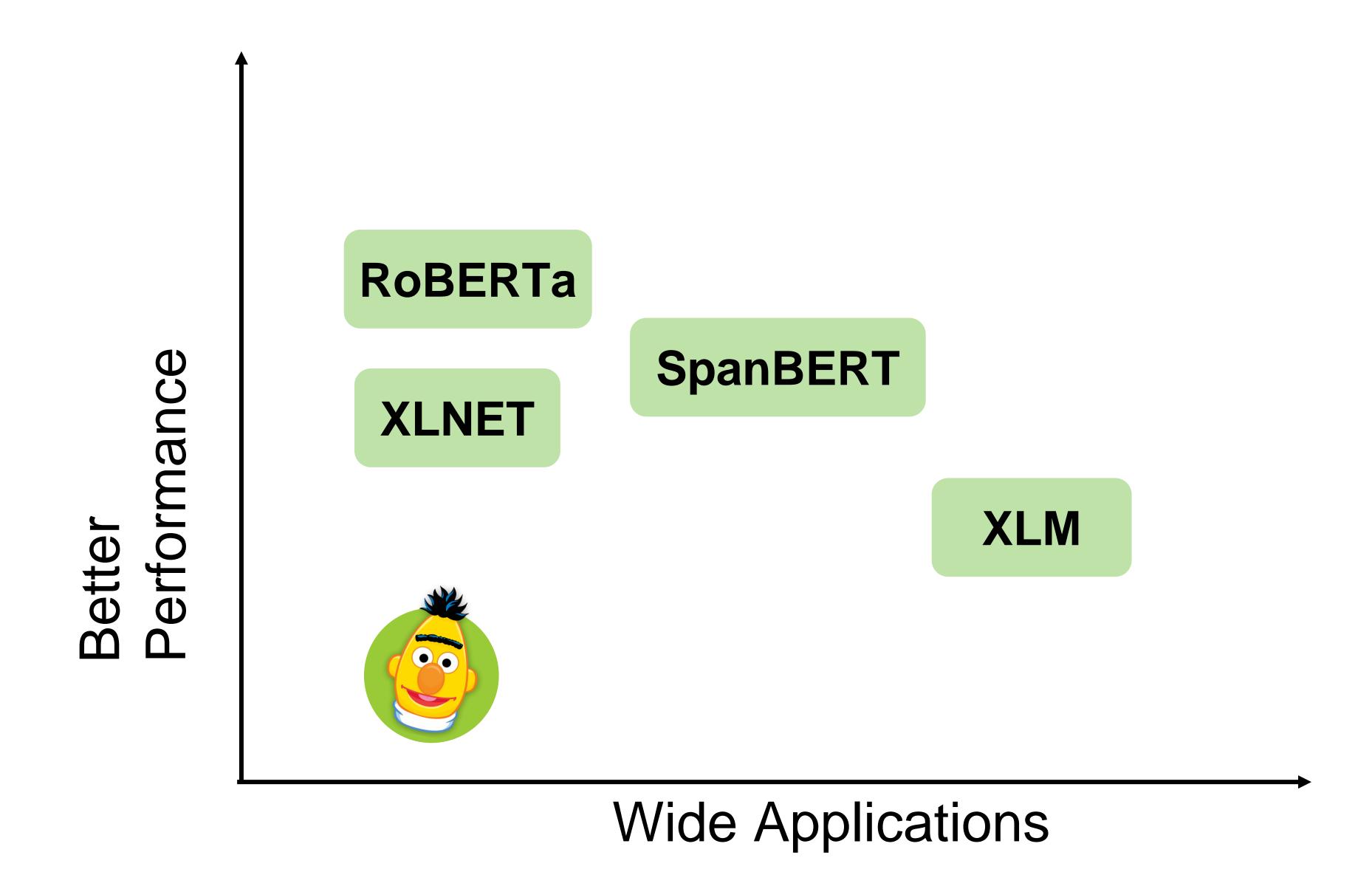
Applied Deep Learning

More BERT

April 14th, 2020 http://adl.miulab.tw

Beyond BERT

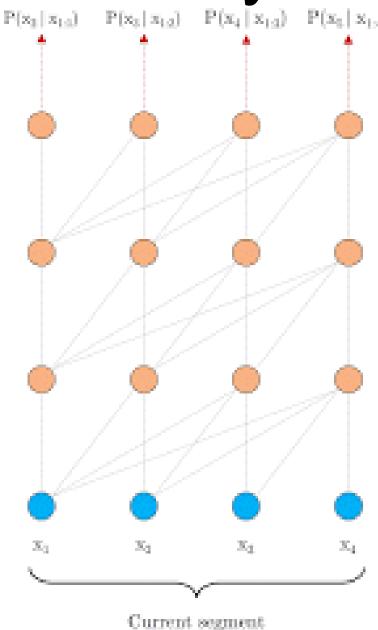


Transformer-XL

(Dai et al, 2019)

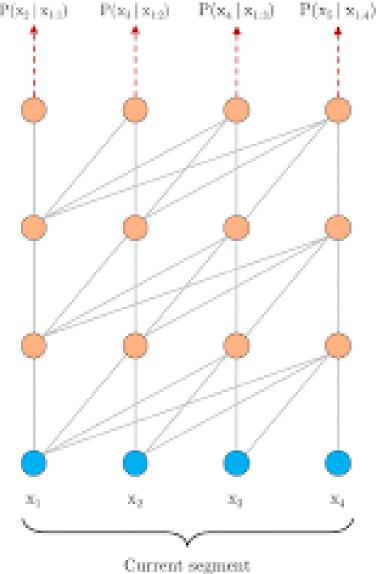
Transformer

- Issue: context fragmentation
 - Long dependency: unable to model dependencies longer than a fixed length
 - Inefficient optimization: ignore sentence boundaries
 - particularly troublesome even for short sequences



Transformer-XL (extra-long)

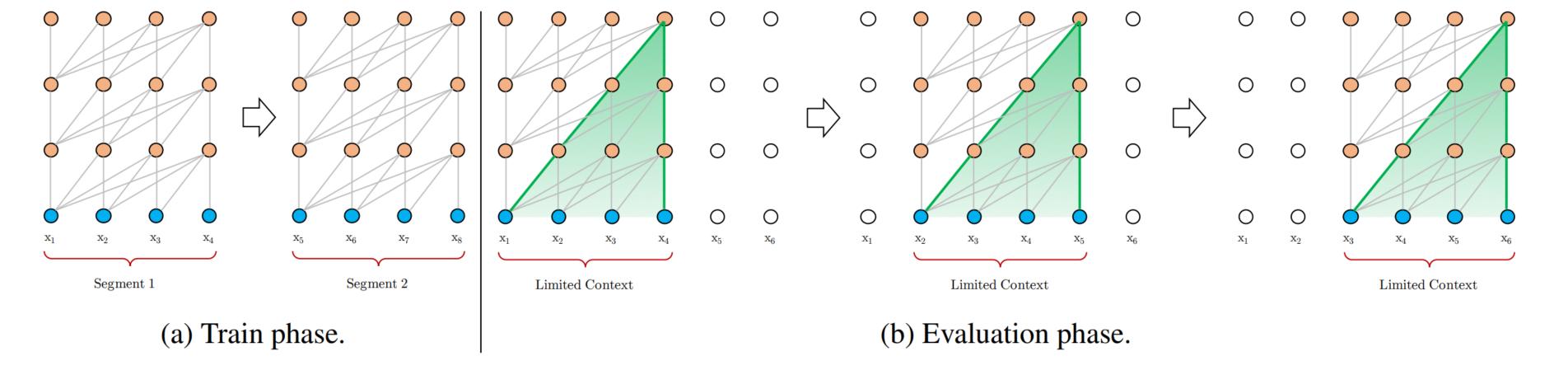
- Idea: segment-level recurrence
 - Previous segment embeddings are fixed and cached to be reused when training the next segment
 - → increases the largest dependency length by N times (N: network depth)



