Applied Deep Learning

Policy Gradient & Actor-Critic

May 5th, 2020 http://adl.miulab.tw

Reinforcement Learning Approach

Value-based RL

2

Estimate the optimal value function $\,Q^*(s,a)\,$

 $Q^{st}(s,a)$ is maximum value achievable under any policy

Policy-based RL

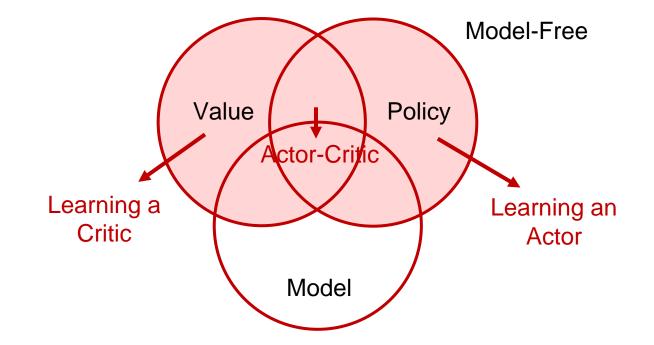
• Search directly for optimal policy π^*

 $\boldsymbol{\pi}^*$ is the policy achieving maximum future reward

Model-based RL

- Build a model of the environment
- Plan (e.g. by lookahead) using model

RL Agent Taxonomy



Learning an Actor

- A policy is the agent's behavior
- A policy maps from state to action
 - Deterministic policy: $a = \pi(s)$
 - Stochastic policy: $\pi(a) = P(a \mid s)$

ullet Represent policy by a network with parameters | heta|

$$a = \pi(a \mid s, \theta)$$

stochastic policy

$$a = \pi(s, \theta)$$

deterministic policy

Objective is to maximize total discounted reward by SGD

$$O(\theta) = \mathbf{E}[r_1 + \gamma r_2 + \gamma^2 r_3 + \dots \mid \pi(\cdot, \theta)]$$

On-Policy v.s. Off-Policy

- On-policy: The agent learned and the agent interacting with the environment is the same
- Off-policy: The agent learned and the agent interacting with the environment is different

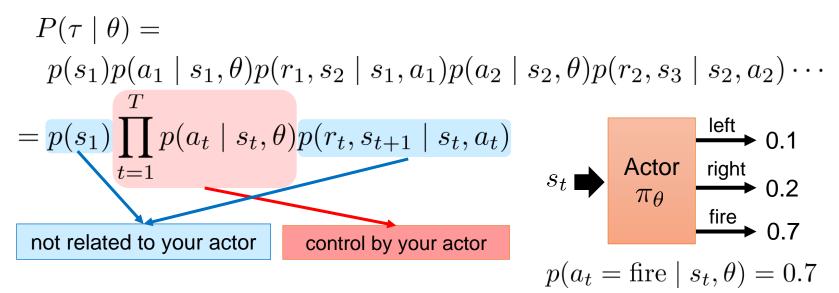
Goodness of Actor

8

ullet An episode is considered as a trajectory au

•
$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$$

• Reward: $R(\tau) = \sum_{t=1}^{T} \gamma^{t-1} r_t$



Goodness of Actor

 \bigcirc An episode is considered as a trajectory τ

$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$$

• Reward: $R(\tau) = \sum_{t=1}^{T} \gamma^{t-1} r_t$

Output Description Content of Actor

) An episode is considered as a trajectory τ

$$\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$$

- Reward: $R(\tau) = \sum_{t=1}^{T} \gamma^{t-1} r_t$
- We define $\mathcal{R}(\theta)$ as the *expected value* of reward
 - If you use an actor to play game, each τ has $P(\tau|\theta)$ to be sampled

$$\mathcal{R}(\theta) = \sum_{\tau} R(\tau) P(\tau \mid \theta) \approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n)$$

