= Ex“’Pdata [lOgD (X)]
mng V(G, D) +Ey-p.|log(1 —D(x))]

* Given x, the optimal D* maximizing

Pyata(x)logD(x) + P;(x)log(1 — D(x))
a D b D

* Find D* maximizing: f(D) = alog(D) + blog(1 — D)

afib) _ ><1+b>< X(—=1) =0
o 7D 1-D -
1 1 — D*) = *
O = b x aX(1—D*)=bXxD
D~ 1-D* a—aD*=bD* a=(a+b)D*
o— a * _ Pdata(x)
D" = —— > D*(x) =

0 < Paata(x) + Pg(x) <1

V= Ex“’Pdata [lOgD (X)]
mng V(G, D) +Ey-p.|log(1 —D(x))]
B . Piora(X)
V(G.D) =V(G,D . _ data
mlng () () b (X) Pdata(x) + PG (X)
_ Pdata(x)
= Ex~Pdata [log Pigeg(x) + Pc (.’XI)]
+E [lo F)
1 *~Fe 7 Pdata(x) + PG (x)
B 2 Pdata(x)
= j Pdata(x)log Pdata(x) + P, (x) 1
X 2

2 Ps(x)

4 f P.(x)log

X

dx
Piaeq (%) + Pz (x)

1
+210g§ —2log?2
2

ISD(P || Q) = 5D(P || M) + 5D(Q || M)
IMax V(G,D) M=1P+0Q)
D 2
— * * P a a(x)
ml?XV(G'D) =V(G,D7) b™(x) = Pdamgxg + Pg(x)
Pdata(x)
= —2log2 P
log2 + xf data(¥)l0g (Paata(®) + Pg(x))/2 "
Pg(x)
+f P-(x)lo dx
X G() g(Pdata(x) +PG(x))/2
Paata + P Pdata + P
= —2log2 + KL (Pdata” - t2 G) +KL (PG” : t2 G)

= —2log2 + 2JSD(Py4:4||Pg) Jensen-Shannon divergence

G =arg mGin mgx V(G,D)

D* = arg‘max V(D, G)‘ The maximum objective value
D is related to JS divergence.

V(Gl ,D) V(GZ ’ D) V(Gg ,D)

G1

Divergence between P; and P4

[Goodfellow, et al., NIPS, 2014]

G* = arg mGin mDaX V(G,D)

D* = arg‘maxV(D, G)‘ The maximum objective value
D is related to JS divergence.

* |nitialize generator and discriminator

* In each training iteration:

Step 1: Fix generator G, and update discriminator D

Step 2: Fix discriminator D, and update generator G

A|g0rithm G* =arg mGinmng(G,D*

L(G)
* To find the best G minimizing the loss function L(G),

HG — HG —n (3L(G)/69G HG defines G

df (x)
dx

=2 df;(x)/dx
If f;(x) is the
max one

f(x) = max{f; (x), fo(x), f3(x)}

f1(x) f3(x)

dfi(x)/dx df,(x)/dx dfs(x)/dx

:G = arg minfmax V(aG, DJ/

Algorithm

* Given Gy P Y S S >
Find Dy maximizing V(G,, D) Using Gradient Ascent

V(Go, D) is the JS divergence between P4, (x) and Pg (x)

O; < 0; —ndV(G,Dy)/006, ‘ Obtain G; Decrease JS
Find D; maximizing V (G, D) divergence(?)

V (G4, D) is the IS divergence between P, (x) and Pg, (x)

* O0g < 0; —ndV(G,D1)/08; ‘ Obtain G Decrease JS
...... divergence(?)

:G = arg minfmax V(aG, Dj/

Algorithm

* Given G P Y S g
* Find Dy maximizing V(Gy, D)

V(Go, D) is the JS divergence between P4, (x) and Pg (x)
* §; < 65 —ndV(G,D;)/06,; mmm) Obtain G; Decrease JS

divergence(?)
V(G,,D:) ~sSmaller
0. 0 “\ V(Gl ,DS) A

Assume Dy = Dy

> ' » Don’tupdate G
V(Gy,D) V(G,,D) too much

V= ExNPdata [lOgD(X)]

In practice ... ¥Eyp,[log(1 = D())]

* Given G, how to compute max V(G,D)

 Sample {x1,x?,...,x™} from Py, (x), sample
{1, %2, ..., ™} from generator P;(x)

m m
| . 1 .
. ° _ l _ ~l
Maximize V = — iil logD(x) + — iil log (1 D(x))

D is a binary classifier with sigmoid output (can be deep)

{x,x2,..,x™} from Py, (x) HE) Positive examples

{¥1,%%,..., %™} from P;(x) mm) Negative examples
Minimize Cross-entropy

for G

Canonlyfind | maxV (G, D)
* In each training iteration: lower bound ofi 2

*|Sample m examples {x1, x?, ..., x™} from data distribution

Initialize 6,4 for D and 6

Algorithm

Learnin ' '
D 5. Obtaining generated data {x¥1, ¥4, ..., x™}, X! = G(Zl)

