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3 Natural Language Generation

Many tasks contain NLG
Machine Translation
Abstractive Summarization
Dialogue Generation
Image Captioning
Creative Writing
Storytelling, poetry generation



4 Language Modeling

Goal: predicting the next word given the words so far

Pilyi,+,¥i-1)

Language model is to estimate the probability distribution
RNN-LM is to use RNN for modeling the distribution



5 RNN-LM
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P(yily1, -+, yi—1): probability
distribution of the next word
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ldea: pass the information from the previous hidden layer to leverage all contexts
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Conditional Language Modeling

Goal: predicting the next word given the words so far, and other input x

P(Yilyli”'lyi—llx)

Conditional language modeling tasks
Machine translation (x = source sentence, y = target sentence)
Summarization (x = document, y = summary)
Dialogue (x = dialogue context, y = response)
Image captioning (X = image, y = caption)



7 Sequence-to-Sequence Modeling

yf yIz 3’13 }f} 3’15 Jis
P(y;lyy, -+, vi—1, x): probability ~ ~ ~ ~ ~ N
distriblljtion of tlhe next word E ji ji yi ﬁ ﬁ
® o o O O O O O O
® ® ® O O O O O O
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Training an encoder-decoder model that generate the next word with condition
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Teacher Forcing

During training, feeding the gold target sentence into the decoder

regardless of prediction V1 yf yf 3? yf Jis
P(y;lyy, -+, vi—1, x): probability ~ ~ ~ ~ ~ N
distriblljtion of tlhe next word Y1 ji ji yi ﬁ j
® ® ® @, @, @, @, @, @,
® ® ® @, @, @, @, @, @,
O = O = o) 9 =9 =9 =9 =9 =
® ® ® @, @, @, @, @, @,
dHE FEEEE 8
X1 X2 X3 <BOS> Y1 Y2 Y3 Va Vs

Issue: mismatch between training and testing
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Mismatch between Train and Test
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10 Mismatch between Train and Test

Generation
Testing: Output of model is the
input of the next step.
Reference is unknown

Training: the inputs are reference.

Exposure Bias
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11 Exposure Bias

May be totally wrong A
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13 Scheduled Sampling

Image captioning on MSCOCO

BLEU-4 METEOR CIDER
Always from reference 28.8 24.2 89.5

Always from model 11.2 15.7 49.7

Scheduled Sampling 30.6 24.3 92.1




1« Decoding Algorithm

Strategy of Word Generation



15 Decoding Algorithm

With a trained (conditional) LM, a decoding algorithm decides how to
generate texts from the LM.
Decoding Algorithms

Greedy

Beam Search

Sampling




16 Greedy

Strategy: choosing the most probable word (argmax)
he hit me  with a pie <END>

ET ET ET ET ET ET ET
o0 S 5 0 S S0 S
o) 0 eo|l: o 0 o) o)
ol :.lo|: 0| 0| :]e]| :|e]:]e
O 10 1@ 1@ 10 4K | O
O O O O (@) O (0]
<START> h hit me with a pie

Output can be poor due to lack of backtracking




17 Suboptimal Issue

Unexplored path may have higher probability.
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18  Beam Search

Strategy: keeping track of the k most probable sequences and finding a
better one

Keep several best paths at each step (beam size = 2)
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19  Beam Search

T=1 T=2 T=3
current proposed current proposed current proposed
hypotheses extensions hypotheses extensions hypotheses extensions

~
N - ~ =
N\ ~ 5 T g -
empty \ i =~
string S
N\
N
\
N ~

A standard beam search algorithm with an

alphabet of {¢, a,b} and a beam size of three. The Size Of beam iS 3 in th|S example




20 Effect of Beam Size

Small k
Ungrammatical, unnatural, incorrect, etc.

Large k
Reduce some above issues
Computationally expensive
Introduce other issues
Chit-chat dialogues with large beam often generate generic sentences



21 Effect of Beam Size in Chit-Chat Dialogues

| mostly eat a fresh | W=tEI Small Beam Size:
and raw diet, so | Size Model Response More on-topic but
Save on grocenes 1 Ilove to eat healthy and eat healthy rElonls_eEsicaI; bad
nglis
2 That is a good thing to have
h 3 | am a nurse so | do not eat raw food
4 | am a nurse so | am a nurse
A4
5 Do you have any hobbies?
6 What do you do for a living? Large Beam Size:
7 What do you do for a living? safe, “correct’ |
— response, but generic
8  What do you do for a living? and less relevant
‘VV




22 Sampling-Based Decoding

Strategy: choosing the next word with randomness (from a distribution)
Sampling

Randomly sample the word via the probability distribution instead of argmax
Top-N Sampling

