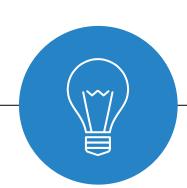
## Applied Deep Learning



## Transformer



April 7th, 2020 <a href="http://adl.miulab.tw">http://adl.miulab.tw</a>





# Sequence Encoding Basic Attention

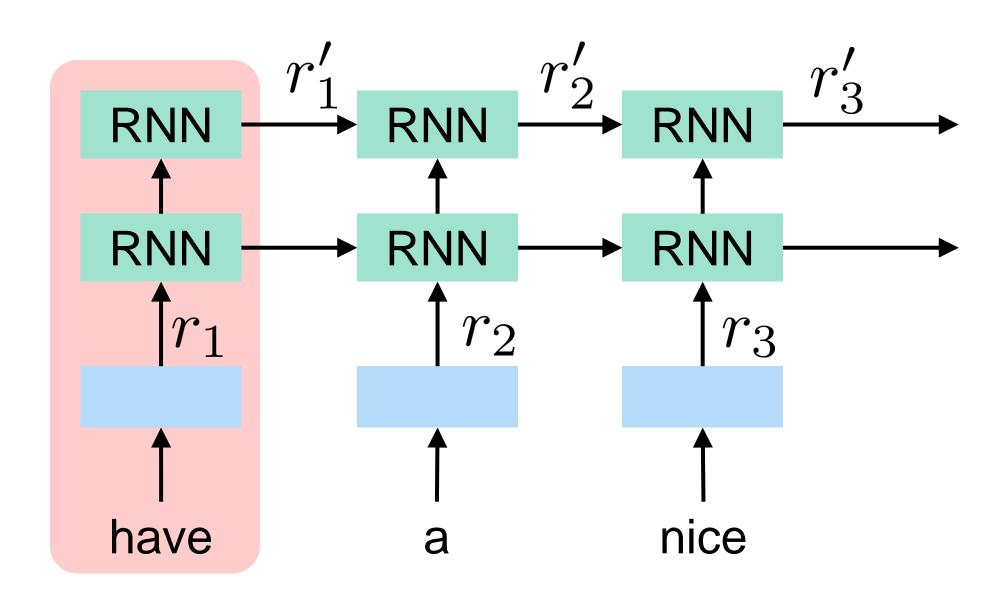
## Representations of Variable Length Data

- Input: word sequence, image pixels, audio signal, click logs
- Property: continuity, temporal, importance distribution
- Example
  - ✓ Basic combination: average, sum
  - ✓ Neural combination: network architectures should consider input domain properties
    - CNN (convolutional neural network)
    - RNN (recurrent neural network): temporal information

Network architectures should consider the input domain properties

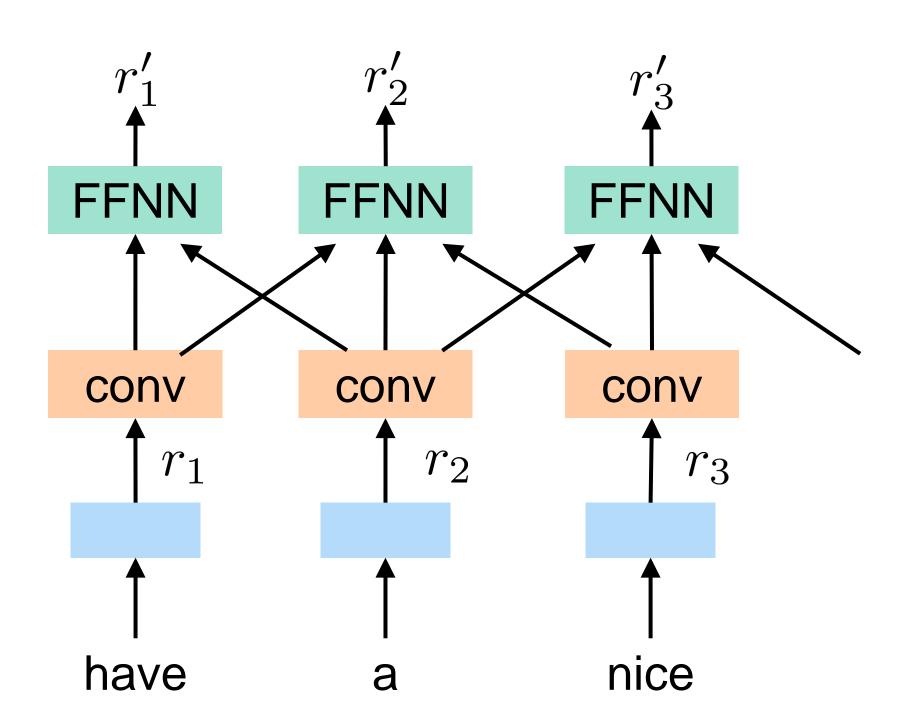
#### Recurrent Neural Networks

- Learning variable-length representations
  - Fit for sentences and sequences of values
- Sequential computation makes parallelization difficult
- No explicit modeling of long and short range dependencies



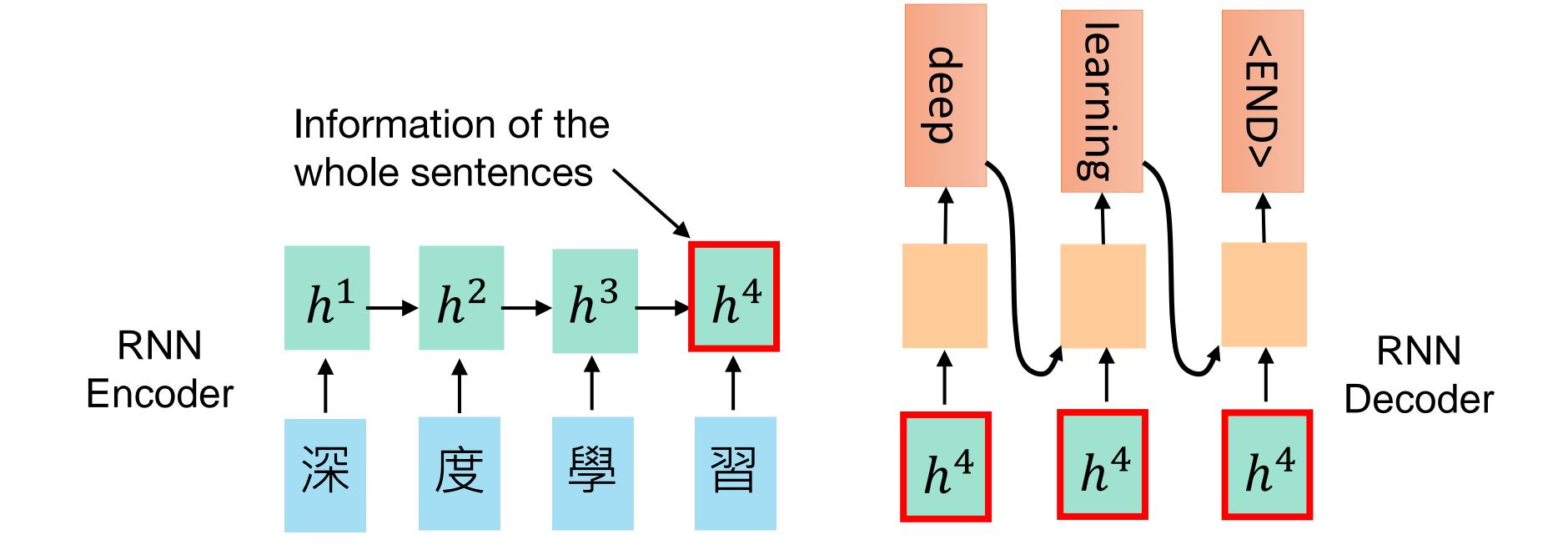
## Convolutional Neural Networks

- Easy to parallelize
- Exploit local dependencies
  - ✓ Long-distance dependencies require many layers