Repeat
k times

+ V=3, logD(x) + =X, log (1 - D(%))
J Hd «— Hd + 77\717(9d)

Only
Once

Objective Function for Generator
in Real Implementation

V = Epepm—tdog-béii

\ —l:og D(x):
+Ex~pG[log(1 — D(x))] \ ()
Slow at the beginning
Minimax GAN (MMGAN)

V = ExNPG[—log(D(x))]

Real implementation:
label x from P as positive

Non-saturating GAN (NSGAN)

log(1-D@))

Tips for Improving GAN

Martin Arjovsky, Soumith Chintala, Léon Bottou, Wasserstein GAN, arXiv prepring, 2017

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville,
“Improved Training of Wasserstein GANs”, arXiv prepring, 2017

JS divergence is not suitable

* In most cases, P; and P,,:+, are not overlapped.

* 1. The nature of data
Both P;,¢q and P are low-dim
manifold in high-dim space.
The overlap can be ignored.

e 2. Sampling

Even though P+, and Pg
have overlap.

If you do not have enough
sampling

What is the problem of JS divergence?

PGO —p Pdata PG]_ <> Pdata ------ PG]_OO

/ Equally bad X
]S(PGOr Pdata)]S(Pcl; Pdata) """]S(PGloo: Pdata)
= log?2 = log?2 =0

JS divergence is log2 if two distributions do not overlap.

Intuition: If two distributions do not overlap, binary classifier
achieves 100% accuracy

» Same objective value is obtained. » Same divergence

® real

Least Square GAN (LSGAN) L2

* Replace sigmoid with linear (replace classification

with regression)
Binary » scalar
Classifier

\Kg%j}» Binary »scalar ﬂ(q»
"V Classifier t \,’, t

1 (Real) 0 (Fake)
They don’t
move.

—0-008-0— - O =

Wasserstein GAN (WGAN):
Earth Mover’s Distance

* Considering one distribution P as a pile of earth,
and another distribution Q as the target

* The average distance the earth mover has to move
the earth.

P Q

WGAN: Earth Mover’s Distance

Smaller
distance?

Larger
distance?

—

There many possible “moving plans”.

Using the “moving plan” with the smallest average distance to
define the earth mover’s distance.

Source of image: https://vincentherrmann.github.io/blog/wasserstein/

WGAN: Earth Mover’s Distance

Best “moving plans” of this example

g V| " .
Q;L

There many possible “moving plans”.

Using the “moving plan” with the smallest average distance to
define the earth mover’s distance.

Source of image: https://vincentherrmann.github.io/blog/wasserstein/

moving plan y
All possible plan I1

B

"

A “moving plan” is a matrix

The value of the element is the
amount of earth from one
position to another.

Average distance of a plan y:

B(y) = Z ¥ (2 Xq)||%p — x4

Xp:Xq
Earth Mover’s Distance:

W(P,Q) = min B(y)
YEll

The best plan

B

Why Earth Mover’s Distance?

ight-sensitive

Df(Pdatal |PG)

% [\ N - ~
/ [)) / Lens
5 (f |
) N - X d
4 y \ =) \ //
y / - /
{ yecu N e ¥ ayerof N
\ - ~ Bghtsensitive - —
1oers ptic tic b
neve neve
Patch of light- Eyecup Simple pinhole Eye with
sensitive cells camera-type eye primitive lens
b o sodl g or’
. 'l.‘ % - el e, '
> I g ! b N \
) SRl | Eerrong o X o
R § o o Ty X N X
X g Q= 2 TR

W(Pdatar PG)

- e g
Limpet Abslone Nautilus Marine snail

d dsg

]S(PG(,: Pdata)]S(PGso: Pdata)]S(PGloo’ Pdata)
= log?2 = log?2 =

W (Ps,, Paata) W (P, , Paata) W (P, Paata)
= dy = dsg -

[Martin Arjovsky, et al., arXiv, 2017]

WGAN

Evaluate wasserstein distance between P, and P

V(G,D) = -

- De1—r{1i?o§chitz{Ex~P data D] = Ex~pg D (x)]}

D has to be smooth enough.

Without the constraint, the
training of D will not converge.

generated

Keeping the D smooth forces
D(x) become co and —o0 D
—00

Welght Cllpp’ng [Martin Arjovsky, et al., arXiv, 2017]
Force the parameters w between c and -c

V\/GAN After parameter update, if w > ¢, w = ¢;
if w<-c, w=-cC

Evaluate wasserstein distance between P, and P

V(G,D) = Y-

- De1—r{1ifao§chitz{Ex~P data D] = Ex~pg D (x)]}

D has to be smooth enough. How to fulfill this constraint?