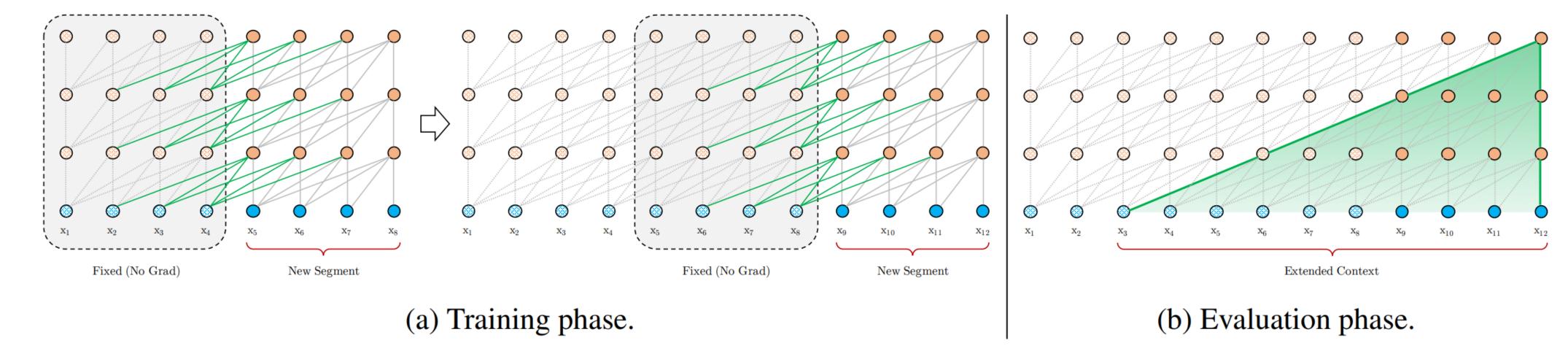
resolve the context fragmentation issue and makes the dependency longer

State Reuse for Segment-Level Recurrence

Vanilla



State Reuse



Incoherent Positional Encoding

- Issue: naively applying segment-level recurrence can't work
 - o positional encodings are incoherent when reusing

$$[0, 1, 2, 3] \rightarrow [0, 1, 2, 3, 0, 1, 2, 3]$$

Relative Positional Encoding

- Idea: relative positional encoding
 - learnable embeddings → fixed embeddings with learnable transformations
 - the query vector is the same for all query positions
 - the attentive bias towards different words should remain the same

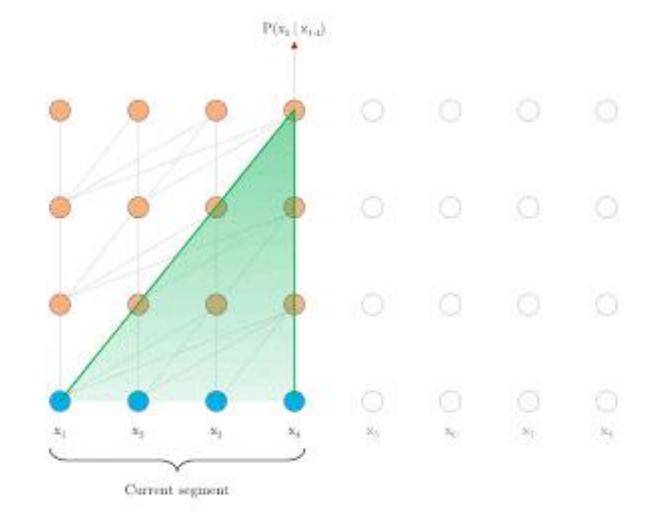
 $\mathbf{A}_{i,j}^{\text{abs}} = \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j}_{(b)} + \underbrace{\mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}_{x_j}}_{(c)} + \underbrace{\mathbf{U}_i^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{U}_j}_{(c)}.$ $\mathbf{A}_{i,j}^{\text{rel}} = \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}}_{(a)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}}_{(b)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}}_{(b)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W}_k \mathbf{E}}_{(c)} + \underbrace{\mathbf{E}_{x_i}^{\top} \mathbf{W}_q^{\top} \mathbf{W$

much longer effective contexts than a vanilla model during evaluation

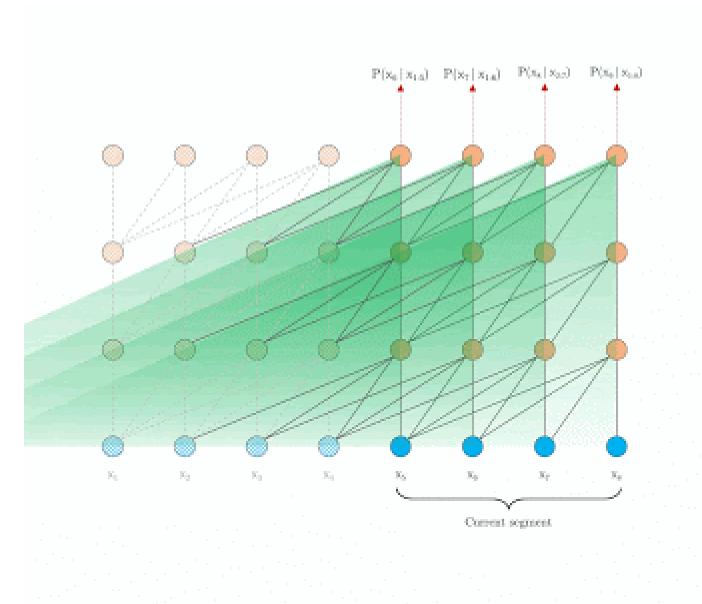
better generalizability to longer sequences

Segment-Level Recurrence in Inference

Vanilla



State Reuse



10 Contributions

- Longer context dependency
 - Learn dependency about 80% longer than RNNs and
 450% longer than vanilla Transformers
 - Better perplexity on long sequences
 - Better perplexity on short sequences by addressing the fragmentation issue
- Speed increase
 - Process new segments without recomputation
 - Achieve up to 1,800+ times faster than a vanilla Transformer during evaluation on LM tasks

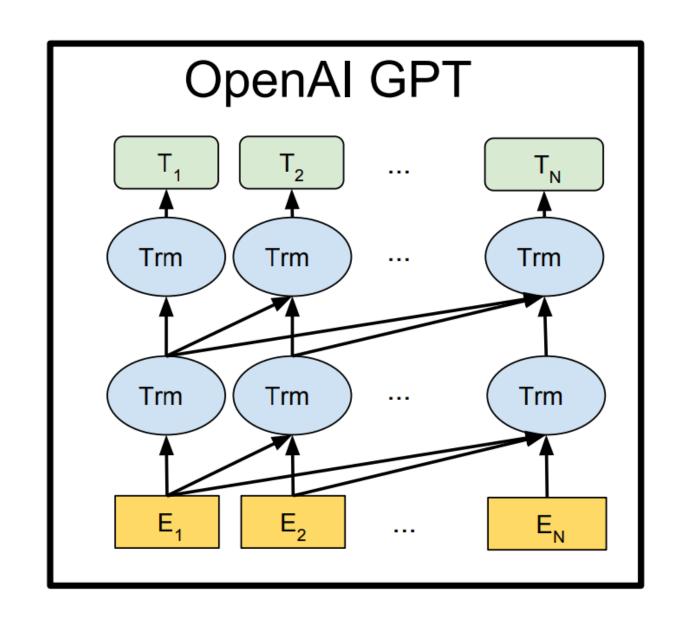
MALNIET ALNIET

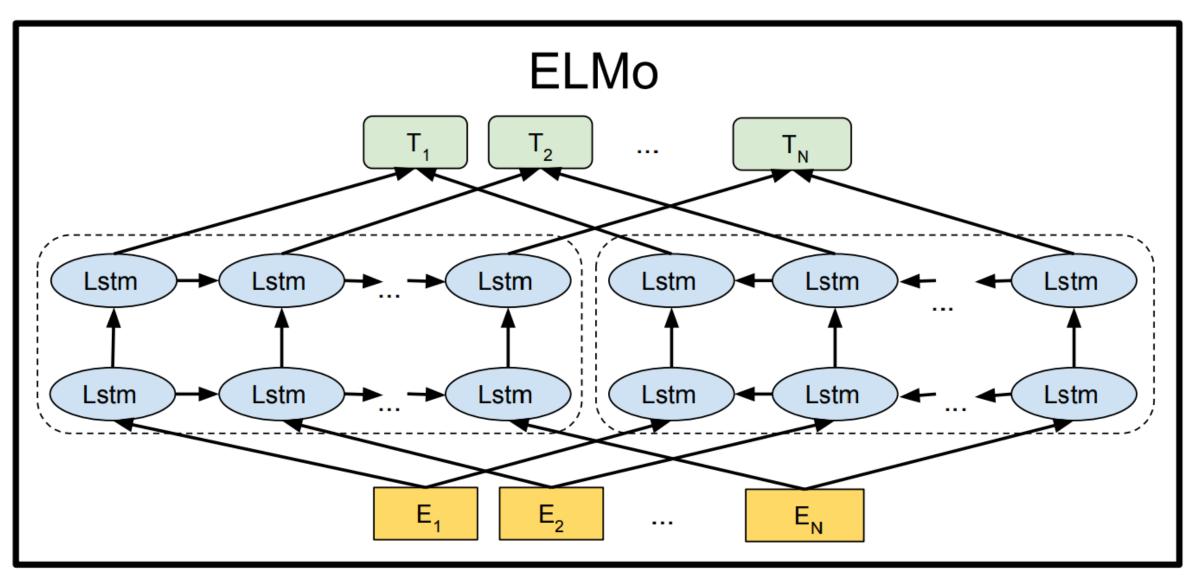
(Yang et al., 2019)

