Applied Deep Learning

Deep Reinforcement Learning

March 28th, 2020 http://adl.miulab.tw

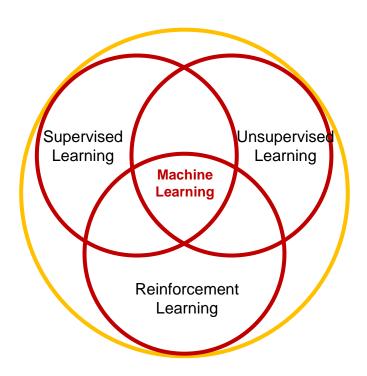
Outline

- Machine Learning
 - Supervised Learning v.s. Reinforcement Learning
 - Reinforcement Learning v.s. Deep Learning
- Introduction to Reinforcement Learning
 - Agent and Environment
 - Action, State, and Reward
- Markov Decision Process
- Reinforcement Learning Approach
 - Value-Based
 - Policy-Based
 - Model-Based

Outline

- Machine Learning
 - Supervised Learning v.s. Reinforcement Learning
 - Reinforcement Learning v.s. Deep Learning
- Introduction to Reinforcement Learning
 - Agent and Environment
 - Action, State, and Reward
- Markov Decision Process
- Reinforcement Learning Approach
 - Value-Based
 - Policy-Based
 - Model-Based

Machine Learning



Supervised v.s. Reinforcement

- Supervised Learning
 - Training based on supervisor/label/annotation
 - Feedback is instantaneous
 - Time does not matter.

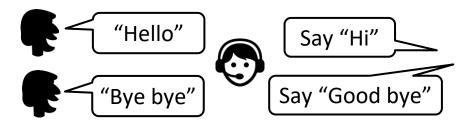
- Training only based on reward signal
- Feedback is delayed
- Time matters
- Agent actions affect subsequent data

6

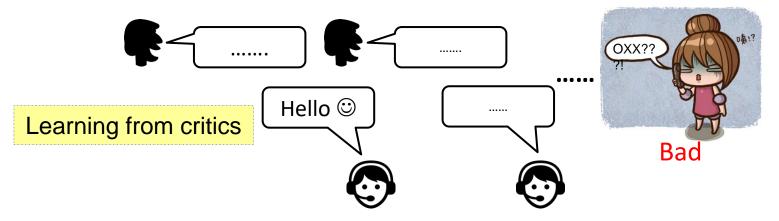
Supervised v.s. Reinforcement

Supervised

Learning from teacher



Reinforcement

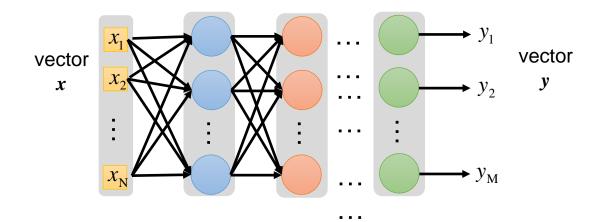


Reinforcement Learning

- RL is a general purpose framework for decision making
 - RL is for an agent with the capacity to act
 - Each action influences the agent's future state
 - Success is measured by a scalar reward signal
 - Goal: select actions to maximize future reward

Deep Learning

- DL is a general purpose framework for representation learning
 - Given an objective
 - Learn representation that is required to achieve objective
 - Directly from raw inputs
 - Use minimal domain knowledge



Deep Reinforcement Learning

- Al is an agent that can solve human-level task
 - RL defines the objective
 - DL gives the mechanism
 - RL + DL = general intelligence

Deep RL AI Examples

- Play games: Atari, poker, Go, ...
- Explore worlds: 3D worlds, ...
- Control physical systems: manipulate, ...
- Interact with users: recommend, optimize, personalize, ...