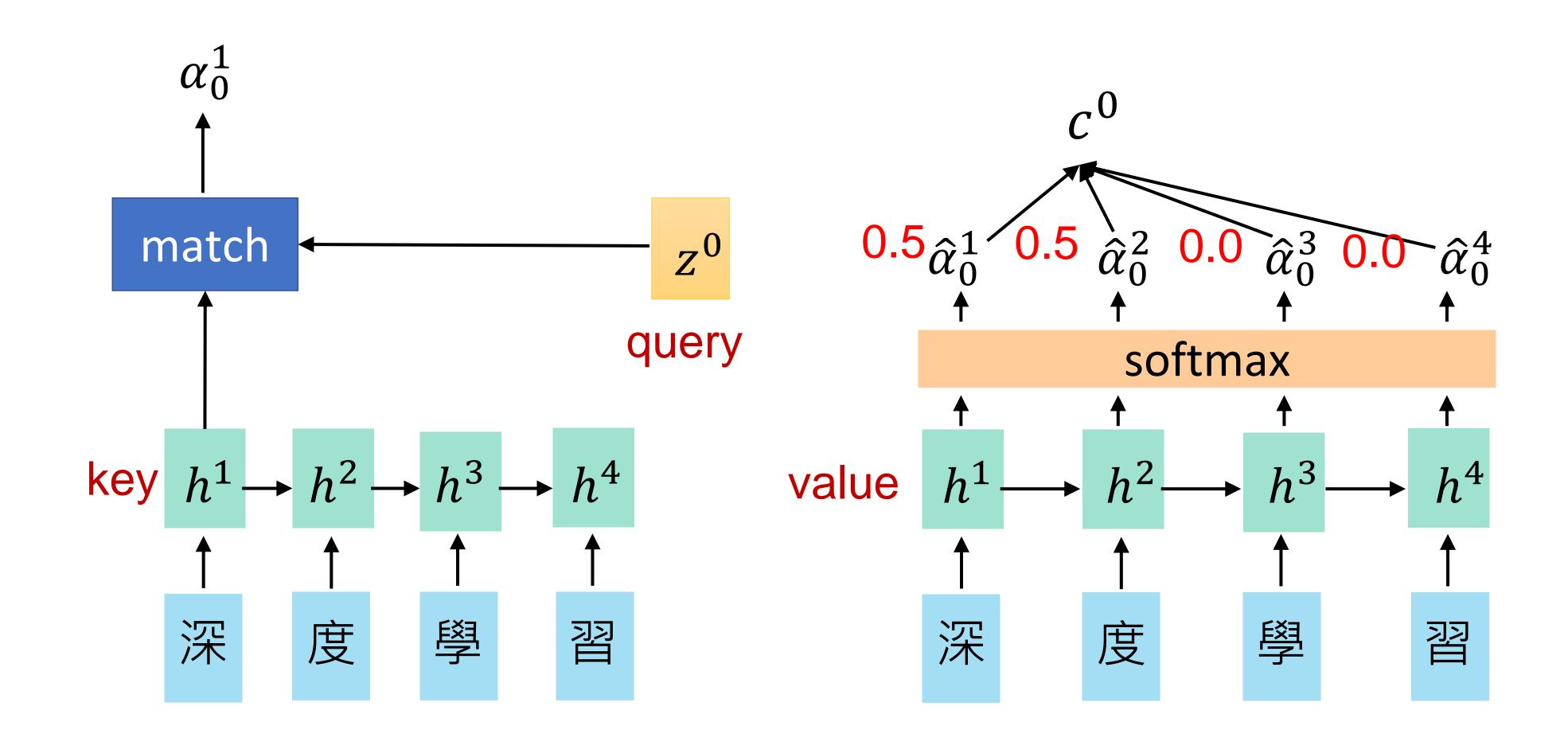


### 6 Attention

- Encoder-decoder model is important in NMT
- RNNs need attention mechanism to handle long dependencies
- Attention allows us to access any state



### Machine Translation with Attention



#### **Dot-Product Attention**

- Input: a query q and a set of key-value (k-v) pairs to an output
- Output: weighted sum of values

Inner product of query and corresponding key

$$A(q, K, V) = \sum_{i} \left( \frac{\exp(q \cdot k_i)}{\sum_{j} \exp(q \cdot k_j)} v_i \right)$$

- $\checkmark$  Query q is a  $d_k$ -dim vector
- $\checkmark$  Key k is a  $d_k$ -dim vector
- $\checkmark$  Value v is a  $d_v$ -dim vector

#### Dot-Product Attention in Matrix

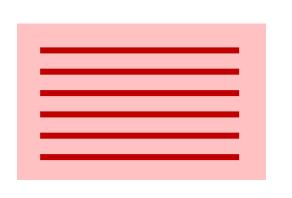
- Input: multiple queries q and a set of key-value (k-v) pairs to an output
- Output: a set of weighted sum of values

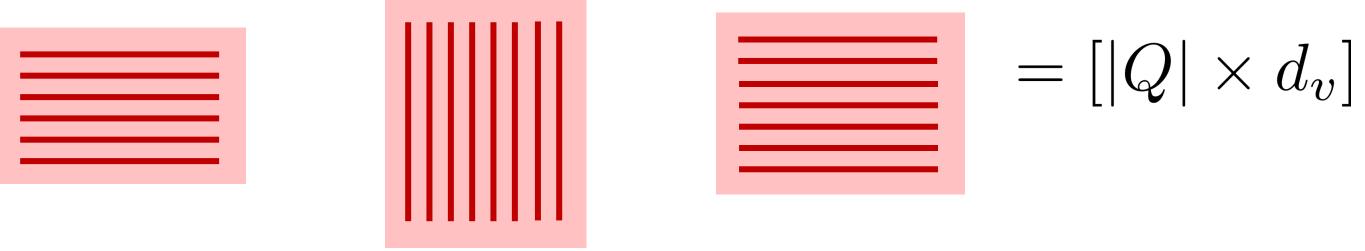
$$A(q, K, V) = \sum_{i} \frac{\exp(q \cdot k_i)}{\sum_{j} \exp(q \cdot k_j)} v_i$$

$$A(Q, K, V) = \operatorname{softmax}(QK^T)V$$

$$[|Q| \times d_k] \times [d_k \times |K|] \times [|K| \times d_v]$$

softmax row-wise





# Sequence Encoding Self-Attention

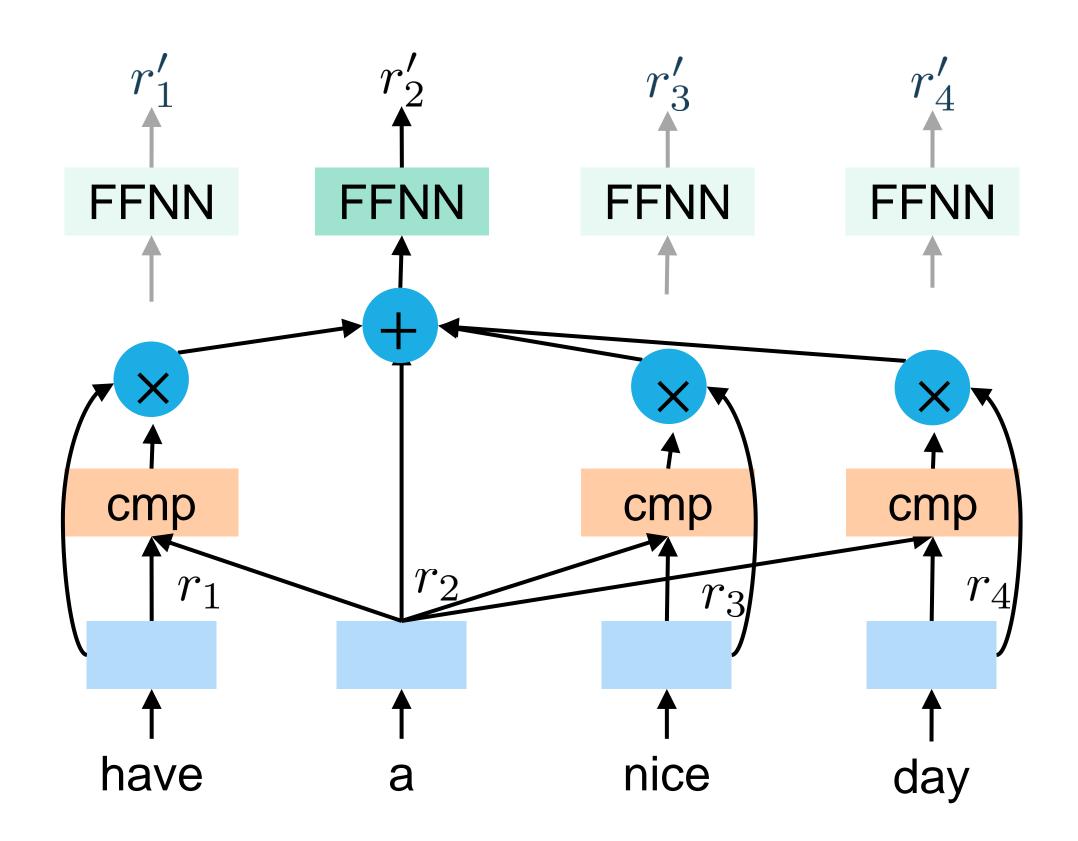
## 11 Attention

- Encoder-decoder model is important in NMT
- RNNs need attention mechanism to handle long dependencies
- Attention allows us to access any state

