## Applied Deep Learning



# **Natural Language Generation**

May 12th, 2020 http://adl.miulab.tw





#### NLG Review

- Language Modeling
- Conditional Language Modeling
- Oecoding Algorithm
  - Greedy
  - Beam Search
  - Sampling
- Evaluation
- Reinforcement Learning for NLG

## **Natural Language Generation**

#### Many tasks contain NLG

- Machine Translation
- Abstractive Summarization
- Dialogue Generation
- Image Captioning
- Creative Writing
  - Storytelling, poetry generation
- o ...

3

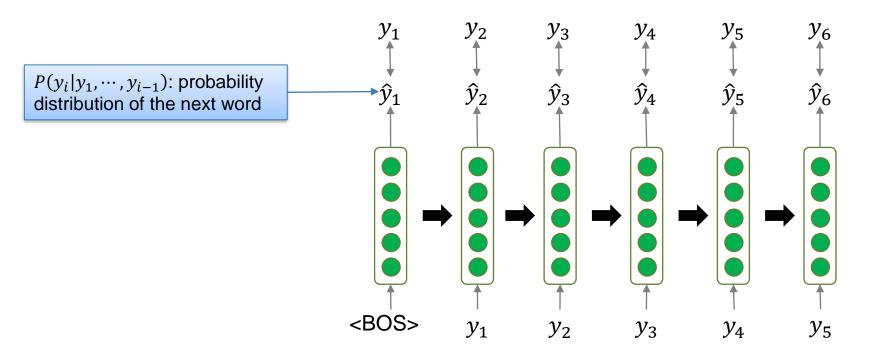
## 4 Language Modeling

• Goal: predicting the next word given the words so far

 $P(y_i|y_1,\cdots,y_{i-1})$ 

• Language model is to estimate the probability distribution

• RNN-LM is to use RNN for modeling the distribution



**RNN-LM** 

5

Idea: pass the information from the previous hidden layer to leverage all contexts

## Conditional Language Modeling

Goal: predicting the next word given the words so far, and other input x

 $P(y_i|y_1,\cdots,y_{i-1},x)$ 

Conditional language modeling tasks

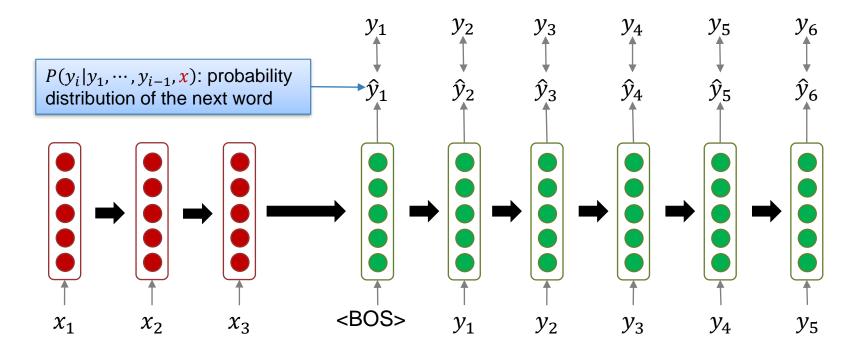
- Machine translation (x = source sentence, y = target sentence)
- Summarization (x = document, y = summary)
- Dialogue (x = dialogue context, y = response)
- Image captioning (x = image, y = caption)

o ...

6

## Sequence-to-Sequence Modeling

7



Training an encoder-decoder model that generate the next word with condition



• During training, feeding the gold target sentence into the decoder regardless of prediction  $y_1$   $y_2$   $y_3$   $y_4$   $y_5$ 