- Use π_{θ} to play the game N times, obtain $\{\tau^1, \tau^2, \cdots, \tau^N\}$
- Sampling τ from $P(\tau|\theta)$ N times

sum over all possible trajectory

Deep Policy Networks

- Represent policy by deep network with weights
- Objective is to maximize total discounted reward by SGD

$$\mathcal{R}(\theta) = \mathbb{E}\left[r_1 + \gamma r_2 + \gamma^2 r_3 + \dots \mid \pi(\cdot, \theta)\right]$$

Update the model parameters iteratively

$$\theta^* = \arg \max_{\theta} \mathcal{R}(\theta)$$
$$\theta' \leftarrow \theta + \eta \nabla \mathcal{R}(\theta)$$

¹² Policy Gradient $\mathcal{R}(\theta) = \sum_{\tau} R(\tau) P(\tau \mid \theta)$

Gradient assent to maximize the expected reward

$$\nabla \mathcal{R}(\theta) = \sum_{\tau} R(\tau) \nabla P(\tau \mid \theta) = \sum_{\tau} R(\tau) P(\tau \mid \theta) \frac{\nabla P(\tau \mid \theta)}{P(\tau \mid \theta)}$$

do not have to be differentiable
can even be a black box
$$= \sum_{\tau} R(\tau) P(\tau \mid \theta) \nabla \log P(\tau \mid \theta) \frac{d \log f(x) - 1}{P(\tau \mid \theta)} \frac{d \log f(x)}{d \log f(x)} = \frac{1}{P(\tau \mid \theta)} \frac{d f(x)}{d \log f(x)}$$

$$= \sum_{\tau} R(\tau) \frac{P(\tau \mid \theta)}{\nabla \log P(\tau \mid \theta)} \quad \frac{d \log f(x)}{dx} = \frac{1}{f(x)} \frac{d f(x)}{dx}$$

use π_{θ} to play the game N times, obtain $\{\tau^1, \tau^2, \cdots, \tau^N\}$

$$\approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \nabla \log P(\tau^n \mid \theta)$$

¹³ – Policy Gradient $\nabla \log P(\tau \mid \theta)$

• An episode trajectory $\tau = \{s_1, a_1, r_1, s_2, a_2, r_2, \cdots, s_T, a_T, r_T\}$

$$P(\tau \mid \theta) = p(s_1) \prod_{t=1}^{T} p(a_t \mid s_t, \theta) p(r_t, s_{t+1} \mid s_t, a_t)$$
$$\log P(\tau \mid \theta) = \log p(s_1) \sum_{t=1}^{T} \log p(a_t \mid s_t, \theta) + \log p(r_t, s_{t+1} \mid s_t, a_t)$$

 $\nabla \log P(\tau \mid \theta) = \sum_{t=1}^{T} \nabla \log p(a_t \mid s_t, \theta) \text{ ignore the terms not related to } \theta$

Gradient assent for iteratively updating the parameters

$$\begin{aligned} \theta' &\leftarrow \theta + \eta \nabla \mathcal{R}(\theta) \\ \nabla \mathcal{R}(\theta) &\approx \frac{1}{N} \sum_{n=1}^{N} R(\tau^n) \nabla \log P(\tau^n \mid \theta) \\ &= \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla \log p(a_t^n \mid s_t^n, \theta) \end{aligned}$$

• If τ^n machine takes a_t^n when seeing s_t^n

 $\begin{array}{c|c} R(\tau^n) > 0 & & \\ \hline & \\ R(\tau^n) < 0 & & \\ \hline & \\ \end{array} \begin{array}{c} \text{Tuning } \theta \text{ to increase } p(a_t^n \mid s_t^n) \\ \hline & \\ \end{array} \end{array}$

Important: use *cumulative* reward $R(\tau^n)$ of the whole trajectory τ^n instead of *immediate* reward r_t^n