Auto-Regressive (AR)

 Objective: modeling information based on either previous or following contexts

$$\max_{\theta} \quad \log p_{\theta}(\mathbf{x}) = \sum_{t=1}^{T} \log p_{\theta}(x_t \mid \mathbf{x}_{< t}) = \sum_{t=1}^{T} \log \frac{\exp\left(h_{\theta}(\mathbf{x}_{1:t-1})^{\top} e(x_t)\right)}{\sum_{x'} \exp\left(h_{\theta}(\mathbf{x}_{1:t-1})^{\top} e(x')\right)}$$



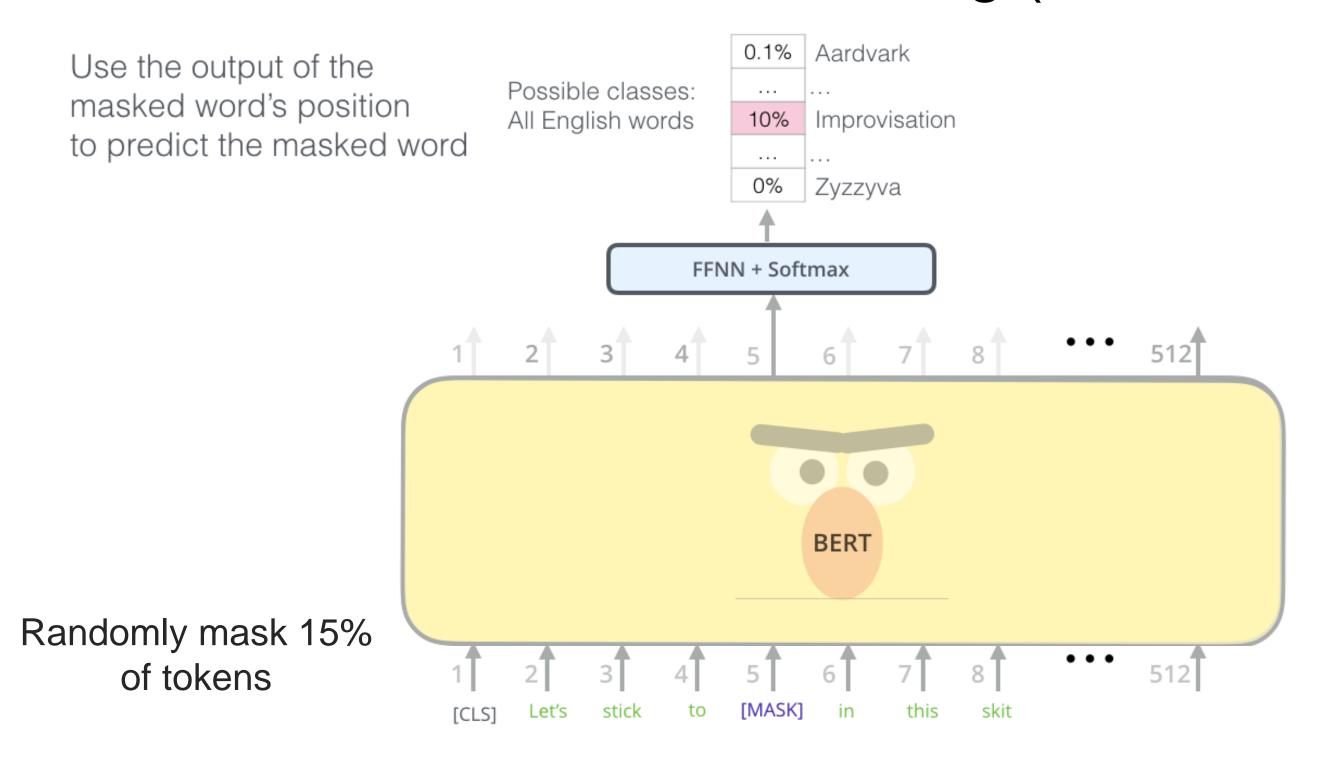


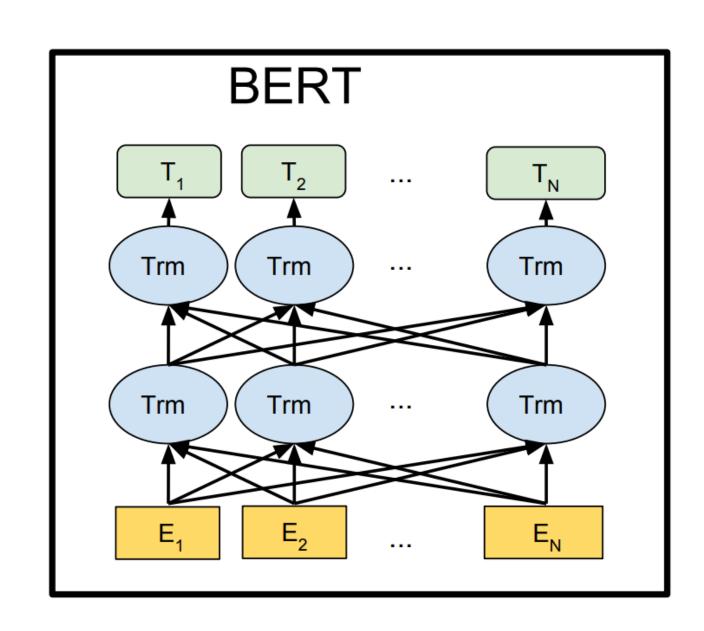
Auto-Encoding (AE)

Objective: reconstructing \bar{x} from \hat{x}

$$\max_{\theta} \quad \log p_{\theta}(\bar{\mathbf{x}} \mid \hat{\mathbf{x}}) \approx \sum_{t=1}^{T} m_{t} \log p_{\theta}(x_{t} \mid \hat{\mathbf{x}}) = \sum_{t=1}^{T} m_{t} \log \frac{\exp\left(H_{\theta}(\hat{\mathbf{x}})_{t}^{\top} e(x_{t})\right)}{\sum_{x'} \exp\left(H_{\theta}(\hat{\mathbf{x}})_{t}^{\top} e(x')\right)}$$

dimension reduction or denoising (masked LM)





14

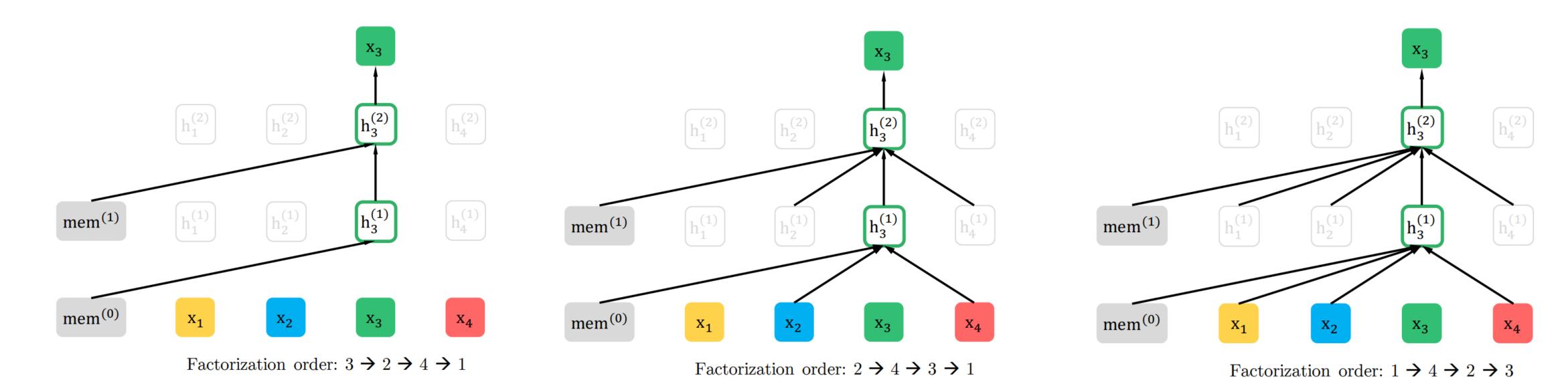
Auto-Encoding (AE)

Issues

- Independence assumption: ignore the dependency between masks
- Input noise: discrepancy between pre-training and fine-tuning (w/ [MASK]) (w/o [MASK])