 $y_6$ 

Issue: mismatch between training and testing

## Mismatch between Train and Test

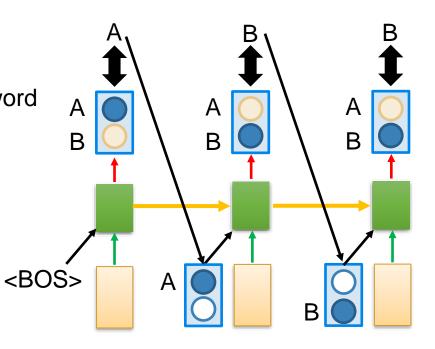


9

$$C = \sum_{t} C_t$$

minimizing cross-entropy of each word

Reference:



: condition

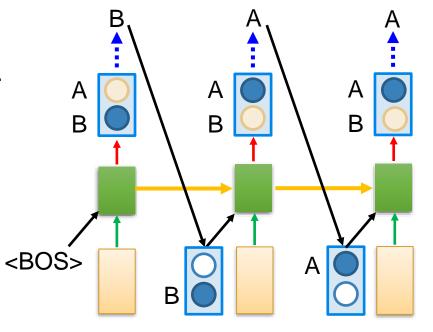
## Mismatch between Train and Test

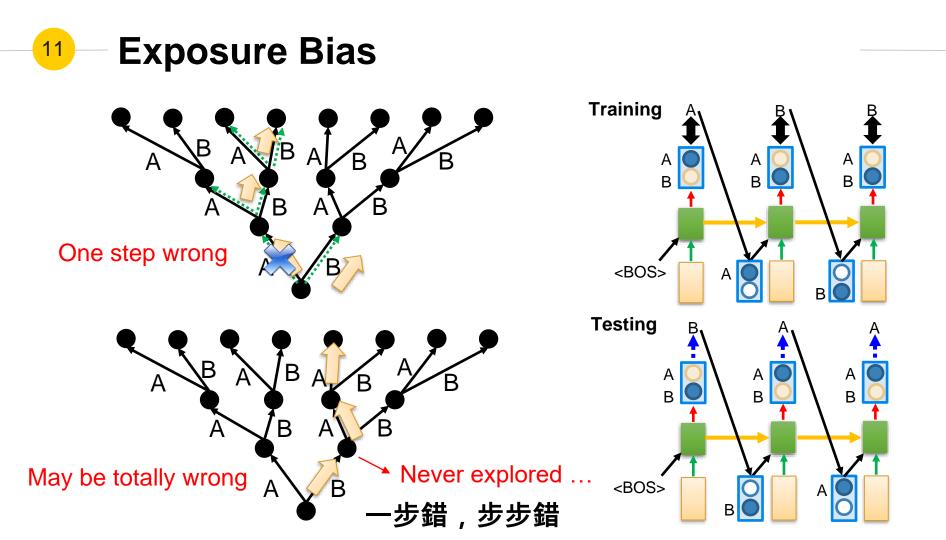
#### Generation

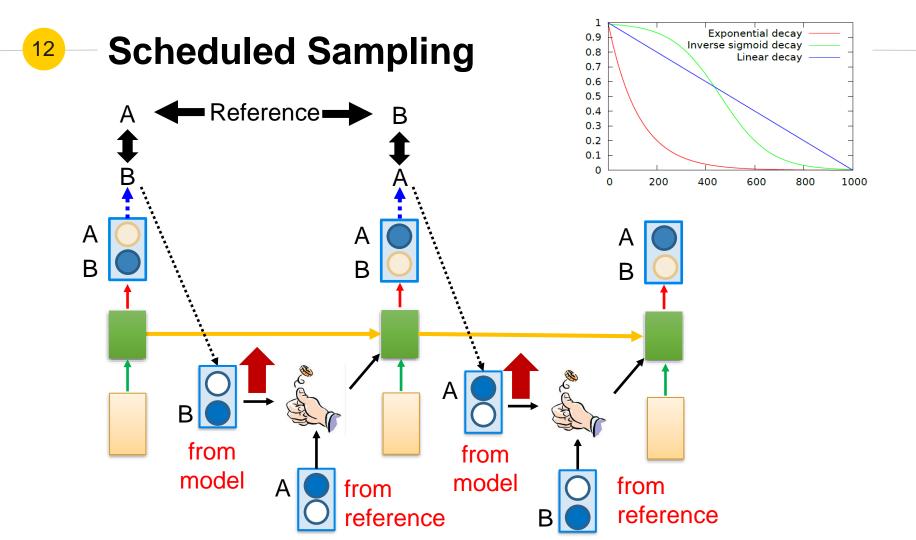
- Testing: Output of model is the input of the next step.
  - Reference is unknown

**Exposure Bias** 

• Training: the inputs are reference.