Lipschitz Function 1—Lipschitz
If (x1) — FO)I < Kllxg — x|
Output Input

change change 1—Lipschitz? —

K=1for "1 — Lipschitz" B /\/

Do not change fast \/

Improved WGAN (WGAN-GP)

V(G,D)

- DEl—rlrlli%.)S‘(Chitz{Ex"’Pdata [D (.X')] - ExNPG [D (X)]}

A differentiable function is 1-Lipschitz if and only if it has
gradients with norm less than or equal to 1 everywhere.

D € 1 — Lipschitz <mm ||V,D(x)|| < 1 for all x

V(G,D) % Max{Ex-p e, [D(0)] = Exp[DCO)]
1 [77‘133569 ”F 9639” a)ifi,‘]

/L Jx) X

Prefer ||V,D(x)|| < 1 for all x ‘
AEyp, 0, IMax(0, 17DGO N = DI}

Prefer ||V,D(x)|| < 1 for x sampling from x~Ppcnaity

Improved WGAN (WGAN-GP)

V(G,D) = mlglx{Exwdam [D(x)] — Ex-pg [D(x)]
~AErp e, [Max (0, 17D @) = D]}

Pyata - P,

Ppenalty

“Given that enforcing the Lipschitz constraint everywhere is
intractable, enforcing it only along these straight lines seems
sufficient and experimentally results in good performance.”

Only give gradient constraint to the region between P;,¢, and P,
because they influence how Pz moves to P, ¢4

Improved WGAN (WGAN-GP)

V(G,D) = Max{Ex-ppq [D] = Expg[D(x)]

—AEx <P enarey MAXCOHEDOH—D) [}
(7D)l = 1)

P data

Largest gradient in
D(x)f this region (=1) D(x) ‘

“Simply penalizing overly large
gradients also works in theory, but
experimentally we found that this
approach converged faster and to
better optima.”

SpeCtrU m |\| orm Spectral Normalization — Keep

gradient norm smaller than 1
everywhere [Miyato, et al., ICLR, 2018]

Chihuahua --> Japanese spaniel

N

ECER

Algorithm of EERWLEIA\

* In each training iteration: No sigmoid for the output of D

*|Sample m examples {x1, x?, ..., x™} from data distribution

,z™} from the prior

Learnin ' '
D 5. Obtaining generated data {x¥1, ¥4, ..., x™}, X! = G(Zl)

Repeat
k times

* |[Sample another m noise S Penalty ...
prior P nor(z)

G ~

Only tV=
Once * 0, <—9 —77\7V(

[Junbo Zhao, et al., arXiv, 2016]

Energy-based GAN (EBGAN)

e Using an autoencoder as discriminator D

» Using the negative reconstruction error of
auto-encoder to determine the goodness
» Benefit: The auto-encoder can be pre-train

by real images without generator.

Discriminator

ﬂ UCUF , ’ \ . » -0 . 1
Autoencoder 0 for the
best images

EBGAN

Auto-encoder based discriminator
only gives limited region large value.

0is for gen real gen
——-B00-—— = | = QOO
the best.
m
Do not have to v

be very negative

Hard to reconstruct, easy to destroy

Outlook:
Loss-sensitive GAN (LSGAN)

WGAN LSGAN
D(x)

i) D(X)

) 4 NER
Up !
o -
v s
A V@ LN
/ o
a ; 1P =
7
/ 7
5 -]

Reference

* lanJ. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, Generative Adversarial
Networks, NIPS, 2014

* Sebastian Nowozin, Botond Cseke, Ryota Tomioka, “f-GAN: Training Generative
Neural Samplers using Variational Divergence Minimization”, NIPS, 2016

* Martin Arjovsky, Soumith Chintala, Léon Bottou, Wasserstein GAN, arXiv, 2017

* Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron
Courville, Improved Training of Wasserstein GANs, NIPS, 2017

e Junbo Zhao, Michael Mathieu, Yann LeCun, Energy-based Generative Adversarial
Network, arXiv, 2016

e Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain Gelly, Olivier Bousquet, “Are
GANSs Created Equal? A Large-Scale Study”, arXiv, 2017

* Tim Salimans, lan Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, Xi
Chen Improved Techniques for Training GANs, NIPS, 2016

Reference

e Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, Sepp
Hochreiter, GANs Trained by a Two Time-Scale Update Rule Converge to a Local
Nash Equilibrium, NIPS, 2017

* Naveen Kodali, Jacob Abernethy, James Hays, Zsolt Kira, “On Convergence and
Stability of GANs”, arXiv, 2017

e Xiang Wei, Boqging Gong, Zixia Liu, Wei Lu, Ligiang Wang, Improving the
Improved Training of Wasserstein GANs: A Consistency Term and Its Dual Effect,
ICLR, 2018

* Takeru Miyato, Toshiki Kataoka, Masanori Koyama, Yuichi Yoshida, Spectral
Normalization for Generative Adversarial Networks, ICLR, 2018