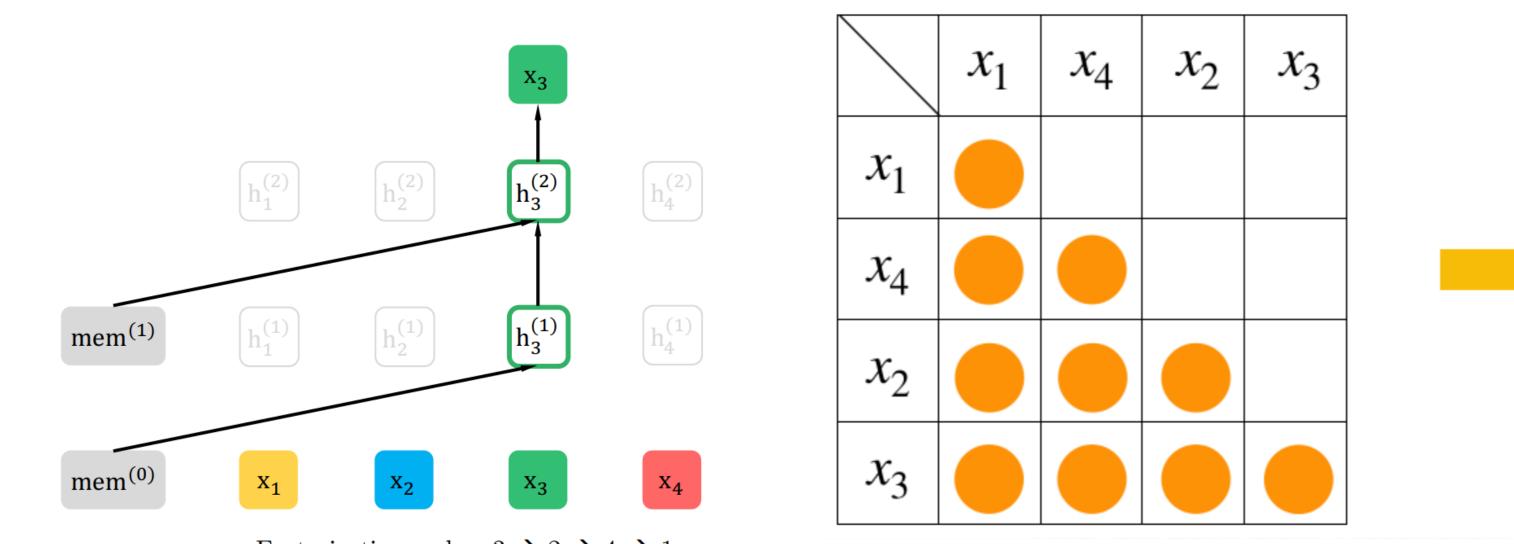
Permutation Language Model

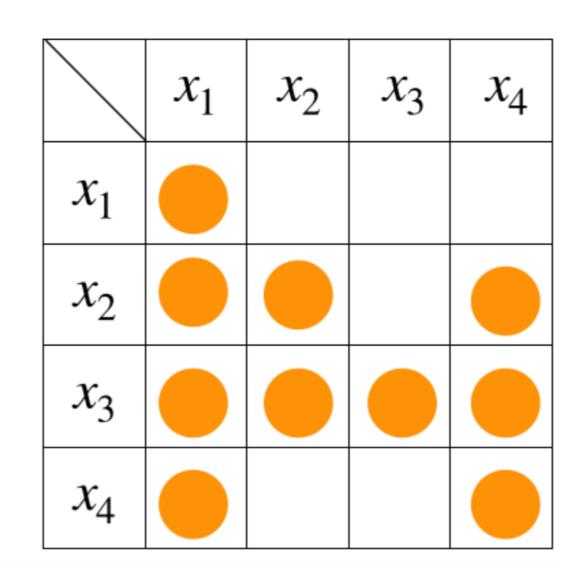
- Goal: use AR and bidirectional contexts for prediction
- Idea: parameters shared across all factorization orders in expectation
 - T! different orders to a valid AR factorization for a sequence of length T
 - Pre-training on sequences sampled from all possible permutations



Permutation Language Model

- Implementation: only permute the factorization order
 - Remain original positional encoding
 - Rely on proper attention masks in Transformers





Factorization order: $3 \rightarrow 2 \rightarrow 4 \rightarrow 1$

Formulation Reparameterizing

- Issue: naively applying permutation LM does not work
- Original formulation

$$p_{\theta}(X_{z_t} = x \mid \mathbf{x}_{z_{< t}}) = \frac{\exp(e(x)^{\top} h_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}}))}{\sum_{x'} \exp(e(x')^{\top} h_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}}))}$$

- [MASK] indicates the target position
- $h_{\theta}(x_{Z < t}) \text{ does not depend on predicted position} \quad \begin{array}{l} x_1, x_2, x_3, x_4 \longrightarrow P(x_3 | x_1, x_2) \\ x_1, x_2, x_4, x_3 \longrightarrow P(x_4 | x_1, x_2) \end{array}$

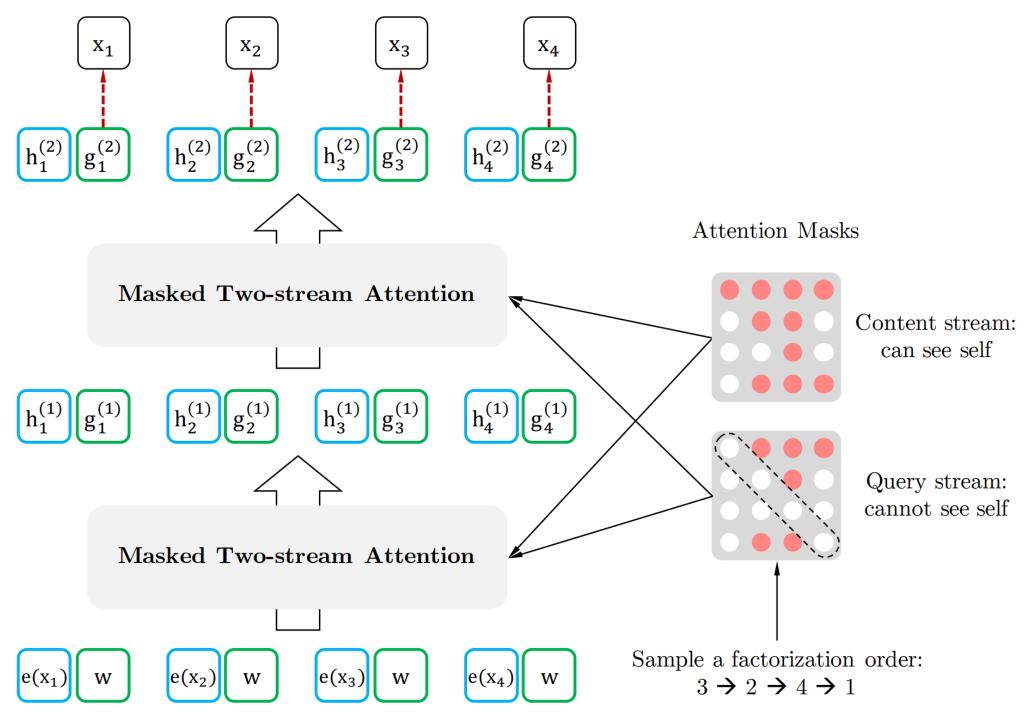
Reparameterization

$$p_{\theta}(X_{z_t} = x \mid \mathbf{x}_{z_{< t}}) = \frac{\exp\left(e(x)^{\top} g_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}}, z_t)\right)}{\sum_{x'} \exp\left(e(x')^{\top} g_{\theta}(\mathbf{x}_{\mathbf{z}_{< t}}, z_t)\right)}$$

 $g_{\theta}(x_{z_{t}}, z_{t})$ is a new embedding considering the target position z_{t}

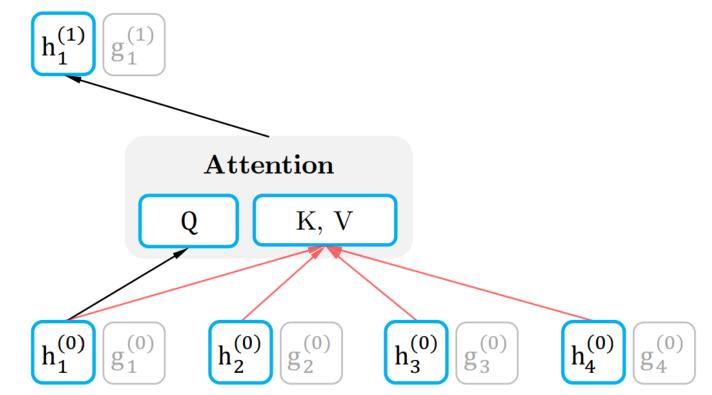
Two-Stream Self-Attention

- Formulation of $g(x_{z_{< t}}, z_t)$
 - 1) Predicting the token x_{z_t} should only use the position z_t and not the content x_{z_t}
 - 2) Predicting other tokens x_{z_i} (i > t) should encode the content x_{z_t}
- Idea: two sets of hidden representations
 - Content stream: can see self
 - Query stream: cannot see self