### Image captioning on MSCOCO

|                       | <b>BLEU-4</b> | METEOR | CIDER |
|-----------------------|---------------|--------|-------|
| Always from reference | 28.8          | 24.2   | 89.5  |
| Always from model     | 11.2          | 15.7   | 49.7  |
| Scheduled Sampling    | 30.6          | 24.3   | 92.1  |

Samy Bengio, Oriol Vinyals, Navdeep Jaitly, Noam Shazeer, Scheduled Sampling for Sequence Prediction with Recurrent Neural Networks, arXiv preprint, 2015



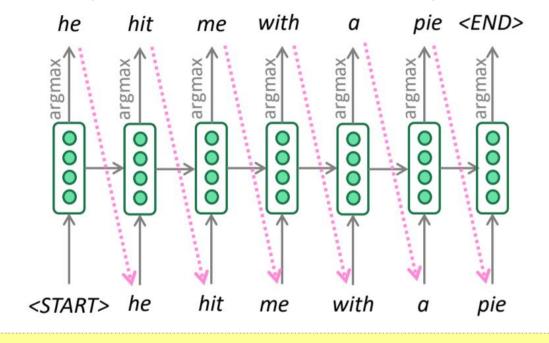
Strategy of Word Generation

## Decoding Algorithm

- With a trained (conditional) LM, a <u>decoding algorithm</u> decides how to generate texts from the LM.
- Oecoding Algorithms
  - Greedy
  - Beam Search
  - Sampling



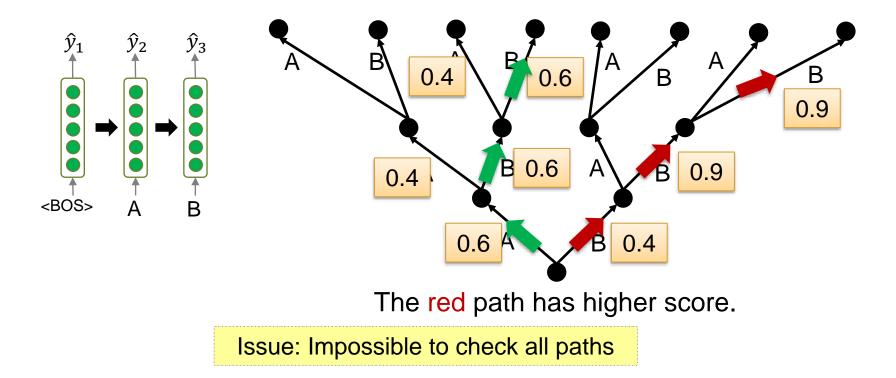
• Strategy: choosing the most probable word (argmax)