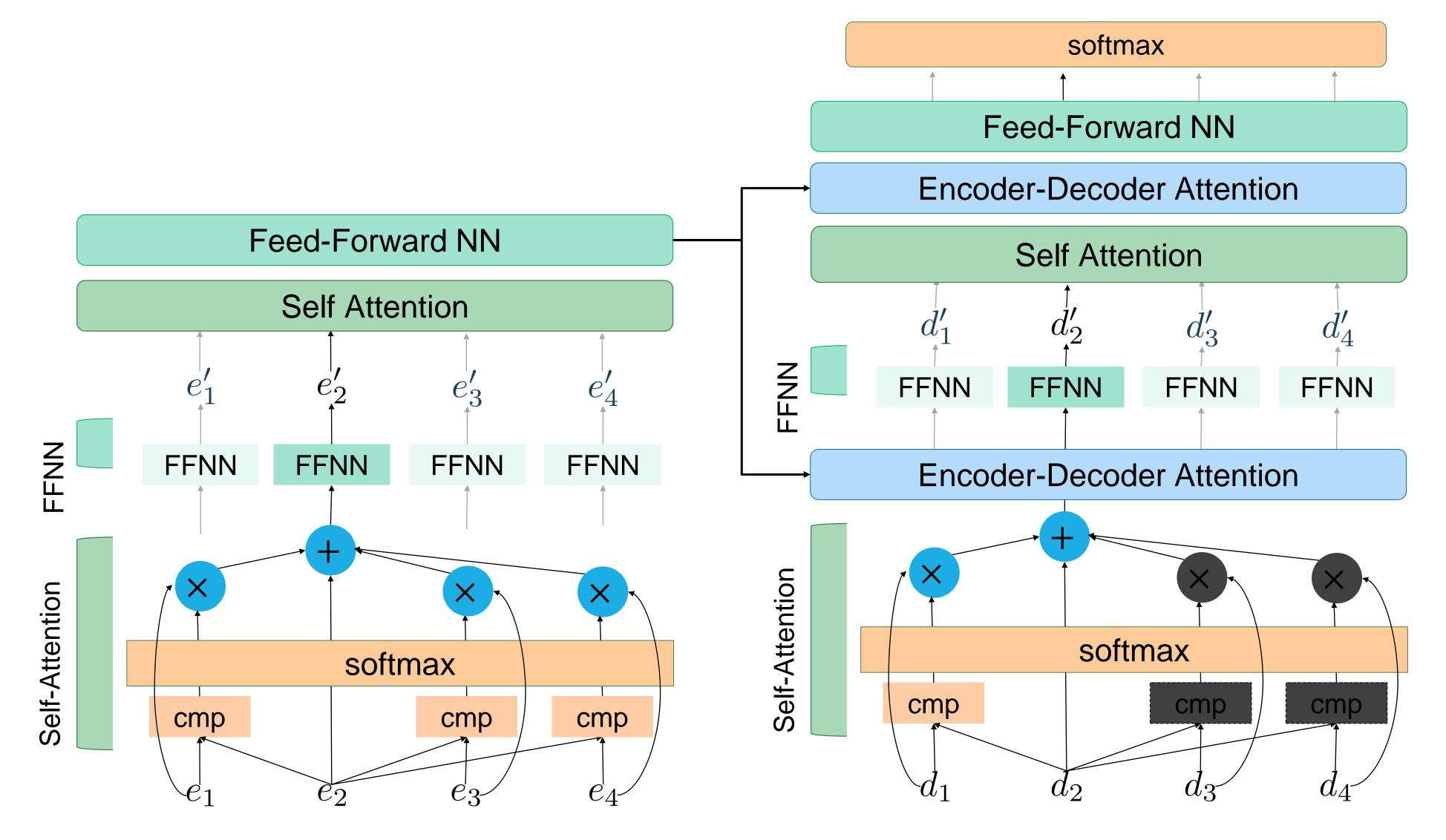
Using attention to replace recurrence architectures

### Self-Attention

- Constant "path length" between two positions
- Easy to parallelize

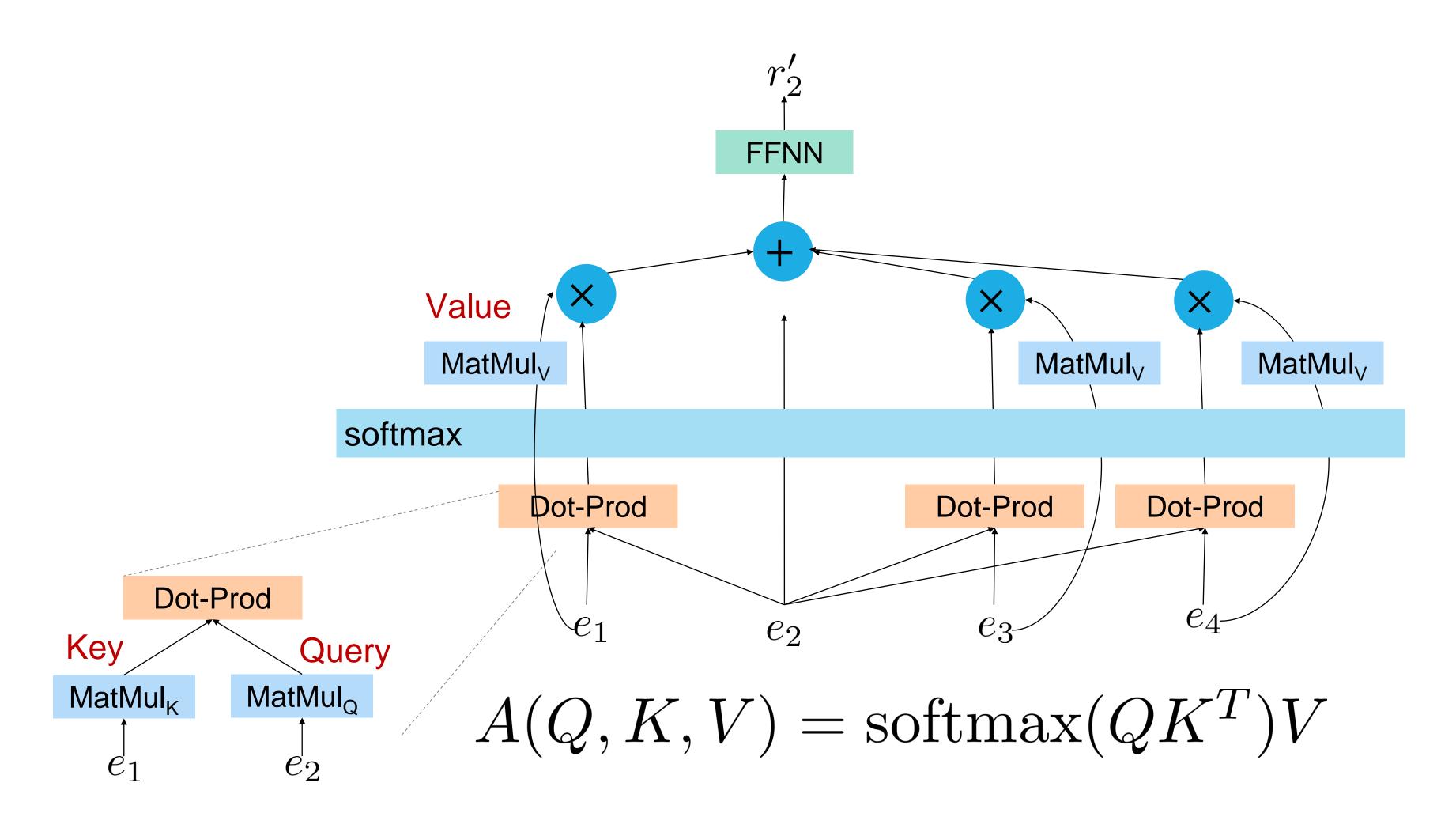


#### Transformer Idea



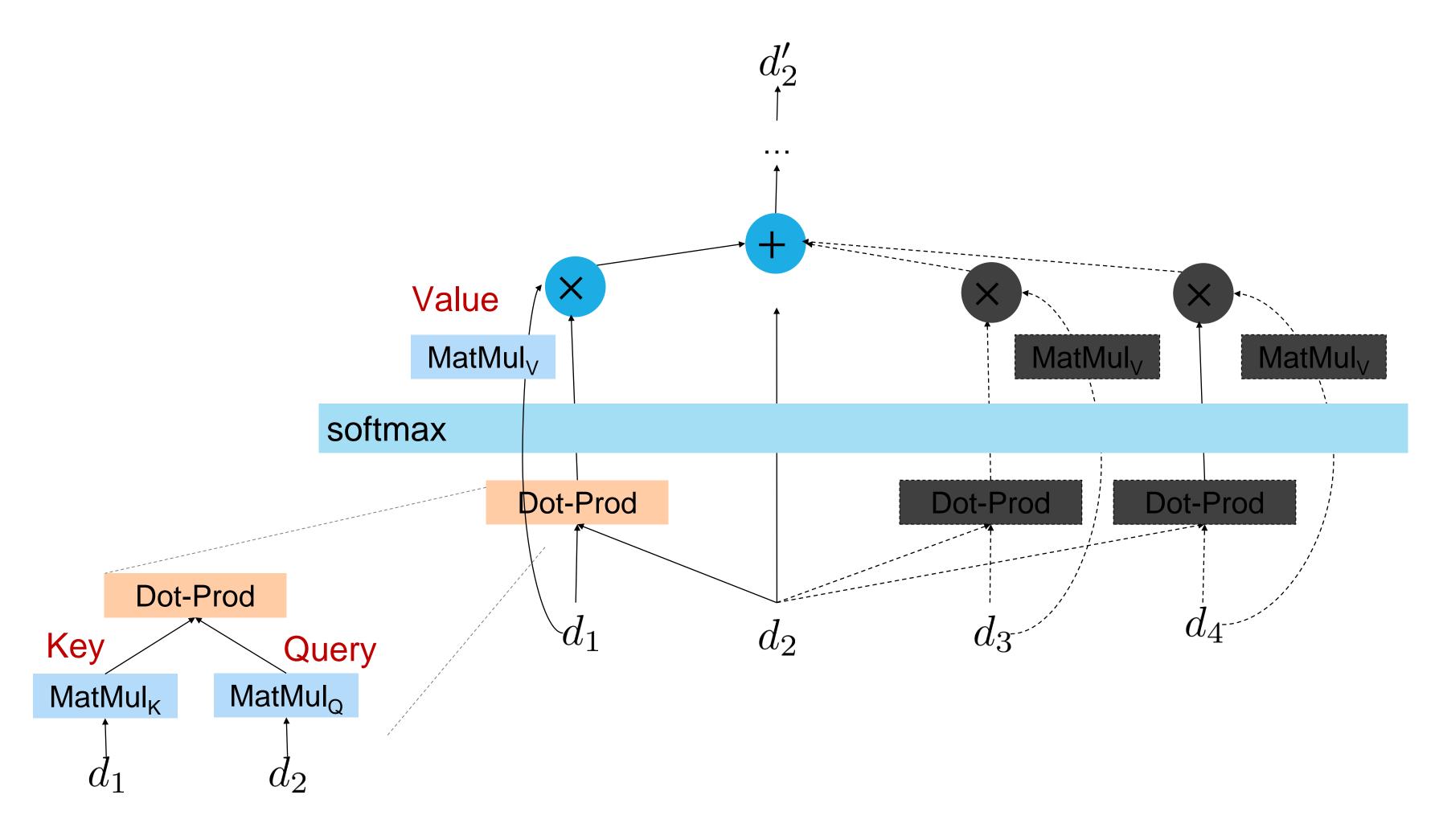
Vaswani et al., "Attention Is All You Need", in NIPS, 2017.