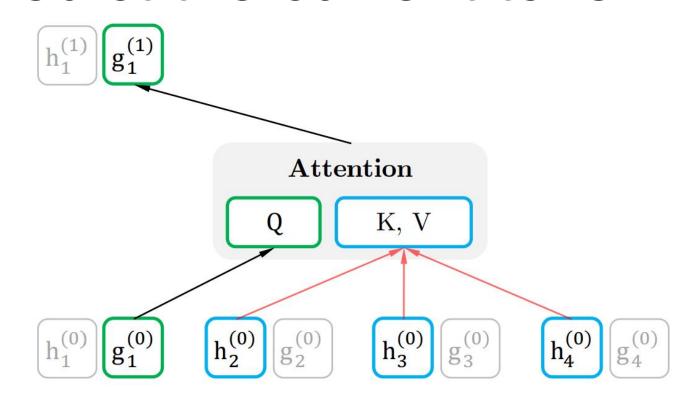


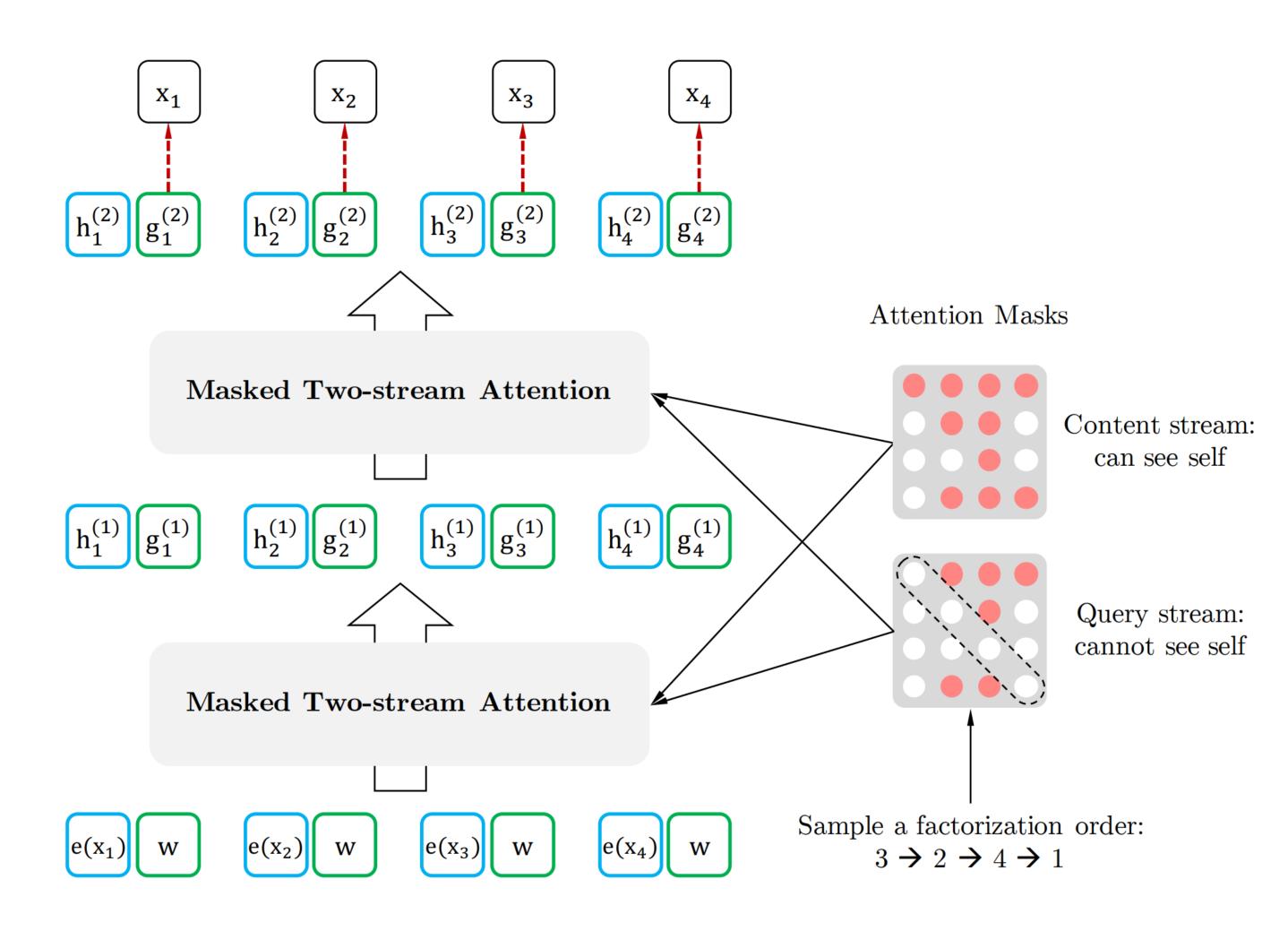
Two-Stream Self-Attention

- Content stream
 - Predict other tokens



- Query stream
 - Predict the current token





GLUE Results

Model	MNLI	QNLI	QQP	RTE	SST-2	MRPC	CoLA	STS-B	WNLI	
Single-task single models on dev										
BERT [2]	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	_	
XLNet	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	_	
Single-task single	Single-task single models on test									
BERT [10]	86.7/85.9	91.1	89.3	70.1	94.9	89.3	60.5	87.6	65.1	
Multi-task ensem	bles on test (f	rom leade	rboard as	s of June	19, 2019)				
Snorkel* [29]	87.6/87.2	93.9	89.9	80.9	96.2	91.5	63.8	90.1	65.1	
ALICE*	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	
MT-DNN* [18]	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	
XLNet*	90.2/89.7 [†]	98.6 [†]	90.3^{\dagger}	86.3	96.8 [†]	93.0	67.8	91.6	90.4	

Contributions

AR for addressing independence assumption

$$\mathcal{J}_{BERT} = \log p(\text{New} \mid \text{is a city}) + \log p(\text{York} \mid \text{is a city})$$

 $\mathcal{J}_{XLNet} = \log p(\text{New} \mid \text{is a city}) + \log p(\text{York} \mid \text{New}, \text{is a city})$

AE for addressing the pretrain-finetune discrepancy

$$\mathcal{J}_{BERT} = \sum_{x \in \mathcal{T}} \log p(x \mid \mathcal{N}); \quad \mathcal{J}_{XLNet} = \sum_{x \in \mathcal{T}} \log p(x \mid \mathcal{N} \cup \mathcal{T}_{< x})$$

ROBERTa

(Liu et al., 2019)

23 RoBERTa

- Dynamic masking
 - each sequence is masked in 10 different ways over the 40 epochs of training
 - Original masking is performed during data preprocessing
- Optimization hyperparameters
 - peak learning rate and number of warmup steps tuned separately for each setting
 - Training is very sensitive to the Adam epsilon term
 - Setting β2 = 0.98 improves stability when training with large batch sizes
- Data
 - not randomly inject short sequences
 - train only with full-length sequences
 - Original model trains with a reduced sequence length for first 90% of updates
 - BookCorpus, CC-News, OpenWebText, Stories