Output can be poor due to lack of backtracking



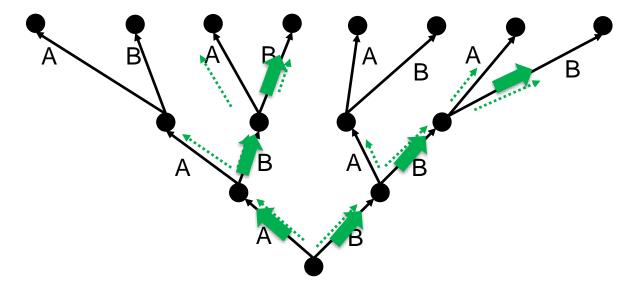
Our Content of the second s



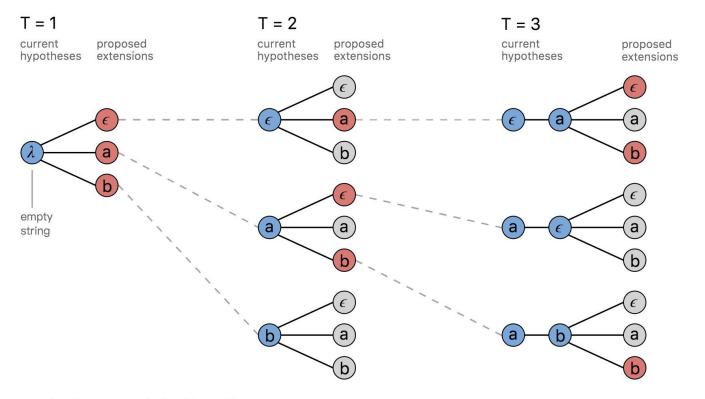


Strategy: keeping track of the k most probable sequences and finding a better one

Keep several best paths at each step (beam size = 2)



## <sup>19</sup> Beam Search



A standard beam search algorithm with an alphabet of  $\{\epsilon,a,b\}$  and a beam size of three.

The size of beam is 3 in this example.

## <sup>20</sup> Effect of Beam Size

#### Small k

• Ungrammatical, unnatural, incorrect, etc.

#### Large k

- Reduce some above issues
- Computationally expensive
- Introduce other issues
  - Chit-chat dialogues with large beam often generate generic sentences

## Effect of Beam Size in Chit-Chat Dialogues

I mostly eat a fresh and raw diet, so I save on groceries



21

| Beam<br>Size | Model Response                        |  |
|--------------|---------------------------------------|--|
| 1            | I love to eat healthy and eat healthy |  |
| 2            | That is a good thing to have          |  |
| 3            | I am a nurse so I do not eat raw food |  |
| 4            | l am a nurse so l am a nurse          |  |
| 5            | Do you have any hobbies?              |  |
| 6            | What do you do for a living?          |  |
| 7            | What do you do for a living?          |  |
| 8            | What do you do for a living?          |  |

Small Beam Size: More on-topic but nonsensical; bad English

Large Beam Size: safe, "correct" response, but generic and less relevant

Finding a proper beam size is not trivial

## Sampling-Based Decoding

Strategy: choosing the next word with randomness (from a distribution)

#### Sampling

22

• Randomly sample the word via the probability distribution instead of argmax

### Top-N Sampling

- Sample the word via distribution but restricted to the top-N probable words
- N=1 is greedy, N=V is pure sampling
- Increasing N gets more diverse / risky output
- Decreasing N gets more generic / safe output

Balancing between diversity and safety is an important direction

## <sup>23</sup> Probability Distribution

1. Softmax

$$P(w_t) = \frac{e^{s_w}}{\sum_{w' \in V} e^{s_{w'}}}$$

softmax: LM computes a prob dist by applying softmax to a vector of scores

2. Softmax temperature: applying a temperature hyperparameter  $\tau$  to the softmax

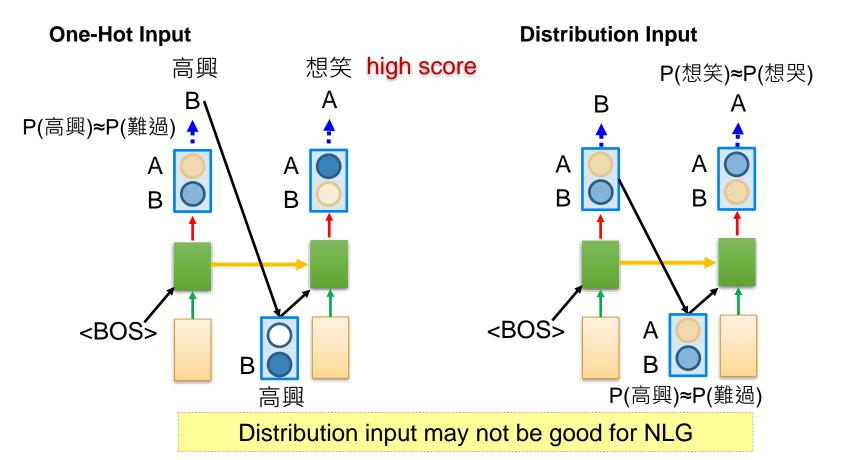
$$P(w_t) = \frac{e^{s_w/\tau}}{\sum_{w' \in V} e^{s_{w'}/\tau}}$$