11

Introduction to RL

Reinforcement Learning

12 Outline

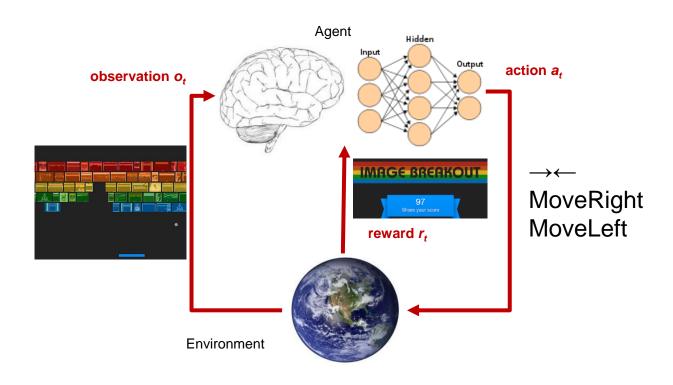
- Machine Learning
 - Supervised Learning v.s. Reinforcement Learning
 - Reinforcement Learning v.s. Deep Learning
- Introduction to Reinforcement Learning
 - Agent and Environment
 - Action, State, and Reward
- Markov Decision Process
- Reinforcement Learning Approach
 - Value-Based
 - Policy-Based
 - Model-Based

Reinforcement Learning

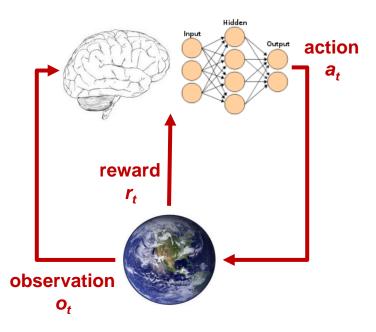
- RL is a general purpose framework for decision making
 - RL is for an agent with the capacity to act
 - Each action influences the agent's future state
 - Success is measured by a scalar reward signal

Big three: action, state, reward

Agent and Environment



Agent and Environment



- At time step t
 - The agent
 - Executes action a_t
 - Receives observation o_t
 - Receives scalar reward r_t
 - The environment
 - Receives action a_t
 - Emits observation o_{t+1}
 - Emits scalar reward r_{t+1}
 - t increments at env. step

16 State

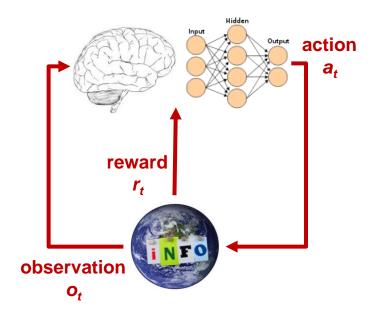
Experience is the sequence of observations, actions, rewards

$$o_1, r_1, a_1, ..., a_{t-1}, o_t, r_t$$

- State is the information used to determine what happens next
 - what happens depends on the history experience
 - The agent selects actions
 - The environment selects observations/rewards
- The state is the function of the history experience

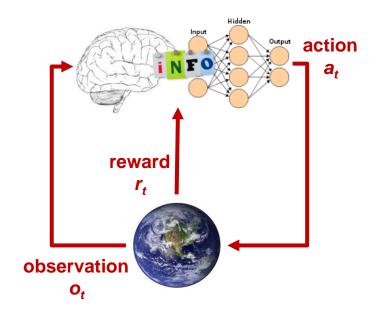
$$s_t = f(o_1, r_1, a_1, ..., a_{t-1}, o_t, r_t)$$

Environment State



- The environment state s_t^e is the environment's *private* representation
 - whether data the environment uses to pick the next observation/reward
 - may not be visible to the agent
 - may contain irrelevant information

Agent State



- The agent state s_t^a is the agent's internal representation
 - whether data the agent uses to pick the next action → information used by RL algorithms
 - can be any function of experience

Information State

 An information state (a.k.a. Markov state) contains all useful information from history

A state is Markov iff
$$P(s_{t+1} | s_t) = P(s_{t+1} | s_1, ..., s_t)$$

The future is independent of the past given the present

$$H_t = \{o_1, r_1, a_1, ..., a_{t-1}, o_t, r_t\}$$

 $H_{1:t} \to s_t \to H_{t+1:\infty}$

- Once the state is known, the history may be thrown away
- The state is a sufficient statistics of the future

Fully Observable Environment

Full observability: agent <u>directly</u> observes environment state

$$o_t = s_t^a = s_t^e$$

information state = agent state = environment state

This is a Markov decision process (MDP)

Partially Observable Environment

Partial observability: agent <u>indirectly</u> observes environment

$$s_t^a \neq s_t^e$$

agent state ≠ environment state

This is partially observable Markov decision process (POMDP)

- Agent must construct its own state representation s_t^a
 - Complete history: $s_t^a = H_t$
 - O Beliefs of environment state: $s_t^a = \{P(s_t^e = s^1), ..., P(s_t^e = s^n)\}$
 - Hidden state (from RNN): $s_t^a = \sigma(W_s \cdot s_{t-1}^a + W_o \cdot o_t)$