GLUE Results

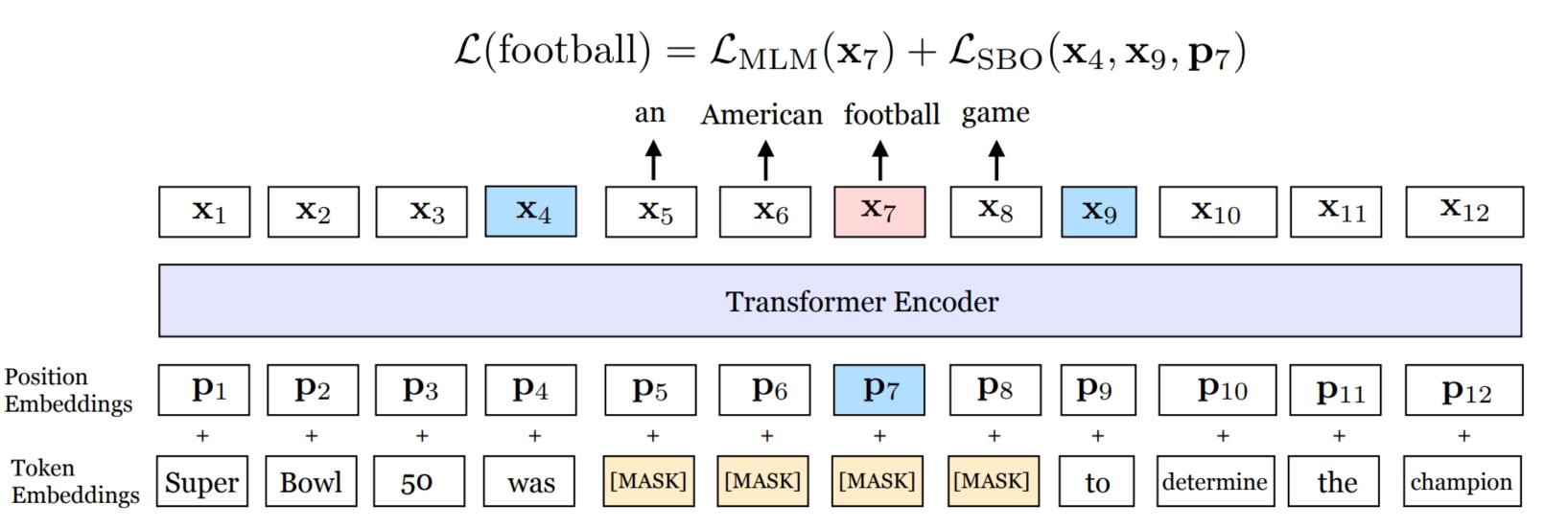
	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task si	ngle models	on dev								
$BERT_{LARGE}$	86.6/-	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
$XLNet_{LARGE}$	89.8/-	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa	90.2/90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	91.3	-
Ensembles on	test (from le	eaderboa	rd as of	<i>July 25</i> ,	2019)					
ALICE	88.2/87.9	95.7	90.7	83.5	95.2	92.6	68.6	91.1	80.8	86.3
MT-DNN	87.9/87.4	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2/89.8	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8/90.2	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5

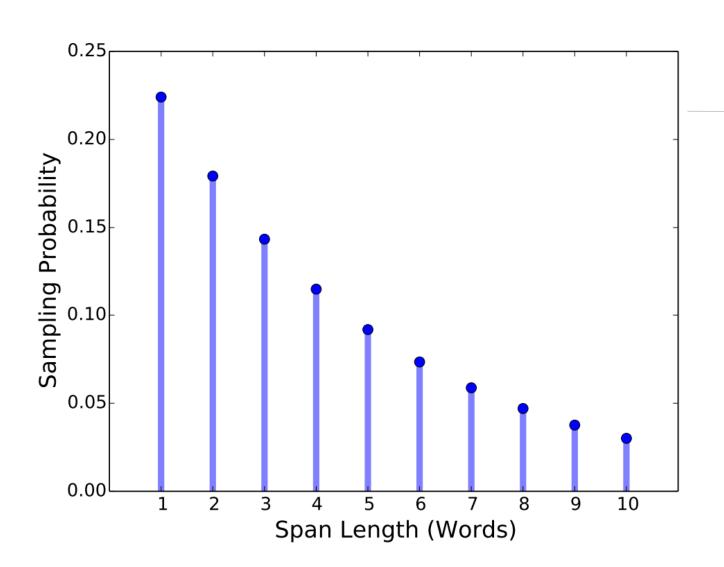
SpanBERT

(Joshi et al., 2019)

SpanBERT

- Span masking
 - A random process to mask spans of tokens
- Single sentence training
 - a single contiguous segment of text for each training sample (instead of two)
- Span boundary objective (SBO)
 - predict the entire masked span using only the span's boundary





27 Results

Masking scheme

	SQuAD 2.0	NewsQA	TriviaQA	Coreference	MNLI-m	QNLI
Subword Tokens	83.8	72.0	76.3	77.7	86.7	92.5
Whole Words	84.3	72.8	77.1	76.6	86.3	92.8
Named Entities	84.8	72.7	78.7	75.6	86.0	93.1
Noun Phrases	85.0	73.0	77.7	76.7	86.5	93.2
Random Spans	85.4	73.0	78.8	76.4	87.0	93.3

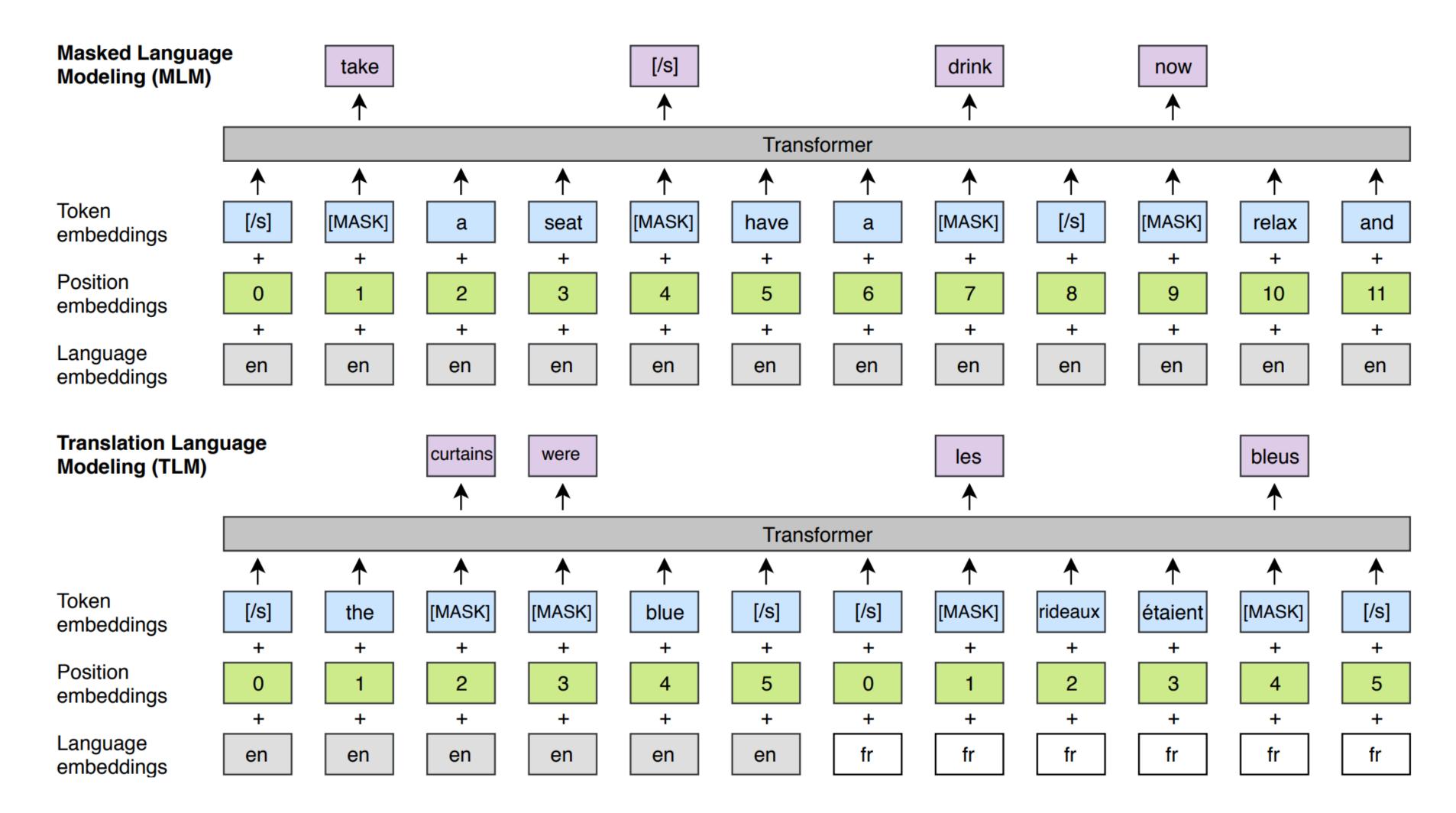
Auxiliary objective

	SQuAD 2.0	NewsQA	TriviaQA	Coreference	MNLI-m	QNLI
Span Masking (2seq) + NSP	85.4	73.0	78.8	76.4	87.0	93.3
Span Masking (1seq)	86.7	73.4	80.0	76.3	87.3	93.8
Span Masking (1seq) + SBO	86.8	74.1	80.3	79.0	87.6	93.9

28

(Lample & Connueau, 2019)