## Encoder Self-Attention (Vaswani+, 2017)



Vaswani et al., "Attention Is All You Need", in NIPS, 2017.

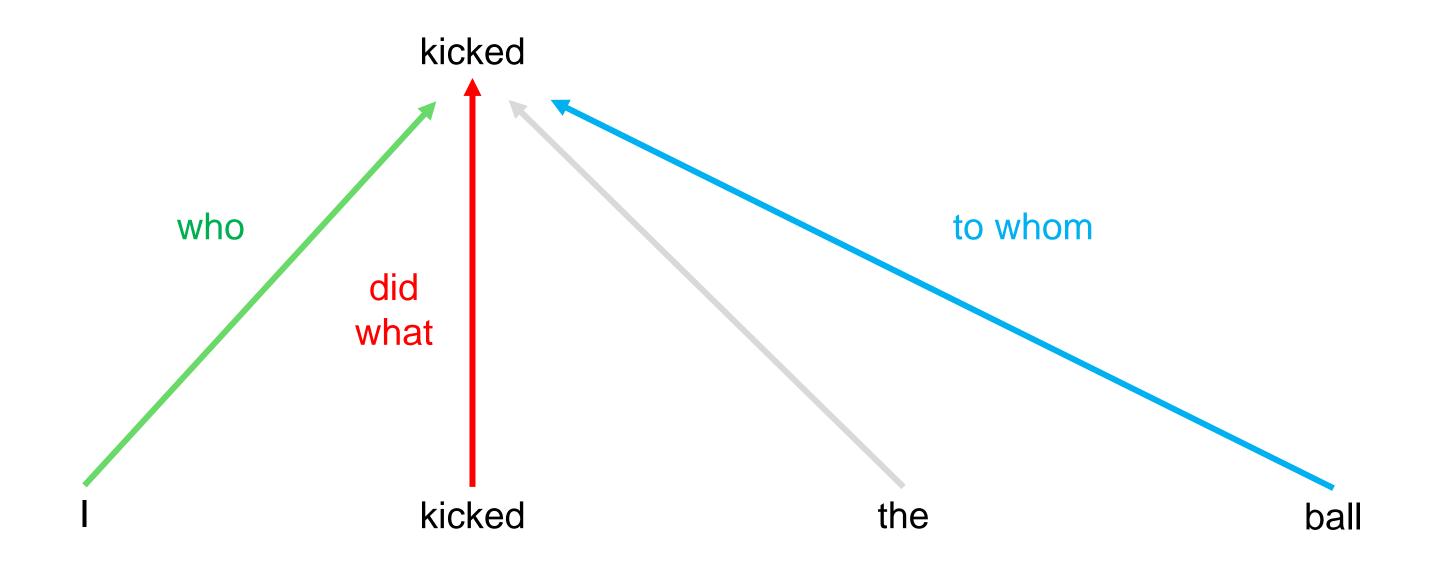
## Decoder Self-Attention (Vaswani+, 2017)



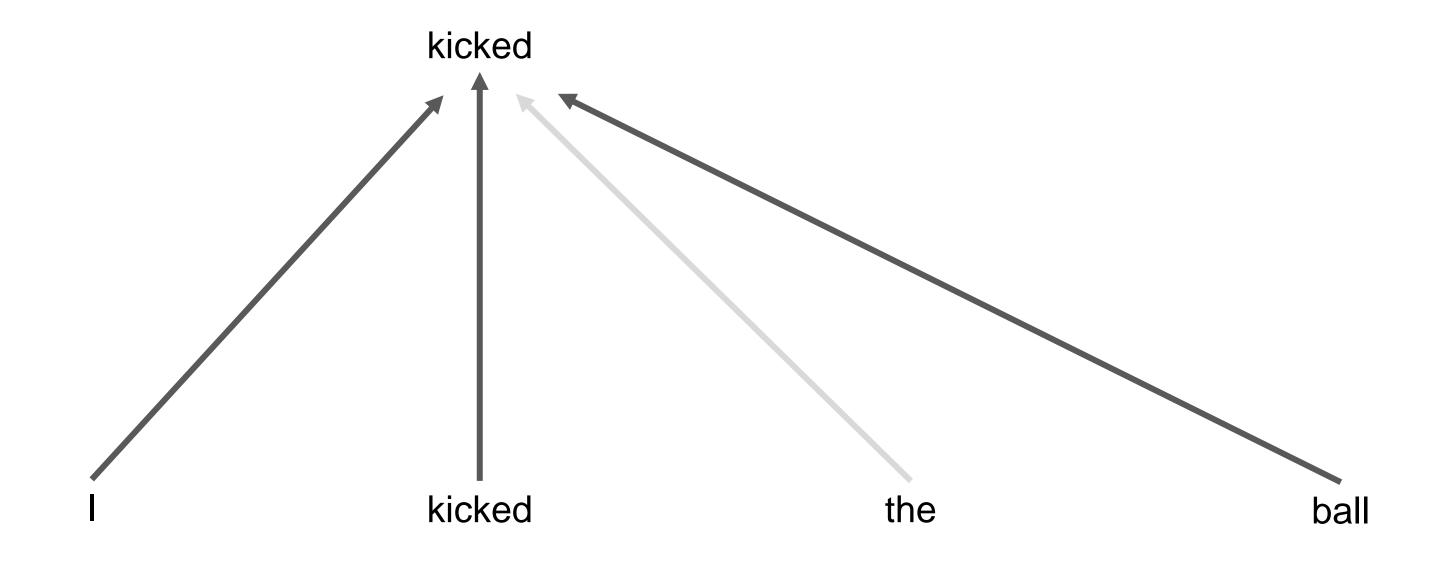
Vaswani et al., "Attention Is All You Need", in NIPS, 2017.