Sample the word via distribution but restricted to the top-N probable words

N=1 is greedy, N=V is pure sampling

Increasing N gets more diverse / risky output

Decreasing N gets more generic / safe output



23 Probability Distribution

Softmax

S
P(Wt) — " softmax: LM computes a prob dist by

Zwrev esws applying softmax to a vector of scores

Softmax temperature: applying a temperature hyperparameter 7 to the
softmax

esw/r

P(Wt) = ZWIEV oSwr/T

Higher temperature: P(w;) becomes more uniform - more diversity
Lower temperature: P(w;) becomes more spiky - less diversity

softmax temperature is not a decoding algorithm, which is the way of controlling
the diversity during testing via any decoding algorithm
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24 Distribution Input M: B BAES or #iB1ER
One-Hot Input Distribution Input
S 8% high score P(185)=P(18%)
B A B A
P(SHE)=P(i3) 4 4 A A
A Al@ A AlO
B O B O B
/ T\ * | *
<BOS> <BOS> A
B B O
= i P(5 &)= P(iﬁL)

Distribution input may not be good for NLG




25 NLG Evaluation

How Good The Model Performs



26 BLEU

N-Gram Precision

highest count of n-gram in

count,;, (ngram) —»
Lngramehyp ctip(ng ) any reference sentence

Pn =

anmme hyp count(ngram)

Brevity Penalty
1 ,otherwise

BLEU
Often used in machine translation

1 N
BLEU = B - exp [NZ 1pn]
n=



27 ROUGE

ROUGE (Recall-Oriented Understudy for Gisting Evaluation)
Often used in summarization tasks

ROUGE-N
Countmatch (gramn )

__ SE&{ReferemceSummaries} gram, €S

Count(gram )

SE{ReferenceSummaries} gram, €S




28 BLEU & ROUGE

BLEU ROUGE
Based on n-gram overlap Based on n-gram overlap
Consider precision Consider recall
Reported as a single number Reported separately for each n-
Combination of n =1, 2, 3, gram
4 n-grams ROUGE-1: unigram overlap

ROUGE-2: bigram overlap
ROUGE-L: LCS overlap



29 Automatic Evaluation Metrics

Word overlap metrics: BLEU, ROUGE, METEOR, etc.
Not ideal for machine translation
Much worse for summarization
Even worse for dialogue, storytelling
more open-ended
Embedding metrics
Computing the similarity of word embeddings
Capturing semantics in a flexible way



30 Automatic Metrics v.s. Human Judgement
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31 Focused Metrics for Particular Aspects

Evaluating a single aspect instead of the overall quality
Fluency (compute probability w.r.t. well-trained LM)
Correct style (prob w.r.t. LM trained on target corpus)
Diversity (rare word usage, unigueness of n-grams)
Relevance to input (semantic similarity measures)
Simple things like length and repetition
Task-specific metrics e.g. compression rate for summarization
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Reinforcement Learning for NLG

Global Optimization



33 Global Optimization v.s. Local Optimization

Minimizing the error defined on component level (local) is not
equivalent to improving the generated objects (global)

Reference: The dog is running fast

A

C:zct Acataaa
t

The dog is is fas
lThe dog is running fast

Cross-entropy of
each step

g

[
»

Optimize object-level criterion instead of component-level cross-entropy.
Object-level criterion: R(y,y) y: ground truth, y: generated sentence



34 Reinforcement Learning

Start with
observation s; Observation s, Observation s;

\ o~ Obtain reward\ »”  Obtain

Q r, =0 @GO rewardr, =5

++ - e
,ml( Action a; : “right” ? pd:(c (kill an alien)




35 RL for NLG

] Reward:
Al A I R(BAA", ref)
A@:. Al@
B B
[ {
=
Y4 | '1/
2 O Al@®
? B|@ O

observation

The action taken influences the next observation
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RL for NLG

SUMMARIZATION

IXER k = 10

AER K =1

XENT
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38  RL-Based Summarization

RL.: directly optimize ROUGE-L

ML+RL: MLE + RL for optimizing ROUGE-L

Automatic

Human

Model ROUGE-1 | ROUGE-2 | ROUGE-L
ML, no intra-attention 44.26 27.43 40.41

ML, with intra-attention 43.86 27.10 40.11

RL, no intra-attention 47.22 30.51 43.27
ML+RL, no intra-attention | 47.03 30.72 43.10
Model Readability | Relevance

ML 6.76 7.14

RL 4.18 6.32

ML+RL | 7.04 7.45
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Concluding Remarks

NLG / Conditional NLG
Decoding Algorithm
Greedy
Beam Search
Sampling
Evaluation
Overall Quality - Specific Aspects
Reinforcement Learning for NLG
Directly optimizing the target score