22 Reward

- Reinforcement learning is based on reward hypothesis
- A reward r_t is a scalar feedback signal
 - Indicates how well agent is doing at step t

Reward hypothesis: all agent goals can be desired by maximizing expected cumulative reward

Sequential Decision Making

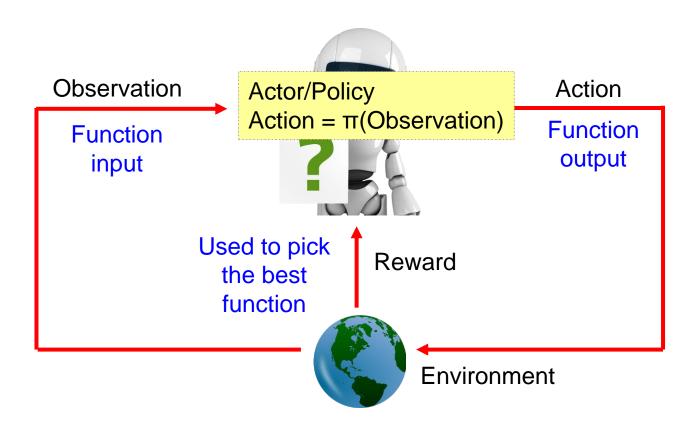
- Goal: select actions to maximize total future reward
 - Actions may have long-term consequences
 - Reward may be delayed
 - It may be better to sacrifice immediate reward to gain more long-term reward

Scenario of Reinforcement Learning

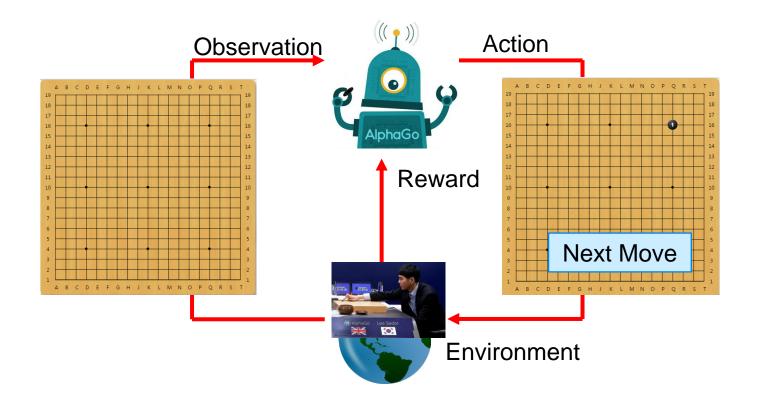
Scenario of Reinforcement Learning

Agent learns to take actions maximizing expected reward.

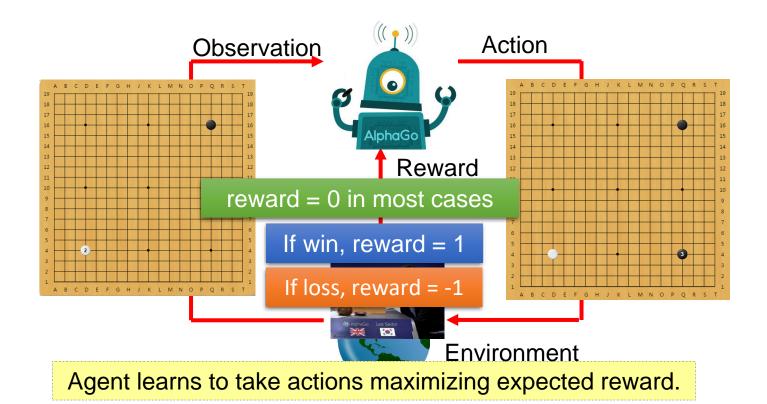
Machine Learning ≈ Looking for a Function



Learning to Play Go



Learning to Play Go



Learning to Play Go

Supervised

Learning from teacher

Next move: **"5-5"**

Next move: "3-3"

Reinforcement Learning

Learning from experience

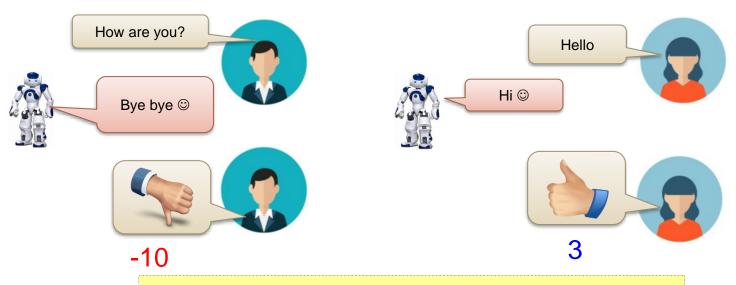
First move | many moves

(Two agents play with each other.)