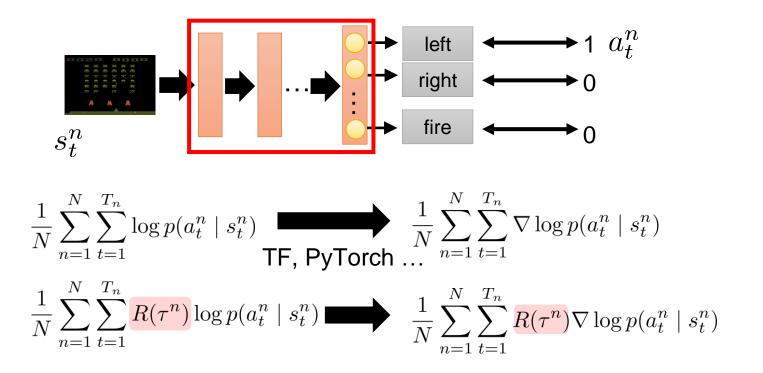
Policy Gradient

$$\begin{aligned} & \mathbf{Given \ actor \ parameter \ } \theta \\ \tau^1 \colon (s_1^1, a_1^1) \quad R(\tau^1) \quad \tau^2 \colon (s_1^2, a_1^2) \quad R(\tau^2) \\ & (s_2^1, a_2^1) \quad R(\tau^1) \quad (s_2^2, a_2^2) \quad R(\tau^2) \\ & \vdots \quad \vdots \quad \vdots & \vdots & \vdots \\ \mathbf{data \ collection} & \mathbf{model \ update} \\ & \mathbf{\theta}' \leftarrow \theta + \eta \nabla \mathcal{R}(\theta) \\ & \nabla \mathcal{R}(\theta) = \frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} R(\tau^n) \nabla \log p(a_t^n \mid s_t^n, \theta) \end{aligned}$$

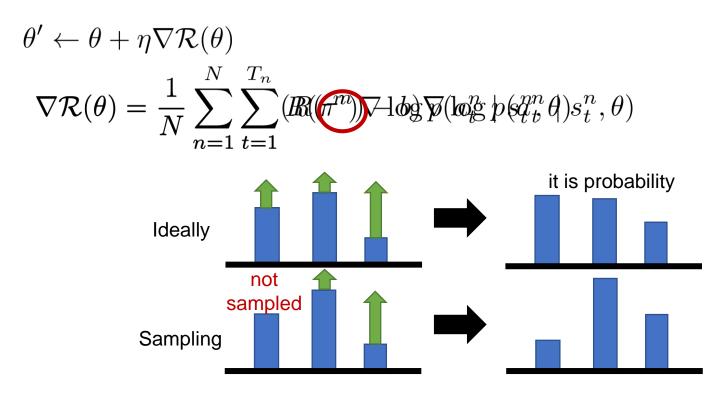
¹⁰ Implementation

$$\theta' \leftarrow \theta + \eta \nabla \mathcal{R}(\theta)$$
$$\nabla \mathcal{R}(\theta) = \frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} R(\tau^n) \nabla \log p(a_t^n \mid s_t^n, \theta)$$