- Higher temperature:  $P(w_t)$  becomes more uniform  $\rightarrow$  more diversity
- Lower temperature:  $P(w_t)$  becomes more spiky  $\rightarrow$  less diversity

softmax temperature is not a decoding algorithm, which is the way of controlling the diversity during testing via any decoding algorithm



U: 你覺得如何? M: 高興想笑 or 難過想哭





How Good The Model Performs



#### N-Gram Precision

$$p_n = \frac{\sum_{ngram \in hyp} count_{clip}(ngram)}{\sum_{ngram \in hyp} count(ngram)} \longrightarrow \begin{array}{c} \text{highest count of n-gram in} \\ \text{any reference sentence} \end{array}$$

Brevity Penalty

$$B = \begin{cases} e^{(1-|ref|/|hyp|)}, \text{ if } |ref| > |hyp|\\ 1, \text{ otherwise} \end{cases}$$

#### BLEU

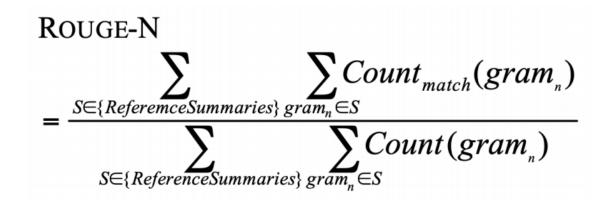
• Often used in machine translation

$$BLEU = \mathbf{B} \cdot exp\left[\frac{1}{\mathbf{N}} \sum_{n=1}^{N} p_n\right]$$



ROUGE (Recall-Oriented Understudy for Gisting Evaluation)

Often used in summarization tasks



## **BLEU & ROUGE**

#### 🖲 BLEU

28

- Based on <u>n-gram overlap</u>
- Consider precision
- Reported as a single number
  - Combination of n = 1, 2, 3, 4 n-grams

#### ROUGE

- Based on <u>n-gram overlap</u>
- Consider recall
- Reported separately for each ngram
  - ROUGE-1: unigram overlap
  - ROUGE-2: bigram overlap
  - ROUGE-L: LCS overlap

## Automatic Evaluation Metrics

Word overlap metrics: BLEU, ROUGE, METEOR, etc.

- Not ideal for machine translation
- Much worse for summarization
- Even worse for dialogue, storytelling



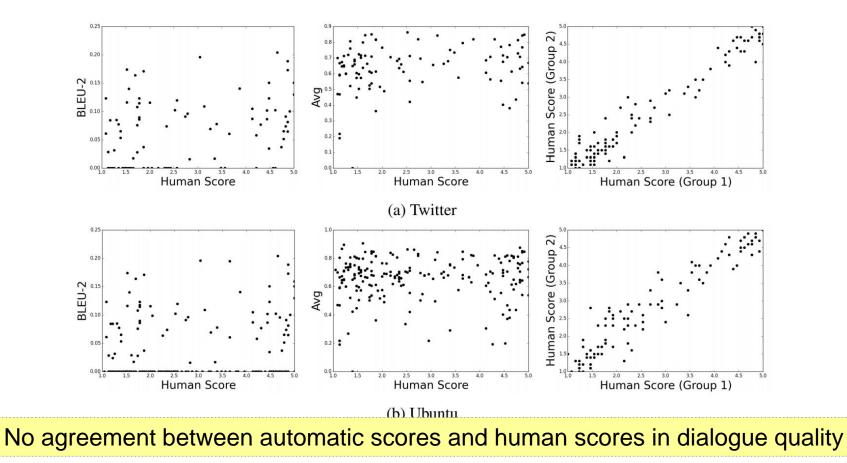
more open-ended

#### Embedding metrics

29

- Computing the similarity of word embeddings
- Capturing semantics in a flexible way

