Applied Deep Learning

¢
"

Policy Gradient & Actor-Critic

May 5th, 2020 http://adl.miulab.tw

http://adl.miulab.tw/

Reinforcement Learning Approach

Value-based RL
Estimate the optimal value function Q*(s, a)

Policy-based RL
Search dlrectly for optimal policy ’7T

Model-based RL
Build a model of the environment
Plan (e.g. by lookahead) using model

RL Agent Taxonomy

Model-Free

Learning a
Critic

Learning an
Actor

Policy-Based Approach

Learning an Actor

¢ Policy

@ A policy is the agent’s behavior

@ A policy maps from state to action
Deterministic policy: @ = 7(s)
Stochastic policy: 7(a) = P(a | s)

Policy Networks

Represent policy by a network with parameters 6

a=mn(alsB) a=mn(s0)
stochastic policy deterministic policy

Objective is to maximize total discounted reward by SGD

O(f) =E[ri +yra+~°rs+--- | 7(-,0)]

On-Policy v.s. Off-Policy

On-policy: The agent learned and the agent interacting with the
environment is the same

Off-policy: The agent learned and the agent interacting with the
environment is different

Goodness of Actor

An episode is considered as a trajectory t

T = {Sla ai,r1,82,02,72," " ,ST,G;T,T’T}
Reward: R(r) =Y, 7" 'r,
P(r|0) =
p(Sl)p(al \ 81,9)29(7“1,32 | 81;&1)10(&2 ! 82,9)29(7”2,83 \ 82302) v
T
left
at | St, 0 (?“t,StJrl ‘ Staat) — —_— (0.1
\ 5 » Actor right 0.0
fire
not related to your actor control by your actor — 07

p(a; = fire | s¢,0) = 0.7

Goodness of Actor

An episode is considered as a trajectory t
T = {Sla a,ry,S82,a2,r2, -+ ,S7,ar, TT}
Reward: R(7) = Z;le vy

Goodness of Actor

An episode is considered as a trajectory t
T = {Sla a,ry,S82,a2,r2, -+ ,S7,ar, TT}
Reward: R(7) = Z;le vy

We define R(6) as the expected value of reward
If you use an actor to play game, each 7 has P(r|9) to be sampled

ZR P(r]60)~ NZR

Use 14 to play the game N times, obtain {z1,72, -, 7"}
Sampling t from P(t]|6) N times

Deep Policy Networks

Represent policy by deep network with weights
Objective is to maximize total discounted reward by SGD

R(0) = E|ri +yr2 ++°rs + -+ | 7(-,0)
Update the model parameters iteratively

0" = arg max R(9)

0 < 0 +nVR(H)

Policy Gradient R(0) =) _,_R(7)P(7|0)

Gradient assent to maximize the expected reward

VR(8) =Y R(r)VP(r | 6) = ZR T|9V1z571|9§)

do not have to be differentiable
can even be a black box

= ZR (1]0)Vlog P(7 | 0) dlog flz) _ _1_df()

dz f(z) dx

use my to play the game N times, obtain {r!,72,---, "}

—ZR)V log P(7™ | 6)

Policy Gradient Vlog P(7 | 6)
An episode trajectory 7 = {s1,a1,71, S2,a2,72,- -+ ,ST,aT,TT}

T
P(r|0) =p(s1) | [plac | s, 0)p(re, se41 | ¢, az)
t=1
T
log P(7 | 0) =logp(s1) Y logp(as | s¢,0) +logp(re, seq1 | se, ae)
t=1

T
Vieg P(t | 6) = ZVIogp(at | s¢,60) ignore the terms not related to 6
t=1

Policy Gradient

Gradient assent for iteratively updating the parameters
0"+ 0+ nVR(H)

N
VR(0) ~ % S R(+")Vlog P(r" | 0)

N:
1 1A
=SSV osptar 1550
n=1 t=1

If " machine takes a when seeing s/

R(t™) > 0 EEEE) Tuning 0 to increase p(a} | s7)
R(m™) < 0 ====) Tuning 6 to decrease p(a} | s}

Important: use cumulative reward R(z") of the whole
trajectory t" instead of immediate reward r*

=

Policy Gradient

Given actor parameter 9
P (shal) R(Y) 7% (s3.ad) R(r)
(s3.a3) R(7") (s3.03) R(7?)

data collection model update

0« 6+ nVR(H)

1 N T,
:NZZR)V log p(al | s*,6)

n=1 t=1

0" < 6 +nVR(H)
N T

1 B n n n
=~ 2 2 R Viogp(ay | 57.0)

Implementation

Treat it as a classification problem

> left —1 af
» »" right < ——— 0

on > fire >
i
N T N T,
1 n]_ n n
N Z logp(ay | sy) _ N Z Z logp(ai’ | si')
n=1 t=1 TF, PyTorch ... ==l
N T
. 3 | N T
¥ Z R(7")logp(ay | s} ‘ ~ Z R(7")Vlogp(ay | s3')
n=1t=1