AlphaGo uses supervised learning + reinforcement learning.

Learning a Chatbot

Machine obtains feedback from user



Chatbot learns to maximize the expected reward

Learning a Chatbot

 Let two agents talk to each other (sometimes generate good dialogue, sometimes bad)

How old are you?

See you.

How old are you?

I am 16.

See you.

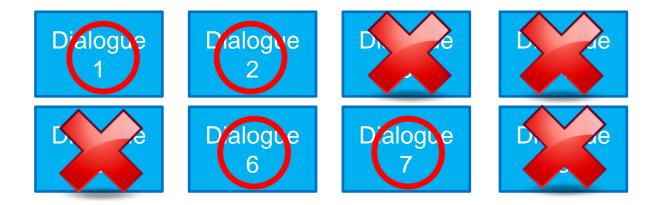
I thoug

I though you were 12.

What make you think so?

Learning a chat-bot

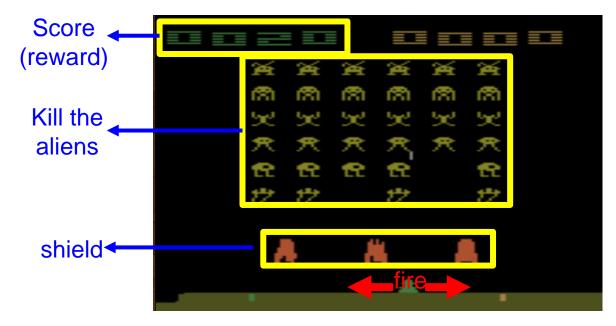
- By this approach, we can generate a lot of dialogues.
- Use pre-defined rules to evaluate the goodness of a dialogue



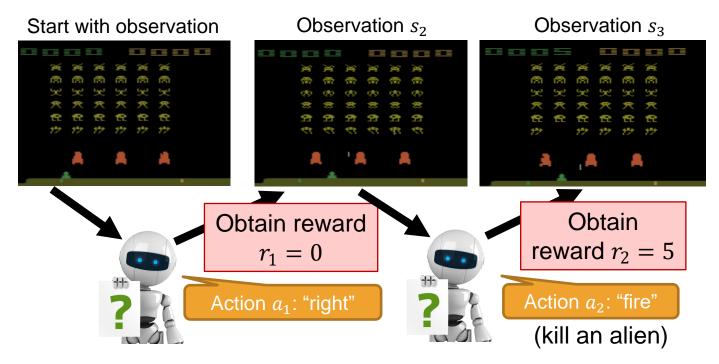
Machine learns from the evaluation as rewards

Learning to Play Video Game

 Space invader: terminate when all aliens are killed, or your spaceship is destroyed