### 30 Automatic Metrics v.s. Human Judgement



## Focused Metrics for Particular Aspects

• Evaluating a single aspect instead of the overall quality

- Fluency (compute probability w.r.t. well-trained LM)
- Correct style (prob w.r.t. LM trained on target corpus)
- Diversity (rare word usage, uniqueness of n-grams)
- Relevance to input (semantic similarity measures)
- Simple things like length and repetition

31

• Task-specific metrics e.g. compression rate for summarization

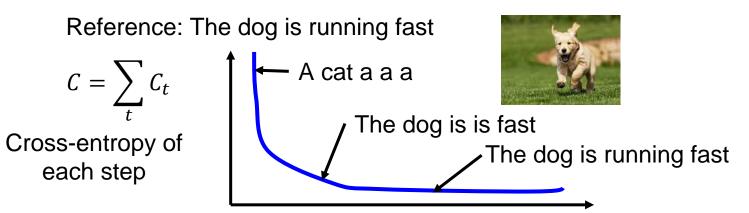
Scores help us track some important qualities we care about



**Global Optimization** 

## <sup>33</sup> Global Optimization v.s. Local Optimization

 Minimizing the error defined on component level (local) is not equivalent to improving the generated objects (global)



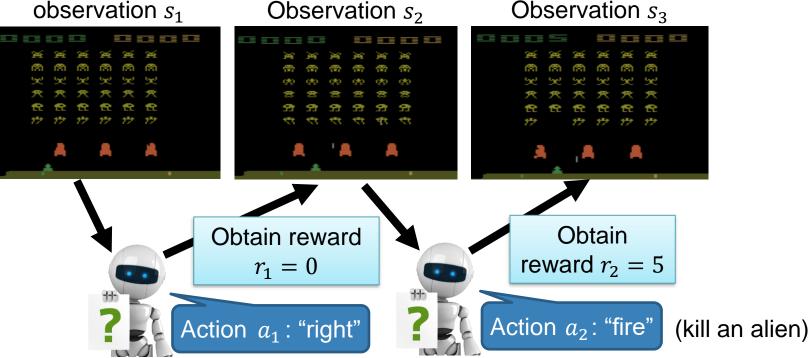
Optimize object-level criterion instead of component-level cross-entropy. Object-level criterion:  $R(y, \hat{y})$  y: ground truth,  $\hat{y}$ : generated sentence

Gradient Descent?