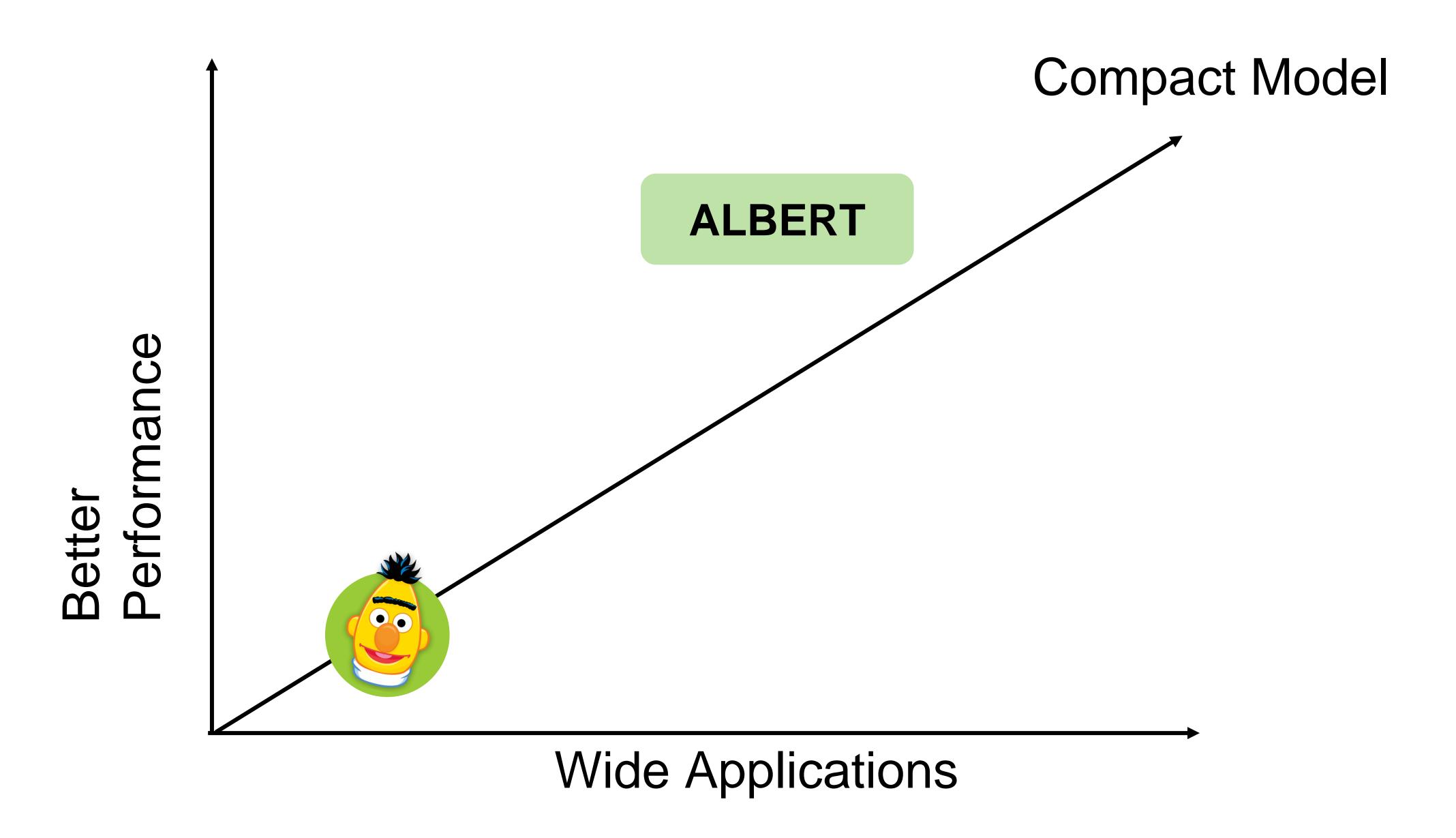
Masked LM + Translation LM



30 ALBERT

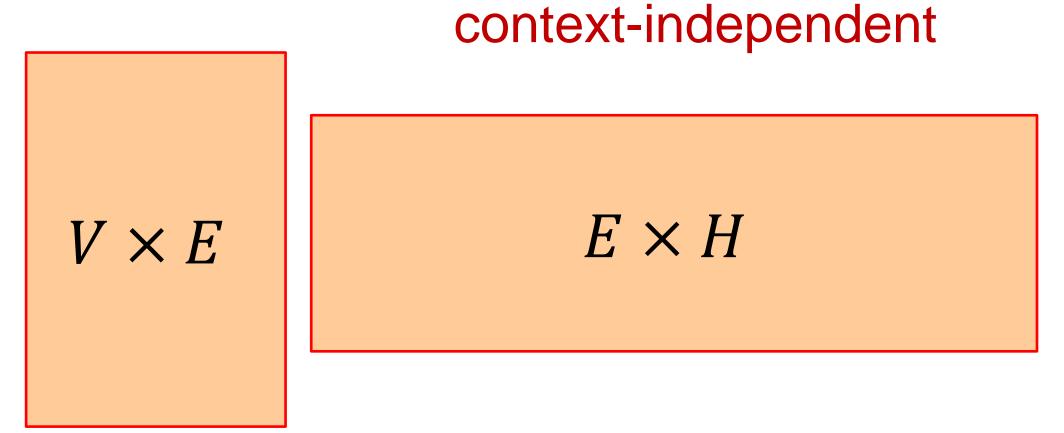
(Lan et al., 2020)

Beyond BERT

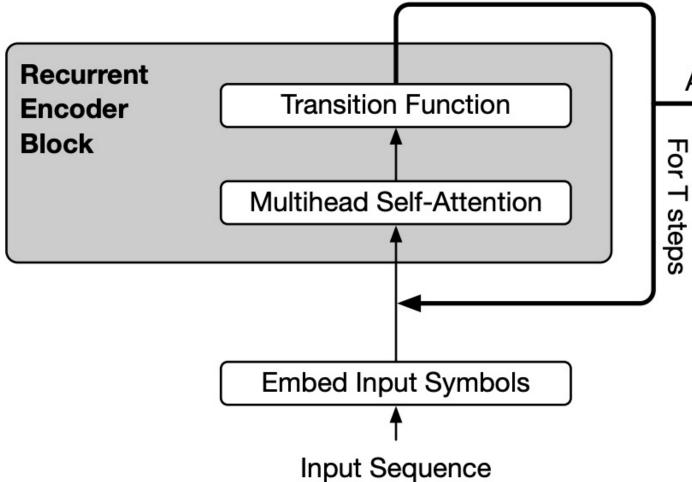


- 1. Factorized embedding parameterization
 - WordPiece embedding size E is tied with the hidden layer size $H \rightarrow E = H$