Treat it as a classification problem



Improvement: Adding Baseline

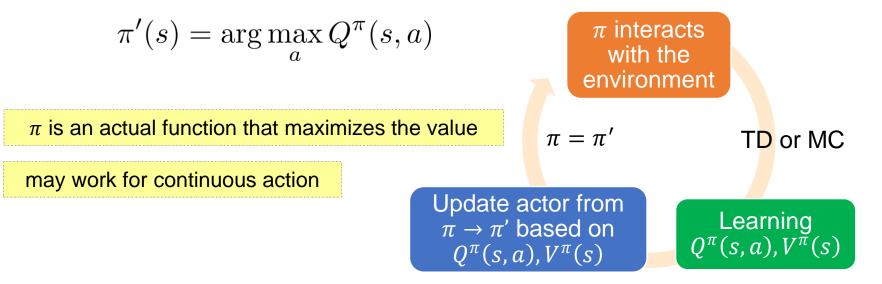


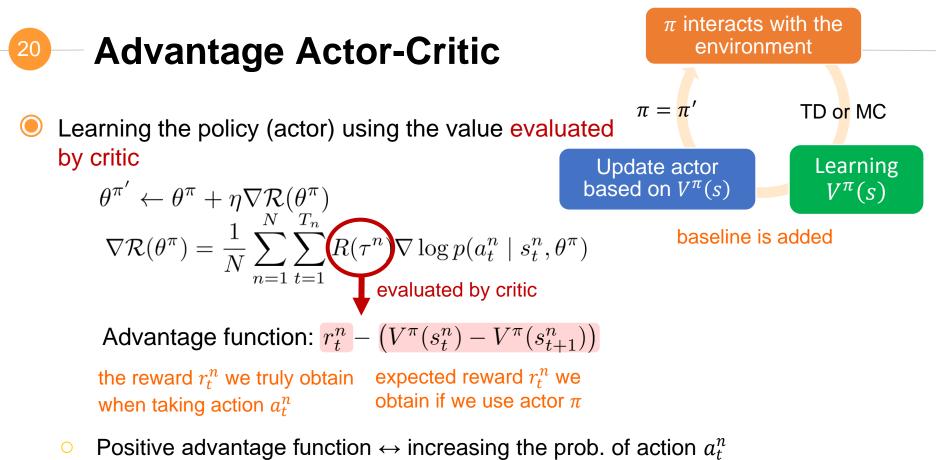
Issue: the probability of the actions not sampled will decrease

Learning an Actor & A Critic

Output: Actor-Critic (Value-Based + Policy-Based)

- Estimate value function $Q^{\pi}(s, a), V^{\pi}(s)$
- Ipdate policy based on the value function evaluation π



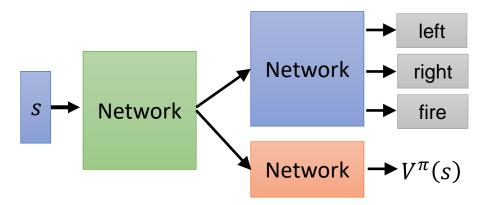


• Negative advantage function \leftrightarrow decreasing the prob. of action a_t^n

Advantage Actor-Critic

🖲 Tips

The parameters of actor $\pi(s)$ and critic $V^{\pi}(s)$ can be shared



- Use output entropy as regularization for $\pi(s)$
 - Larger entropy is preferred \rightarrow exploration

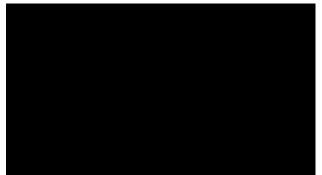
Asynchronous Advantage Actor-Critic (A3C)

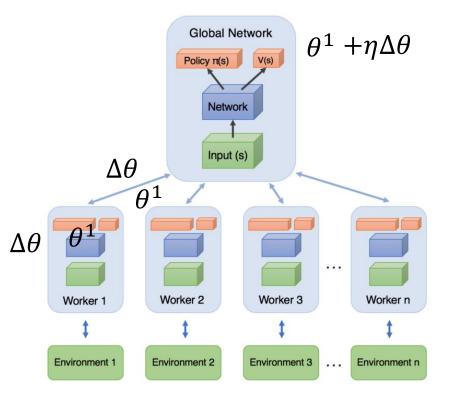
Asynchronous

22

- 1. Copy global parameters
- 2. Sampling some data
- 3. Compute gradients
- 4. Update global models

(other workers also update models)





Mnih et al., "Asynchronous Methods for Deep Reinforcement Learning," in JMLR, 2016.

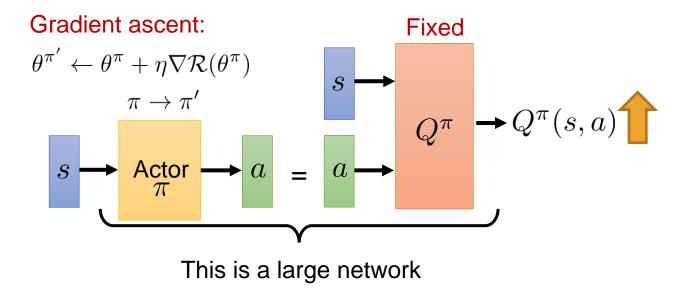
Pathwise Derivative Policy Gradient

23

- Original actor-critic tells that a given action is good or bad
- Pathwise derivative policy gradient tells that which action is good