Jy

t=1

S

Improvement: Adding Baseline

0 < 6 +nVR(H)
T

1 N
R(6) =+ D > REYbFlels s)57)

n=1 t=1

it is probability
Ideally -
not
sampled
Sampling -

Issue the probablllty of the actlons not sampled WI|| decrease

Actor-Critic Approach

Learning an Actor & A Critic

) Actor-Critic (Value-Based + Policy-Based)

@ Estimate value function Q™ (s, a), V™ (s)
@ Update policy based on the value function evaluation
W,(S) = arg max QW(S, a) 7 interacts
a

with the
environment

1 IS an actual function that maximizes the value = D or MC

may work for continuous action

Update actor from]
m — ' based on Learning

Q™ (s,a),V™(s) Q" (s,a),V™(s)

t
@ Advantage Actor-Critic environment

. . . = TD or MC
@ Learning the policy (actor) using the value evaluated

by critic Update actor Learning
0% g7 4 DVR(07) based on V™ (s) V™(s)

N T
1 é -
VR(0™) = > Zv log p(al | s%,0™) baseline is added

" evaluated by critic

Advantage function: 7 — (V7 (s?) — V7 (s%,))

the reward r* we truly obtain expected reward r/* we
when taking action al* obtain if we use actor «

Positive advantage function < increasing the prob. of action a}
Negative advantage function < decreasing the prob. of action a}!

Advantage Actor-Critic

Tips
The parameters of actor m(s) and critic V™(s) can be shared

—» |eft

/ Network —» right

S = Network \ —> fire
Network —»V7™(s)

Use output entropy as regularization for m(s)
Larger entropy is preferred — exploration

Asynchronous Advantage Actor-Critic (A3C)

Asynchronous
Copy global parameters

Sampling some data
Compute gradients

Update global models
(other workers also update models)

Global Network

1
Policy m(s) V(s) 9 + T] A 9
Network U
—
A 9 Input (s)
[1
A B B —J
Worker 1 Worker 2 Worker 3 Worker n
! ! ! !

Environment 1 Environment 2 Environment3 ... Environmentn

Pathwise Derivative Policy Gradient

Original actor-critic tells that a given action is good or bad
Pathwise derivative policy gradient tells that which action is good

Pathwise Derivative Policy Gradient

7'(s) = argmax Q" (s, a) 4@ an actor’s output
a

Gradient ascent: Fixed
0" «— 0" +nVR(O™) N
T — 7
Q’T _’QW(Sa a)
S — A(%or —_— 0 = aO=—>
\ J
Y

This is a large network

Silver et al., “Deterministic Policy Gradient Algorithms”, ICML, 2014.
Lillicrap et al., “Continuous Control with Deep Reinforcement Learning”, ICLR, 2016.

Deep Deterministic Policy Gradient (DDPG)

ldea 7 interacts with
e : the environment
Critic estlm_ates value of 2dd noise
current policy by DON - exploration

Actor updates policy in
direction that improves Q Update actor 7 — ' Learning
based on Q™(s,a) Q™(s,a)

T 07 4 g VR(6™)
: T — 7

Critic provides loss P
function for actor E_> ACIOr —mp q —°

Lillicrap et al., “Continuous Control with Deep Reinforcement Learning,” ICLR, 2016.

DDPG Algorithm

Initialize critic network 89 and actor network 6™

Initialize target critic network 99 = 92 and target actor network g™ = g™
Initialize replay buffer R

In each iteration
Use m(s) + noise to interact with the environment, collect a set of {s;, a;, 11, s;+1}, put
themin R
Sample N examples {s,,, a,, ;,, Sp+1} from R
Update critic Q@ to minimize >~ (4, — Q(sn,an))?

Jn =7Tn + Q' (Sn+1,m (sn+1)) using target networks

Update actor 7 to maximize Y, Q(s,, 7(s,))
Update target networks: 07« meT + (1— m)gﬂ"

09" +— mo? + (1 —m)o?

Lillicrap et al., “Continuous Control with Deep Reinforcement Learning,” ICLR, 2016.

the target networks update slower

DDPG in Simulated Physics

Goal: end-to-end learning of control policy from pixels
Input: state is stack of raw pixels from last 4 frames
Output: two separate CNNs for Q and

32 4x4 fikeers

06.9)

Stack of 4 previous Fully-connected layer
frames Convolutional layer Comvolutional layer of rectified linear units

Stack of 4 previous
frames Cenvolutional | layer Convolutional layer of rectified linear units
r uni

Lillicrap et al., “Continuous Control with Deep Reinforcement Learning,” ICLR, 2016.

Concluding Remarks

RL is a general purpose framework for decision making under
Interactions between agent and environment

Policy gradient
learns a policy that maps from state to action

Actor-critic
estimates value function Q™ (s, a), V™(s)
updates policy based on the value function evaluation