context-dependent $\rightarrow E << H$



2. Cross-layer sharing



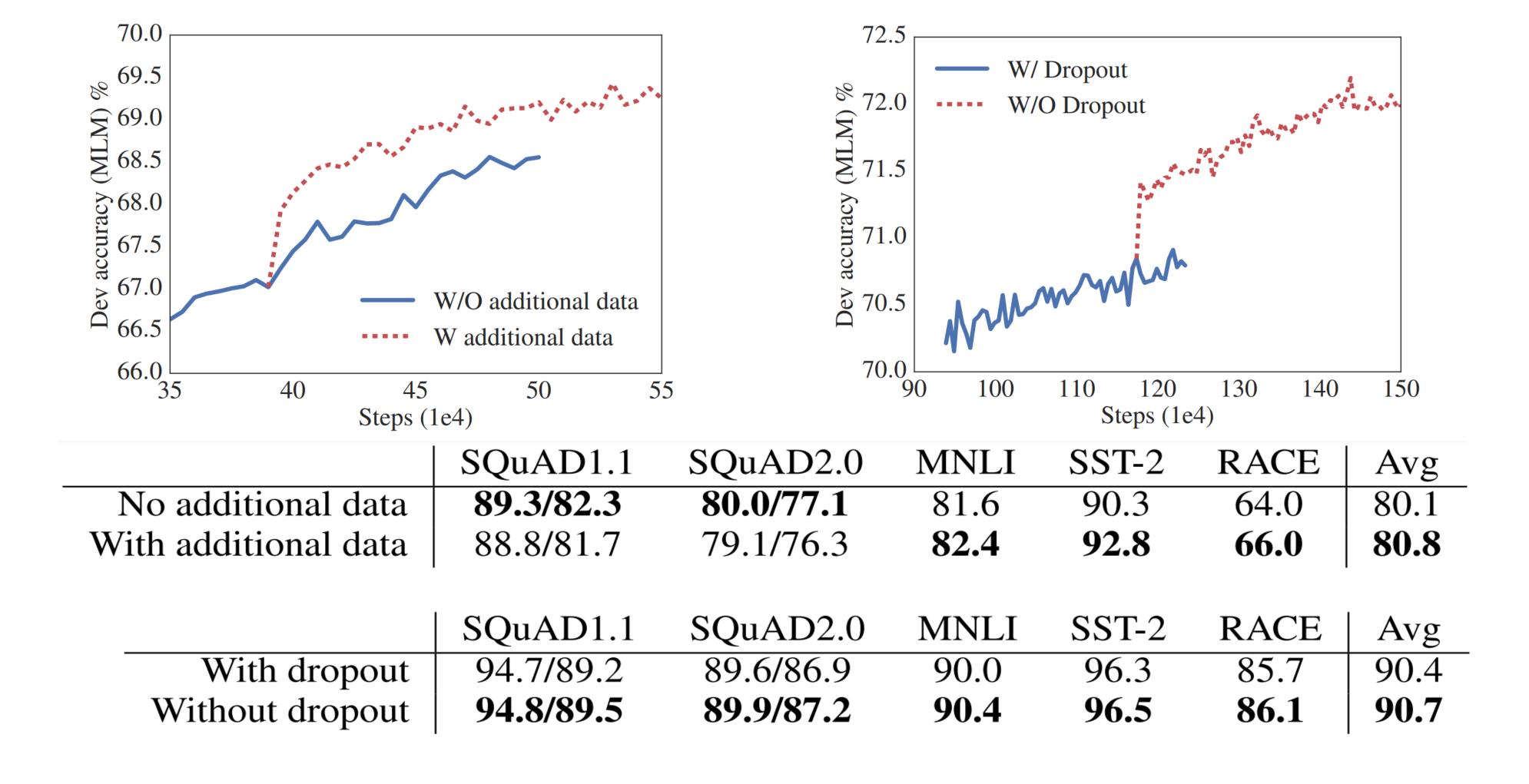
	Model	\boldsymbol{E}	Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
-	ALBERT	64	87M	89.9/82.9	80.1/77.8	82.9	91.5	66.7	81.3
	base	128	89M	89.9/82.8	80.3/77.3	83.7	91.5	67.9	81.7
	not-shared	256	93M	90.2/83.2	80.3/77.4	84.1	91.9	67.3	81.8
	not snarea	768	108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3
-	ALBERT	64	10M	88.7/81.4	77.5/74.8	80.8	89.4	63.5	79.0
	base	128	12 M	89.3/82.3	80.0/77.1	81.6	90.3	64.0	80.1
	all-shared	256	16M	88.8/81.5	79.1/76.3	81.5	90.3	63.4	79.6
	an sharea	768	31M	88.6/81.5	79.2/76.6	82.0	90.6	63.3	79.8
	Model		Parameters	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg
ALBERT	all-shared		31M	88.6/81.5	79.2/76.6	82.0	90.6	63.3	79.8
base	shared-atte	ention	83M	89.9/82.7	80.0/77.2	84.0	91.4	67.7	81.6
E=768	shared-FFI	N	57M	89.2/82.1	78.2/75.4	81.5	90.8	62.6	79.5
L-700						~	000	<i>(</i> 0 0	00.0
	not-shared		108M	90.4/83.2	80.4/77.6	84.5	92.8	68.2	82.3
AI DEDT	all-shared		108M 12M	90.4/83.2 89.3/82.3	80.4/77.6	84.5 82.0	92.8	68.2	82.3
ALBERT	all-shared								
ALBERT base E =128	all-shared	ntion	12M	89.3/82.3	80.0/77.1	82.0	90.3	64.0	80.1

3. Inter-sentence coherence loss

- NSP (next sentence prediction) contains both topical and ordering information
- Topical cues help more → model utilizes more
- SOP (sentence order prediction) focuses on ordering not topical cues

	Intrinsic Tasks			Downstream Tasks						
SP tasks	MLM	NSP	SOP	SQuAD1.1	SQuAD2.0	MNLI	SST-2	RACE	Avg	
None	54.9	52.4	53.3	88.6/81.5	78.1/75.3	81.5	89.9	61.7	79.0	
NSP	54.5	90.5	52.0	88.4/81.5	77.2/74.6	81.6	91.1	62.3	79.2	
SOP	54.0	78.9	86.5	89.3/82.3	80.0/77.1	82.0	90.3	64.0	80.1	

4. Additional data and removing dropout



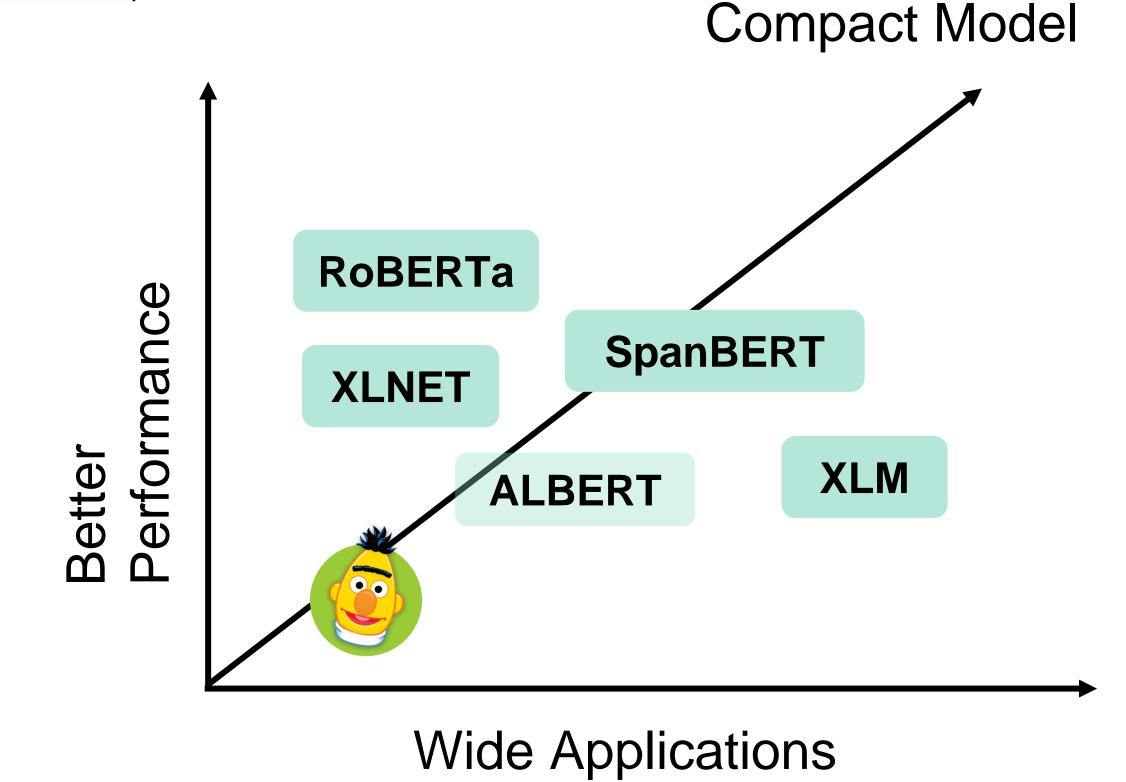
GLUE Results

Models	MNLI	QNLI	QQP	RTE	SST	MRPC	CoLA	STS	WNLI	Avg
Single-task single	models on	dev								
BERT-large	86.6	92.3	91.3	70.4	93.2	88.0	60.6	90.0	-	-
XLNet-large	89.8	93.9	91.8	83.8	95.6	89.2	63.6	91.8	-	-
RoBERTa-large	90.2	94.7	92.2	86.6	96.4	90.9	68.0	92.4	-	-
ALBERT (1M)	90.4	95.2	92.0	88.1	96.8	90.2	68.7	92.7	-	-
ALBERT (1.5M)	90.8	95.3	92.2	89.2	96.9	90.9	71.4	93.0	_	_
Ensembles on test	(from lead	lerboard d	as of Sep	ot. 16, 20	019)					
ALICE	88.2	95.7	90.7	83.5	95.2	92.6	69.2	91.1	80.8	87.0
MT-DNN	87.9	96.0	89.9	86.3	96.5	92.7	68.4	91.1	89.0	87.6
XLNet	90.2	98.6	90.3	86.3	96.8	93.0	67.8	91.6	90.4	88.4
RoBERTa	90.8	98.9	90.2	88.2	96.7	92.3	67.8	92.2	89.0	88.5
Adv-RoBERTa	91.1	98.8	90.3	88.7	96.8	93.1	68.0	92.4	89.0	88.8
ALBERT	91.3	99.2	90.5	89.2	97.1	93.4	69.1	92.5	91.8	89.4

Concluding Remarks

- Transformer-XL (https://github.com/kimiyoung/transformer-xl)
 - Longer context dependency
- XLNet (https://github.com/zihangdai/xlnet)
 - \circ AR + AE
 - No pretrain-finetune discrepancy
- RoBERTa (http://github.com/pytorch/fairseq)
 - Optimization details & data
- SpanBERT
 - Better for QA, NLI, coreference
- XLM (https://github.com/facebookresearch/XLM)
 - Zero-shot scenarios

https://github.com/brightmart/albert_zh)



- ALBERT (https://github.com/google-research/google-research/tree/master/albert /
 - Compact model, faster training/fine-tuning