# Sequence Encoding Multi-Head Attention

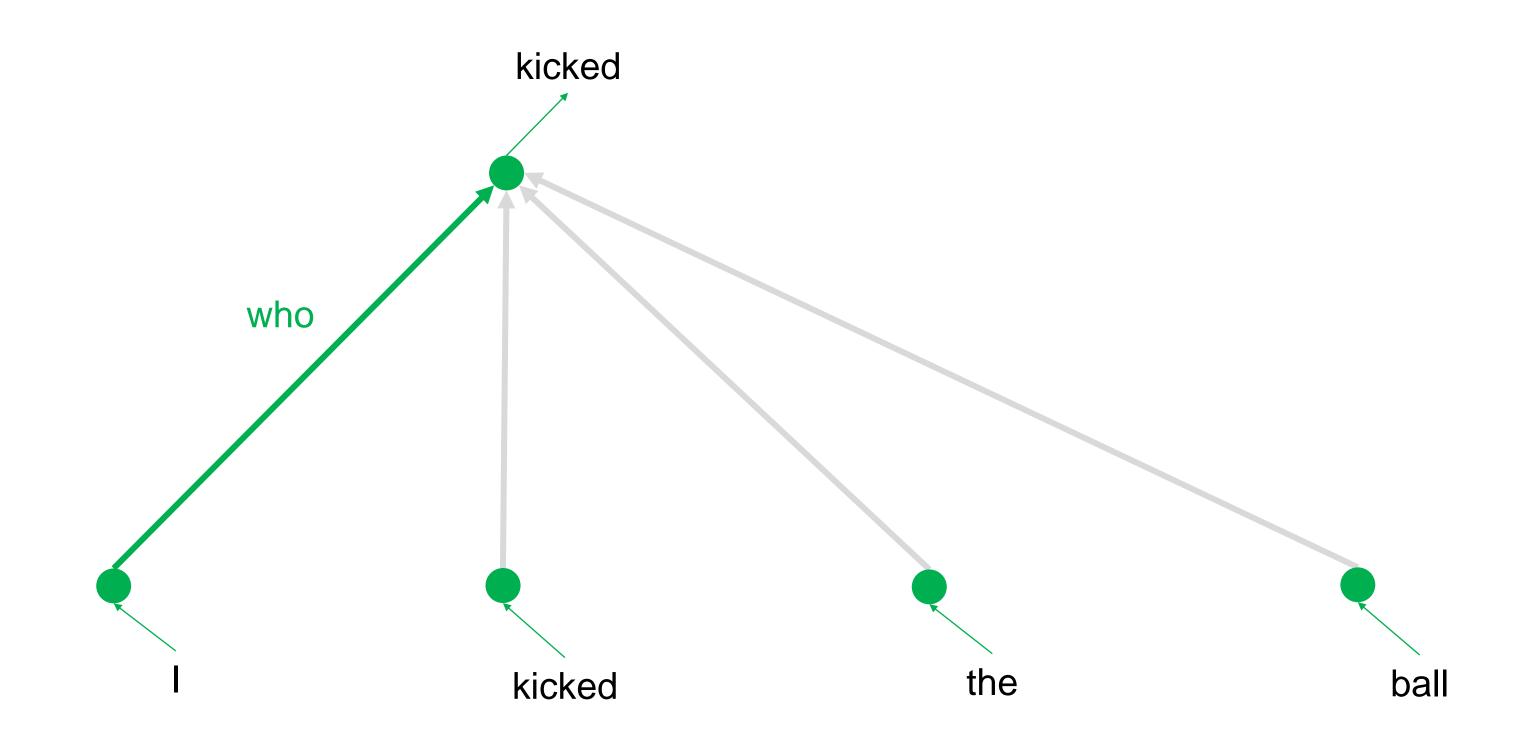
## Convolutions



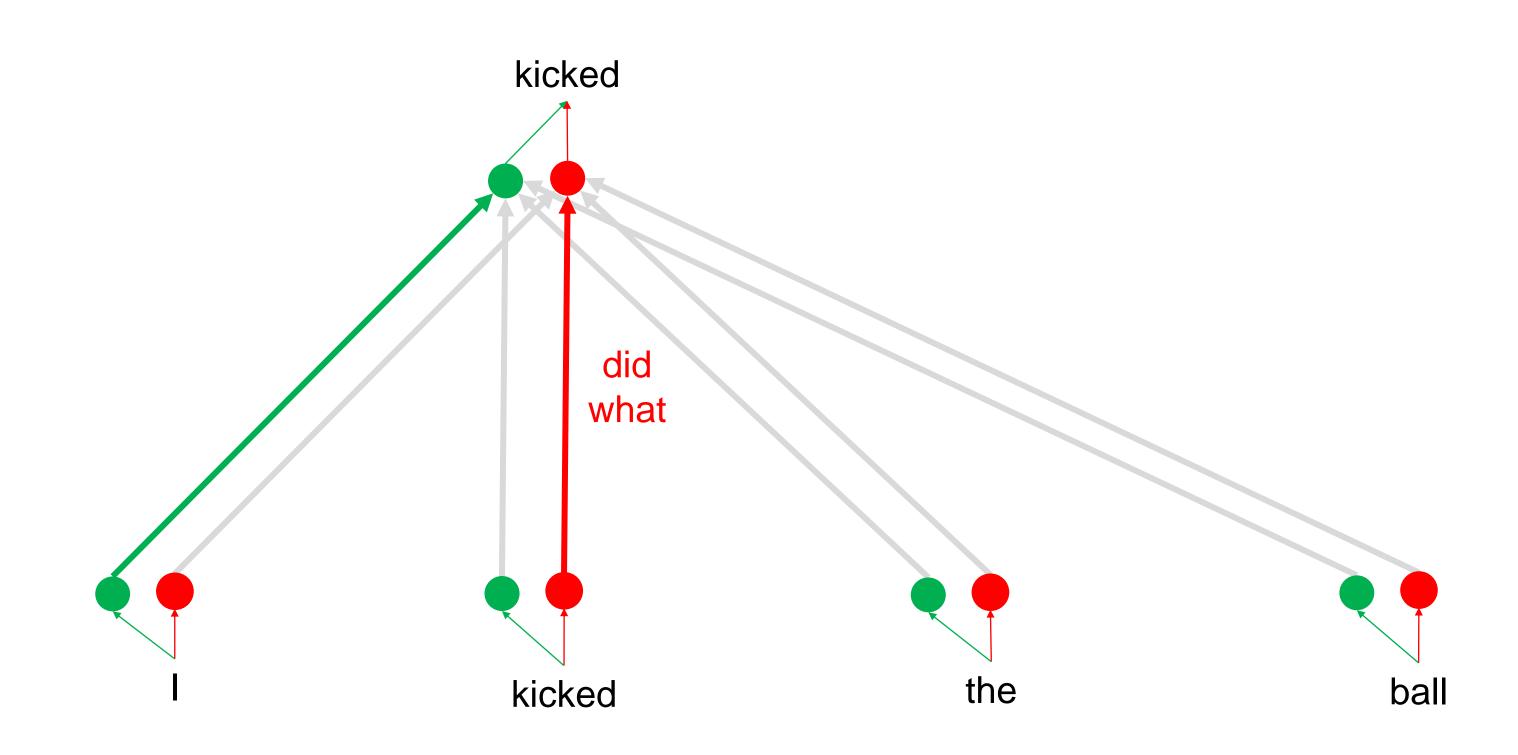
## Self-Attention



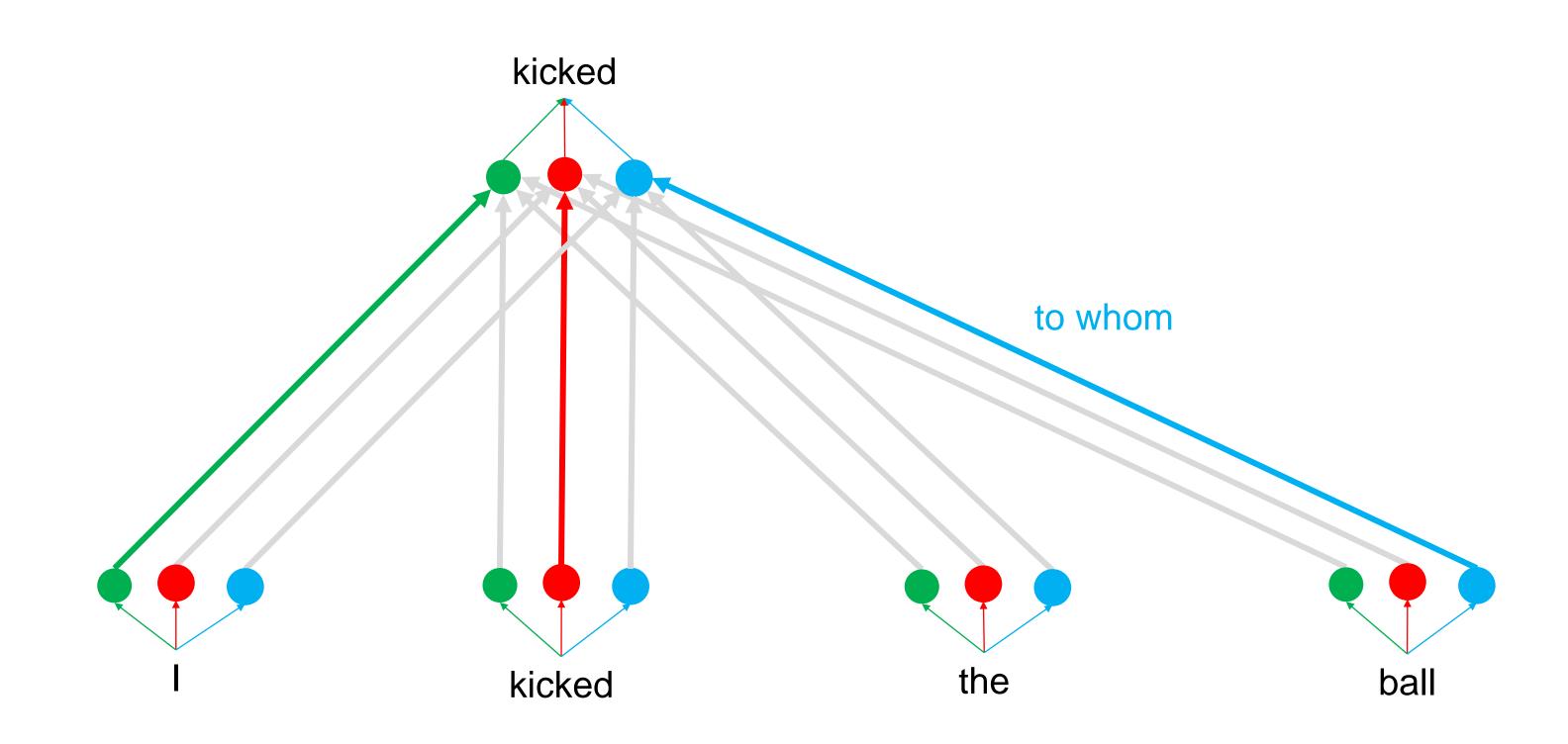
## Attention Head: who



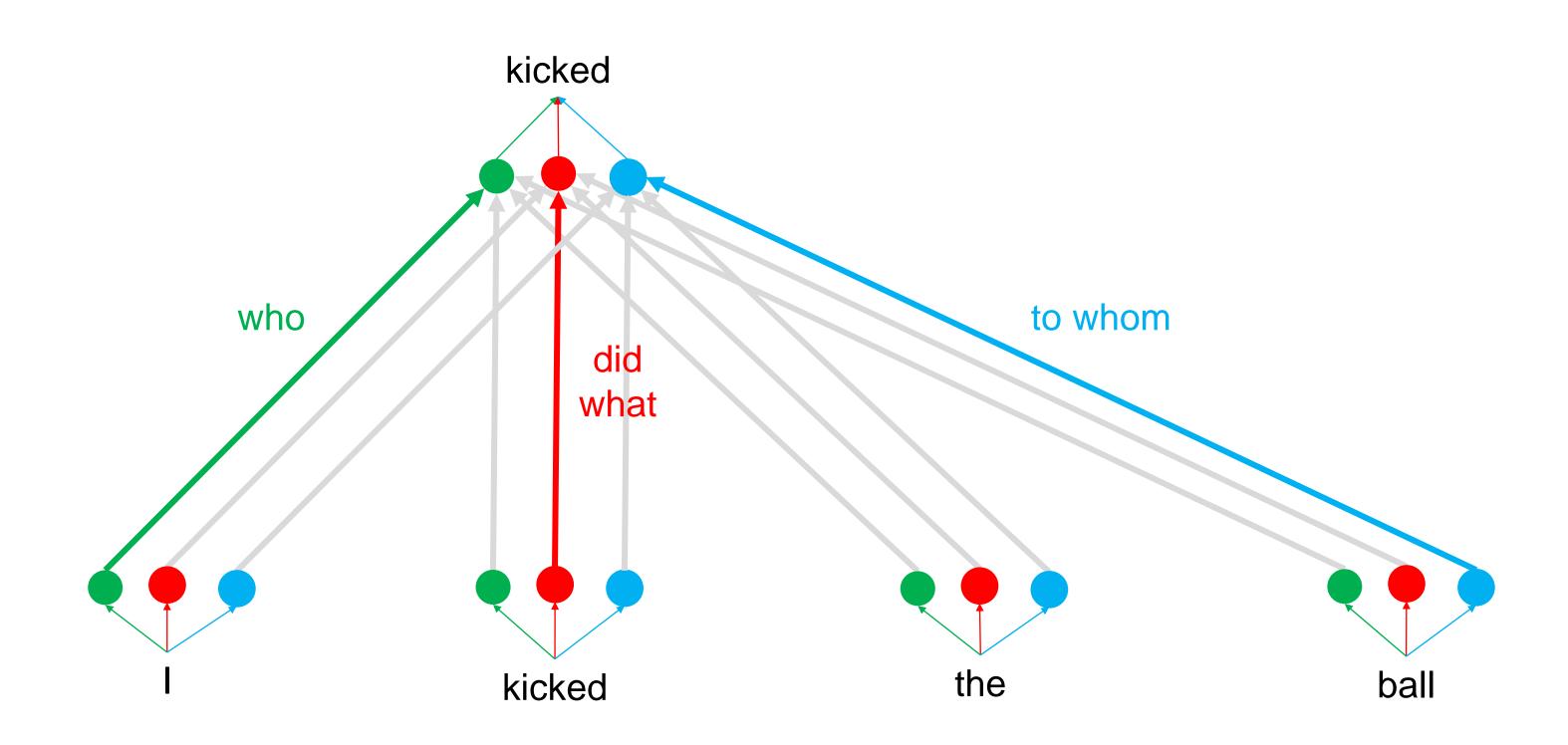
## Attention Head: did what



## Attention Head: to whom

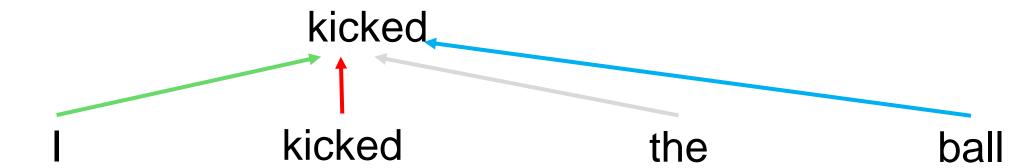


## Multi-Head Attention



## 23 Comparison

Convolution: different linear transformations by relative positions



Attention: a weighted average



Multi-Head Attention: parallel attention layers with different linear transformations on input/output
kicked