Pathwise Derivative Policy Gradient

•
$$\pi'(s) = \arg \max_{a} Q^{\pi}(s, a)$$
 an actor's output

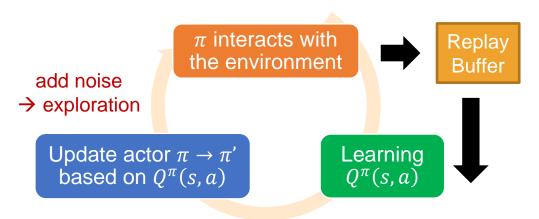


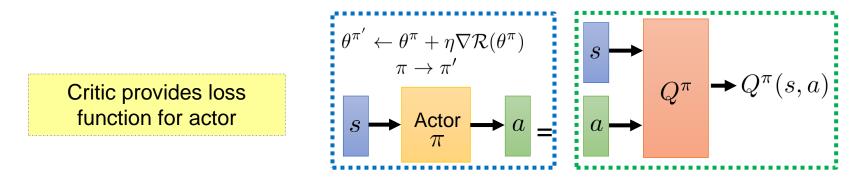
Silver et al., "Deterministic Policy Gradient Algorithms", ICML, 2014. Lillicrap et al., "Continuous Control with Deep Reinforcement Learning", ICLR, 2016.

Deep Deterministic Policy Gradient (DDPG)

🖻 Idea

- Critic estimates value of current policy by DQN
- Actor updates policy in direction that improves Q





Lillicrap et al., "Continuous Control with Deep Reinforcement Learning," ICLR, 2016.

20 DDPG Algorithm

- Initialize critic network θ^Q and actor network θ^{π}
- Initialize target critic network $\theta^{Q'} = \theta^Q$ and target actor network $\theta^{\pi'} = \theta^{\pi}$
- Initialize replay buffer R
- In each iteration
 - Use $\pi(s)$ + noise to interact with the environment, collect a set of $\{s_t, a_t, r_t, s_{t+1}\}$, put them in R
 - Sample N examples $\{s_n, a_n, r_n, s_{n+1}\}$ from R
 - Update critic Q to minimize $\sum_n (\hat{y}_n Q(s_n, a_n))^2$

 $\hat{y}_n = r_n + Q'(s_{n+1}, \pi'(s_{n+1}))$ using target networks

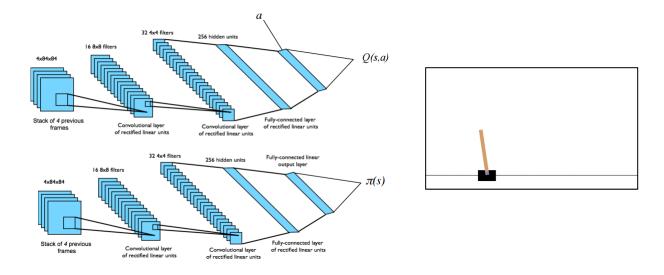
- Update actor π to maximize $\sum_{n} Q(s_n, \pi(s_n))$
- Update target networks: $\begin{array}{l} \theta^{\pi'} \leftarrow m\theta^{\pi} + (1-m)\theta^{\pi'} \\ \theta^{Q'} \leftarrow m\theta^{Q} + (1-m)\theta^{Q'} \end{array}$ the target networks update slower

Lillicrap et al., "Continuous Control with Deep Reinforcement Learning," ICLR, 2016.

22 DDPG in Simulated Physics

Goal: end-to-end learning of control policy from pixels

- Input: state is stack of raw pixels from last 4 frames
- Output: two separate CNNs for Q and π



Lillicrap et al., "Continuous Control with Deep Reinforcement Learning," ICLR, 2016.

20 Concluding Remarks

- RL is a general purpose framework for decision making under interactions between agent and environment
- Policy gradient
 - learns a policy that maps from state to action
- Actor-critic
 - estimates value function $Q^{\pi}(s, a), V^{\pi}(s)$
 - updates policy based on the value function evaluation π