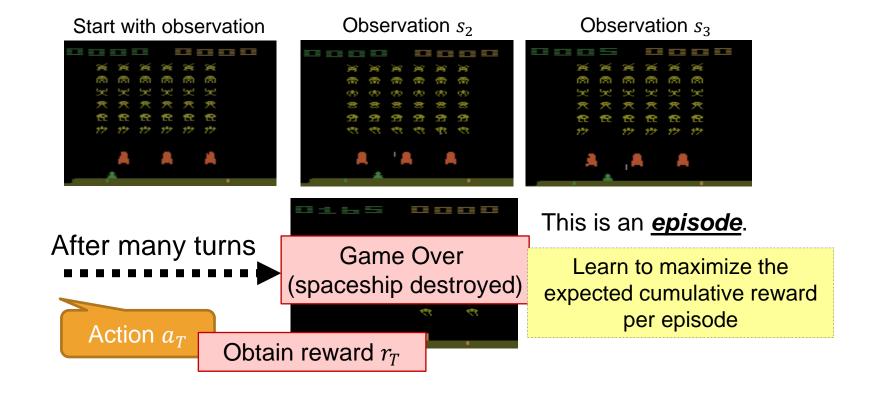


Learning to Play Video Game



Usually there is some randomness in the environment

Learning to Play Video Game



More Applications

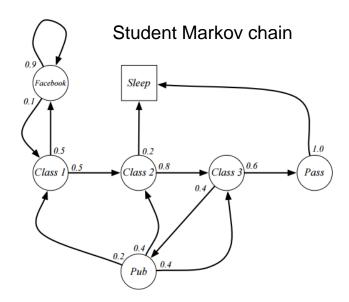
- Flying Helicopter
 - https://www.youtube.com/watch?v=0JL04JJjocc
- Oriving
 - https://www.youtube.com/watch?v=0xo1Ldx3L5Q
- Robot
 - https://www.youtube.com/watch?v=370cT-OAzzM
- Google Cuts Its Giant Electricity Bill With DeepMind-Powered AI
 - http://www.bloomberg.com/news/articles/2016-07-19/google-cuts-its-giant-electricity-bill-with-deepmind-powered-ai
- Text Generation
 - https://www.youtube.com/watch?v=pbQ4qe8EwLo

Fully Observable Environment

- Machine Learning
 - Supervised Learning v.s. Reinforcement Learning
 - Reinforcement Learning v.s. Deep Learning
- Introduction to Reinforcement Learning
 - Agent and Environment
 - Action, State, and Reward
- Markov Decision Process
- Reinforcement Learning Approach
 - Value-Based
 - Policy-Based
 - Model-Based

Markov Process

- Markov process is a memoryless random process
 - i.e. a sequence of random states S₁, S₂, ... with the Markov property

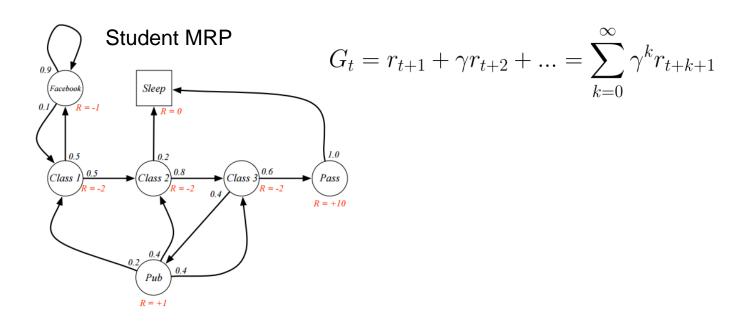


Sample episodes from S₁=C1

- C1 C2 C3 Pass Sleep
- C1 FB FB C1 C2 Sleep
- C1 C2 C3 Pub C2 C3 Pass Sleep
- C1 FB FB C1 C2 C3 Pub
- C1 FB FB FB C1 C2 C3 Pub C2 Sleep

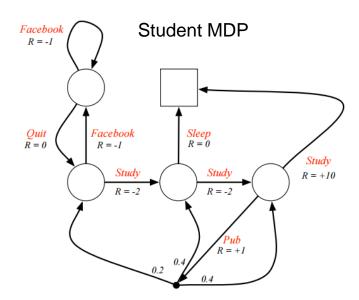
Markov Reward Process (MRP)

- Markov reward process is a Markov chain with values
 - The return G_t is the total discounted reward from time-step t



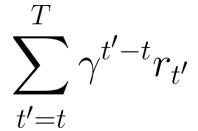
Markov Decision Process (MDP)

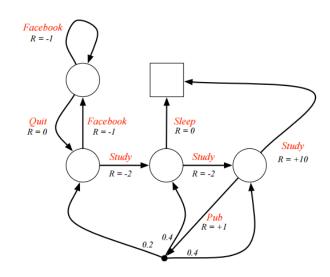
- Markov decision process is an MRP with decisions
 - It is an environment in which all states are Markov



Markov Decision Process (MDP)

- S: finite set of states/observations
- A : finite set of actions
- P: transition probability
- R: immediate reward
- γ : discount factor
- Goal is to choose policy π at time t that maximizes expected overall return:





Reinforcement Learning

44 Outline

- Machine Learning
 - Supervised Learning v.s. Reinforcement Learning
 - Reinforcement Learning v.s. Deep Learning
- Introduction to Reinforcement Learning
 - Agent and Environment
 - Action, State, and Reward
- Markov Decision Process
- Reinforcement Learning
 - Value-Based
 - Policy-Based
 - Model-Based