the

ball

kicked

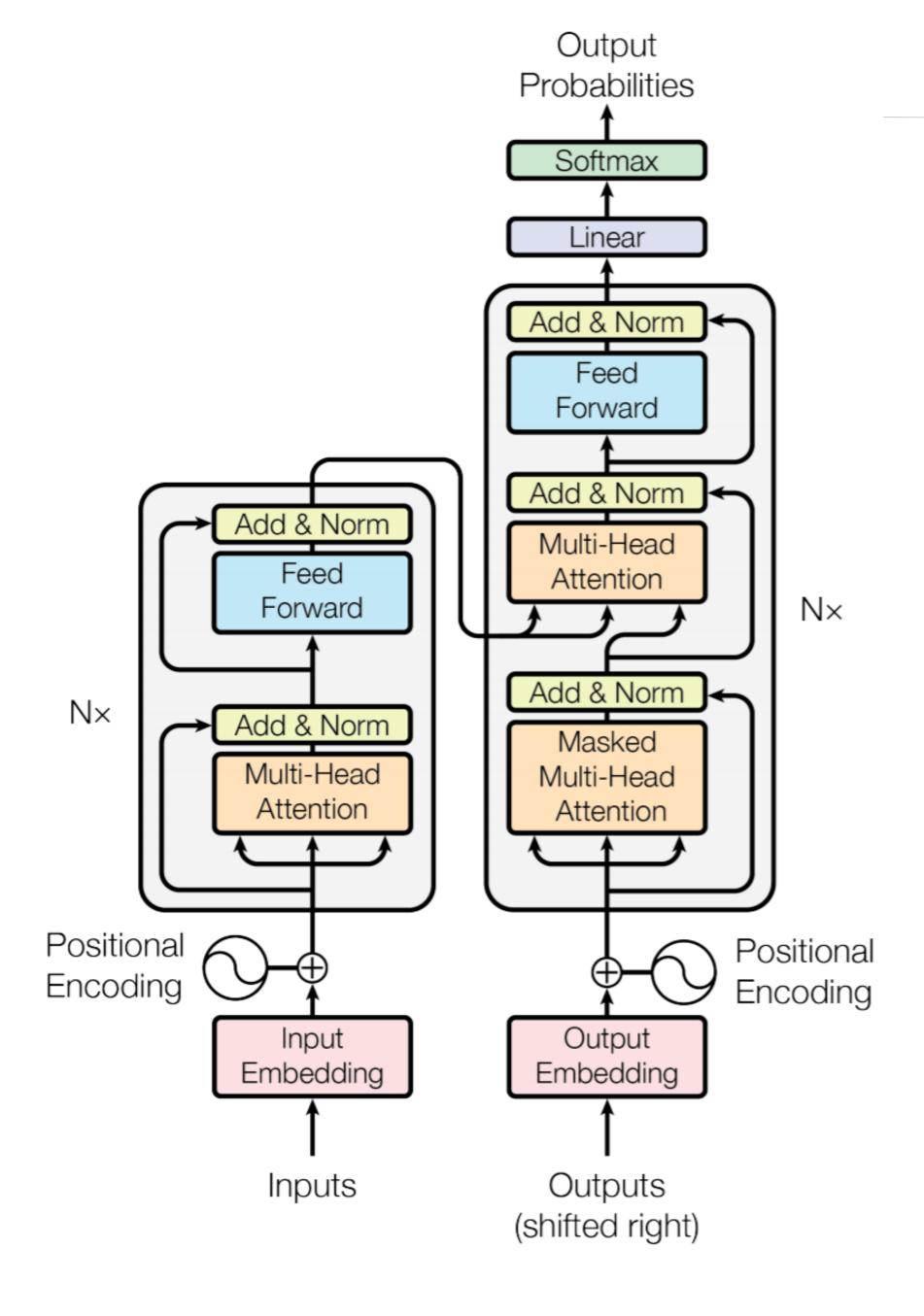
## 24

# Sequence Encoding Transformer

#### Transformer Overview

- Non-recurrent encoder-decoder for MT
- PyTorch explanation by Sasha Rush

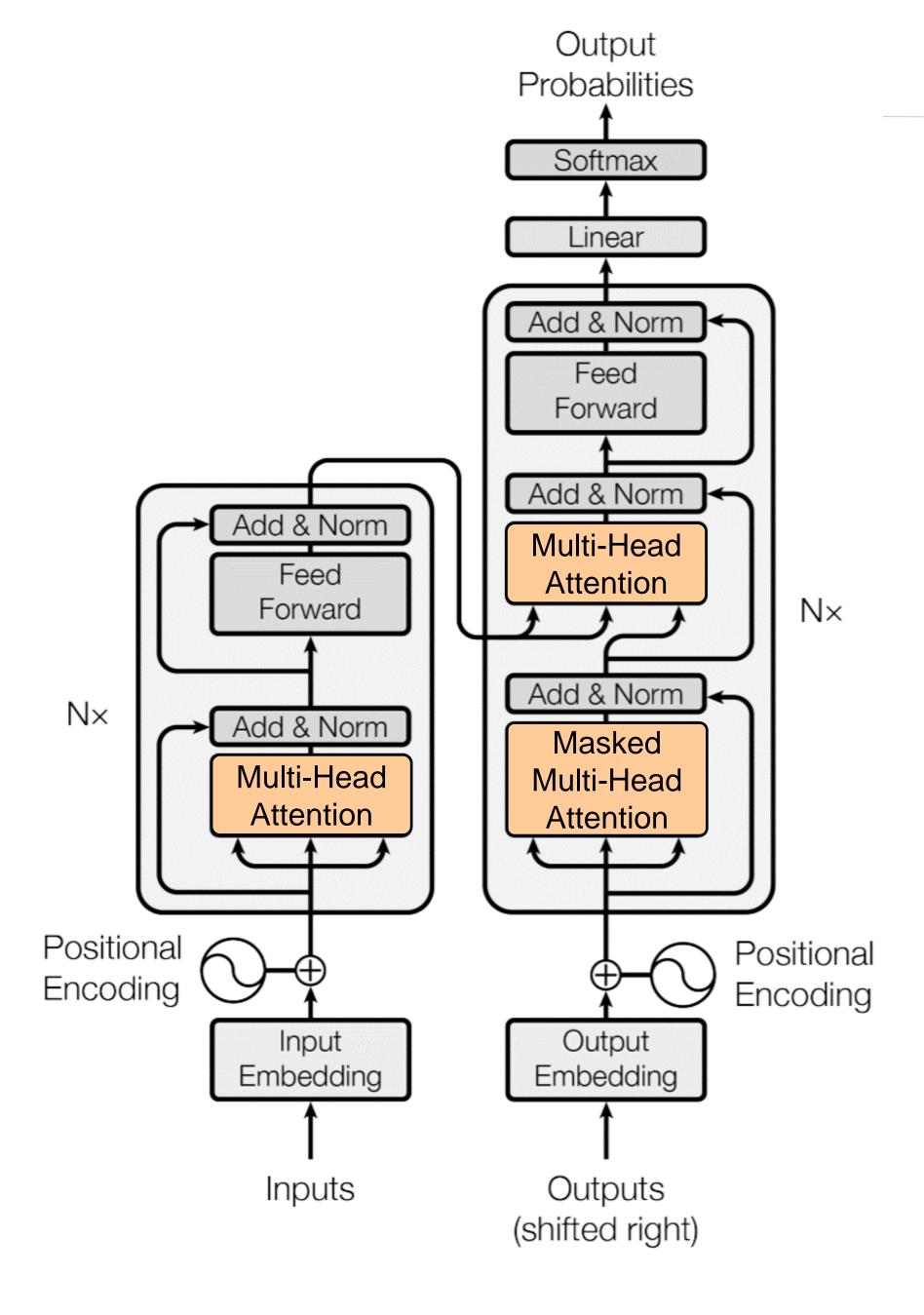
http://nlp.seas.harvard.edu/2018/04/03/attention.html



#### Transformer Overview

- Non-recurrent encoder-decoder for MT
- PyTorch explanation by Sasha Rush

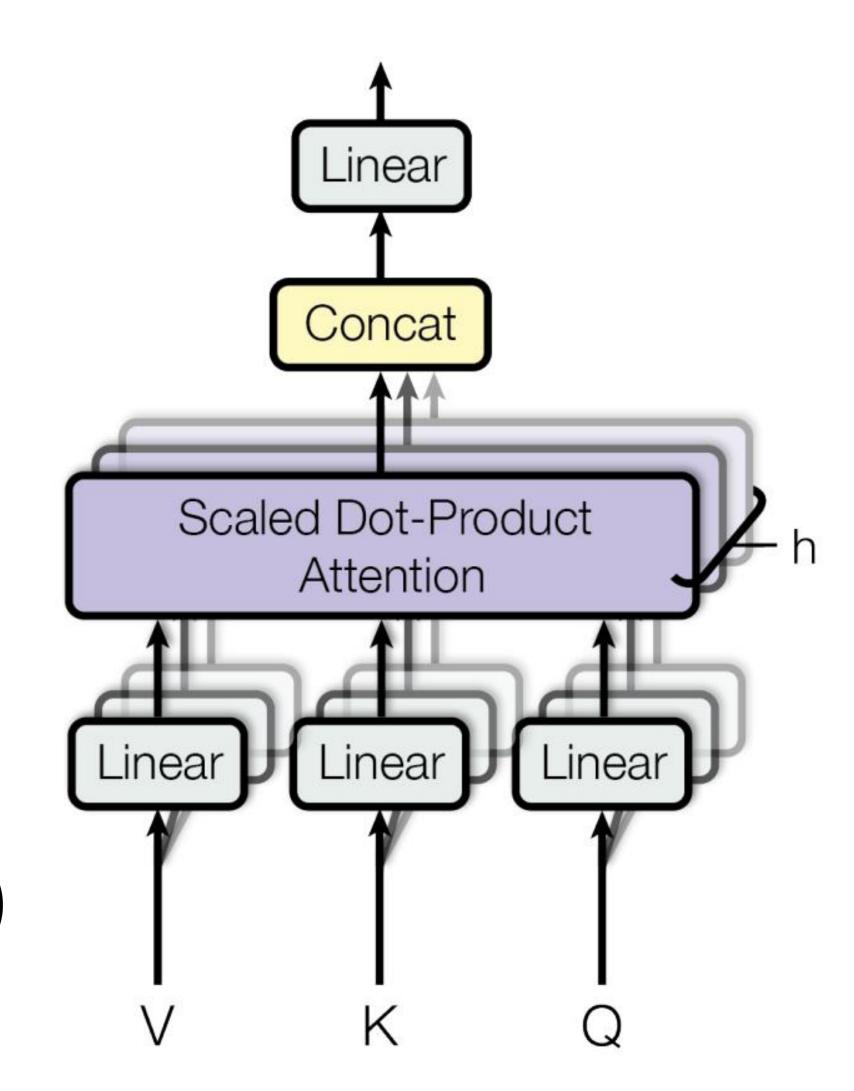
http://nlp.seas.harvard.edu/2018/04/03/attention.html



#### Multi-Head Attention

- Idea: allow words to interact with one another
- Model
  - Map V, K, Q to lower dimensional spaces
  - Apply attention, concatenate outputs
  - Linear transformation

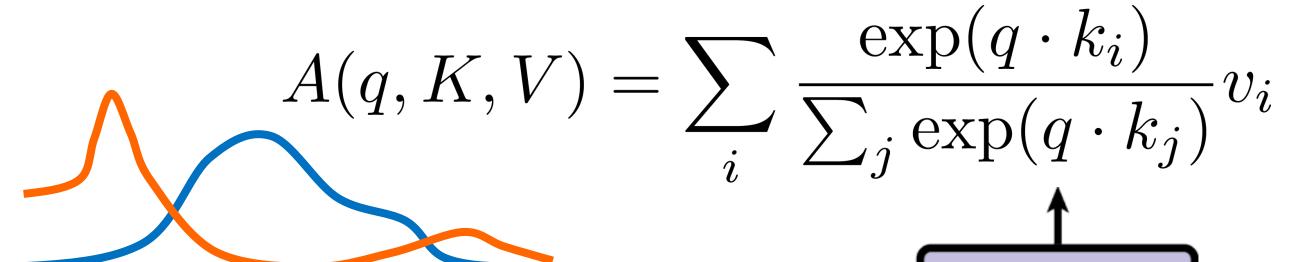
$$\begin{aligned} & \text{MultiHead}(Q, K, V) \\ &= \text{Concat}(\text{head}_1, \cdots, \text{head}_h) W^O \\ & \text{head}_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$