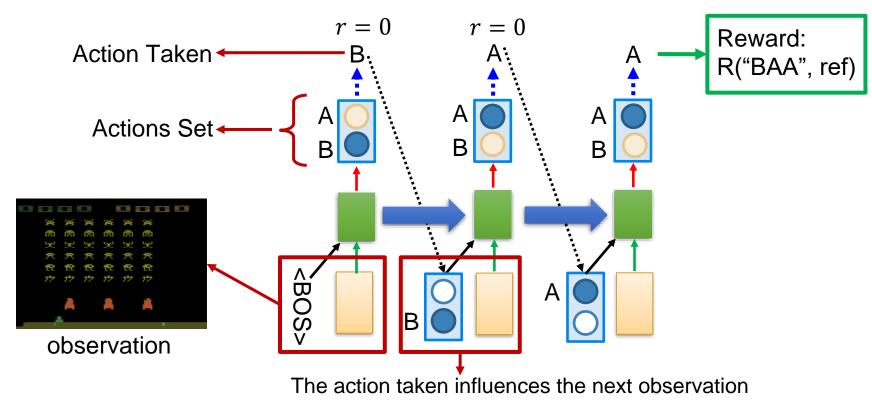
## **Reinforcement Learning**

## Start with observation $s_1$

34



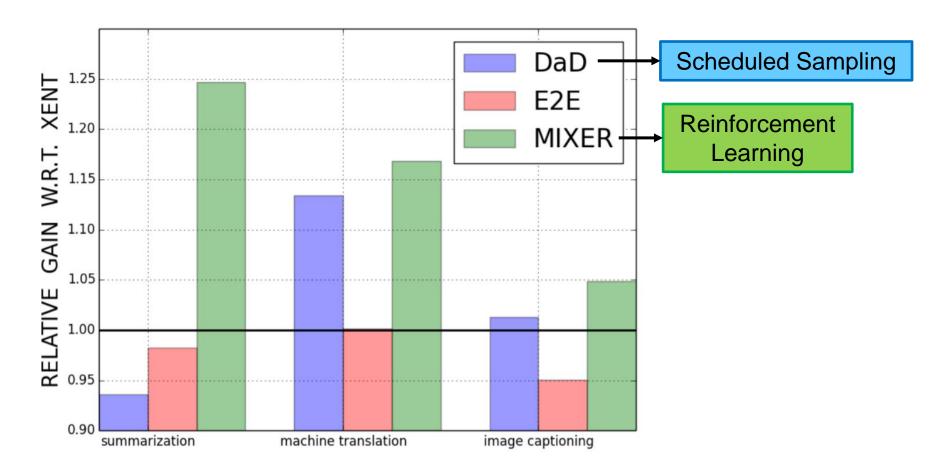




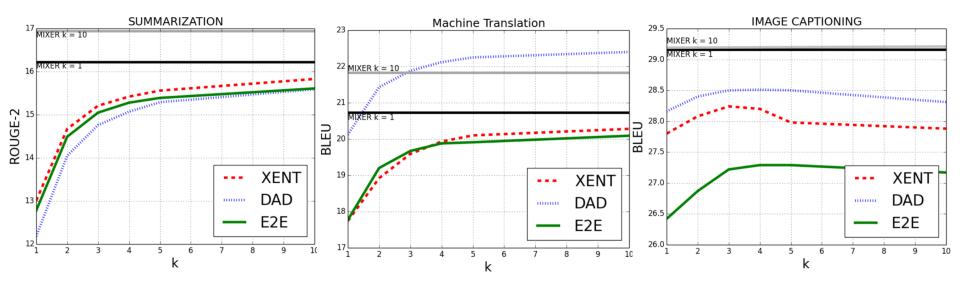
Marc'Aurelio Ranzato, Sumit Chopra, Michael Auli, Wojciech Zaremba, "Sequence Level Training with Recurrent Neural Networks", ICLR, 2016



**RL for NLG** 







## <sup>38</sup> RL-Based Summarization

- RL: directly optimize ROUGE-L
- ML+RL: MLE + RL for optimizing ROUGE-L

#### Automatic

| Model                     | <b>ROUGE-1</b> | <b>ROUGE-2</b> | <b>ROUGE-L</b> |
|---------------------------|----------------|----------------|----------------|
| ML, no intra-attention    | 44.26          | 27.43          | 40.41          |
| ML, with intra-attention  | 43.86          | 27.10          | 40.11          |
| RL, no intra-attention    | 47.22          | 30.51          | 43.27          |
| ML+RL, no intra-attention | 47.03          | 30.72          | 43.10          |

Human

| Model | Readability | Relevance |
|-------|-------------|-----------|
| ML    | 6.76        | 7.14      |
| RL    | 4.18        | 6.32      |
| ML+RL | 7.04        | 7.45      |

Using RL instead of ML achieves higher ROUGE scores, but lower human scores.

Hybrid is the best.

## Concluding Remarks

NLG / Conditional NLG

#### Decoding Algorithm

- o Greedy
- Beam Search
- Sampling
- Evaluation

39

- Overall Quality  $\rightarrow$  Specific Aspects
- Reinforcement Learning for NLG
  - Directly optimizing the target score