Major Components in an RL Agent

- An RL agent may include one or more of these components
 - Value function: how good is each state and/or action
 - Policy: agent's behavior function
 - Model: agent's representation of the environment

Reinforcement Learning Approach

- Value-based RL
 - \circ Estimate the optimal value function $\,Q^*(s,a)\,$

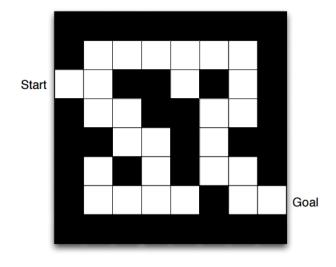
 $Q^*(s,a)$ is maximum value achievable under any policy

- Policy-based RL
 - \circ Search directly for optimal policy π^*

 π^{*} is the policy achieving maximum future reward

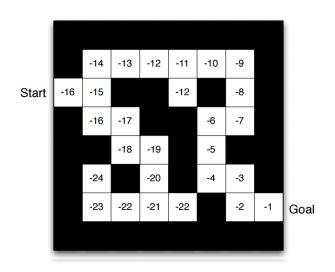
- Model-based RL
 - Build a model of the environment
 - Plan (e.g. by lookahead) using model

Maze Example



- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: agent's location

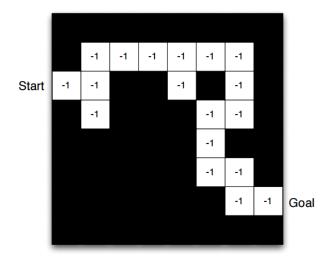
Maze Example: Value Function



- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: agent's location

Numbers represent value $Q_{\pi}(s)$ of each state s

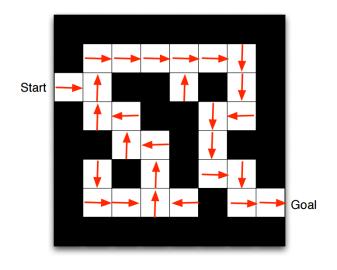
Maze Example: Value Function



- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: agent's location

Grid layout represents transition model *P*Numbers represent immediate reward *R* from each state *s* (same for all *a*)

Maze Example: Policy



- Rewards: -1 per time-step
- Actions: N, E, S, W
- States: agent's location

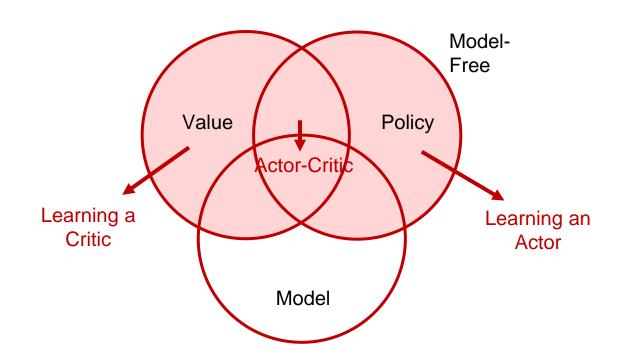
Arrows represent policy $\pi(s)$ for each state s

Categorizing RL Agents

- Value-Based
 - No Policy (implicit)
 - Value Function
- Policy-Based
 - Policy
 - No Value Function
- Actor-Critic
 - Policy
 - Value Function

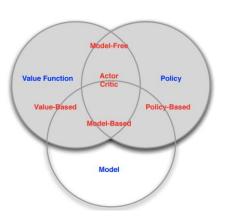
- Model-Free
 - Policy and/or Value Function
 - No Model
- Model-Based
 - Policy and/or Value Function
 - Model

RL Agent Taxonomy



Concluding Remarks

- RL is a general purpose framework for decision making under interactions between agent and environment
 action
 - RL is for an agent with the capacity to act
 - Each action influences the agent's future state
 - Success is measured by a scalar reward signal
 - Goal: select actions to maximize future reward
- An RL agent may include one or more of these components
 - Value function: how good is each state and/or action
 - Policy: agent's behavior function
 - Model: agent's representation of the environment



state

reward

54 References

- Course materials by David Silver: http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
- ICLR 2015 Tutorial:
 http://www.iclr.cc/lib/exe/fetch.php?media=iclr2015:silver-iclr2015.pdf
- ICML 2016 Tutorial: http://icml.cc/2016/tutorials/deep_rl_tutorial.pdf