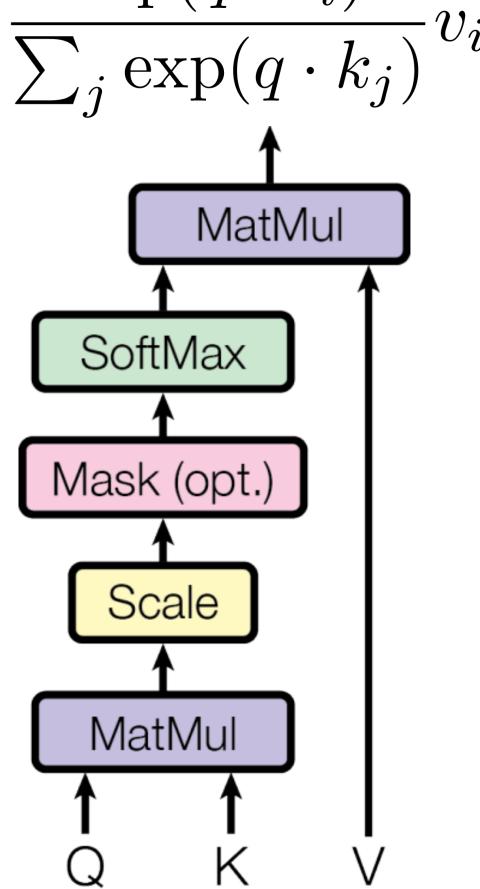


## Scaled Dot-Product Attention

- $\bigcirc$  Problem: when  $d_k$  gets large, the variance of  $q^T k$  increases
- → some values inside softmax get large
- → the softmax gets very peaked
- hence its gradient gets smaller
- Solution: scale by length of query/key vectors

$$A(Q, K, V) = \operatorname{softmax}(\frac{QK^T}{\sqrt{d_k}})V$$

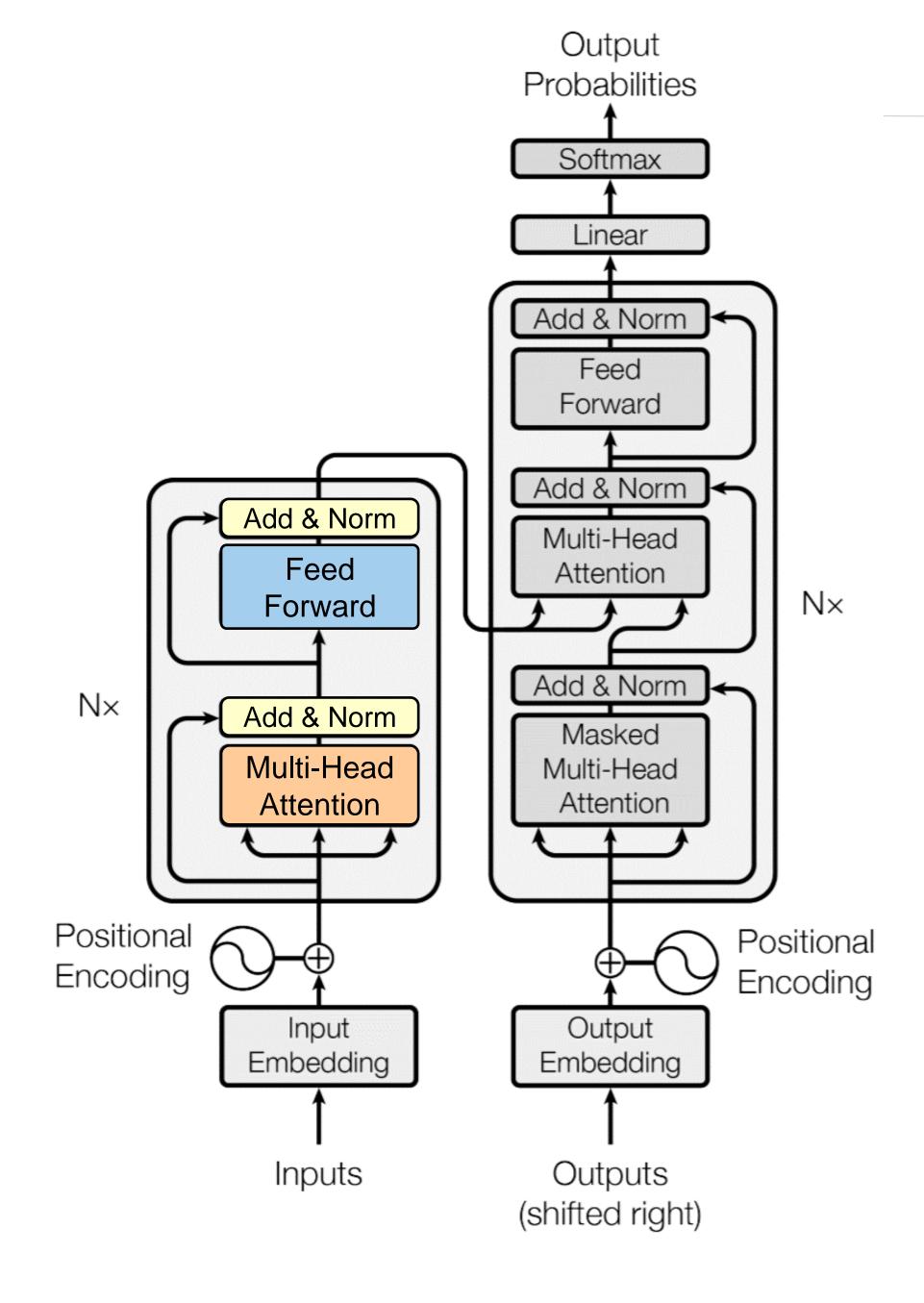




#### Transformer Overview

- Non-recurrent encoder-decoder for MT
- PyTorch explanation by Sasha Rush

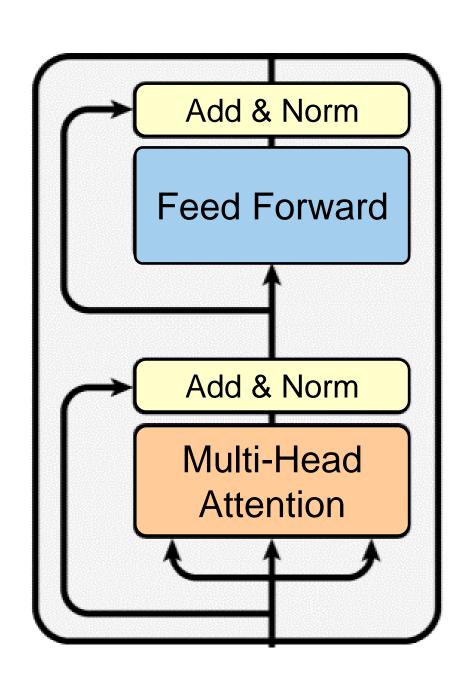
http://nlp.seas.harvard.edu/2018/04/03/attention.html



### Transformer Encoder Block

- Each block has
  - multi-head attention
  - 2-layer feed-forward NN (w/ ReLU)
- Both parts contain
  - Residual connection
  - Layer normalization (LayerNorm)

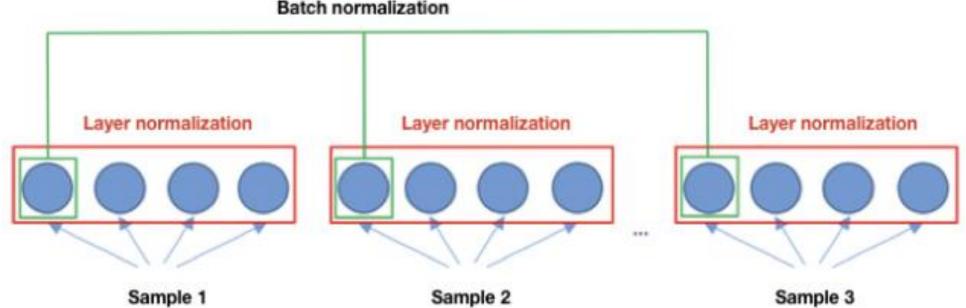
H(x) = g(x) = x + F(x) F(x) + F(x) + x



Change input to have 0 mean and 1 variance per layer & per training point

→ LayerNorm(x + sublayer(x))

$$\mu^{l} = \frac{1}{H} \sum_{i=1}^{H} a_{i}^{l} \quad \sigma^{l} = \sqrt{\frac{1}{H} \sum_{i=1}^{H} (a_{i}^{l} - \mu^{l})^{2}} \quad h_{i} = f(\frac{g_{i}}{\sigma_{i}} (a_{i} - \mu_{i}) + b_{i})$$

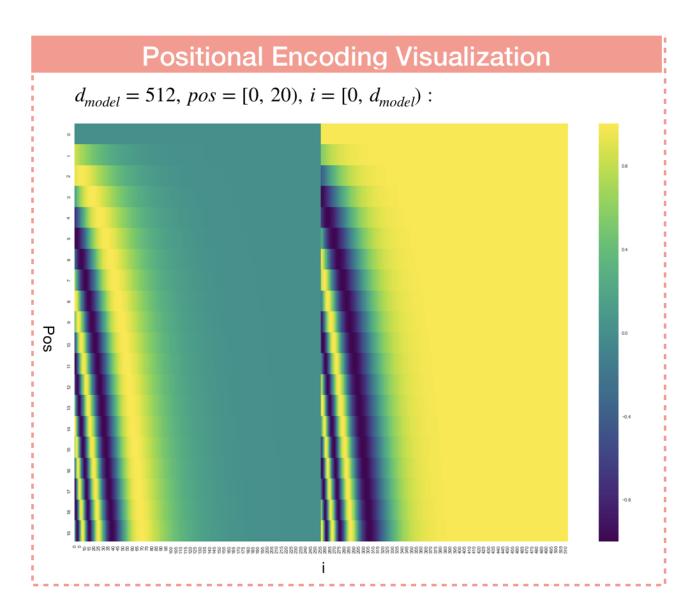


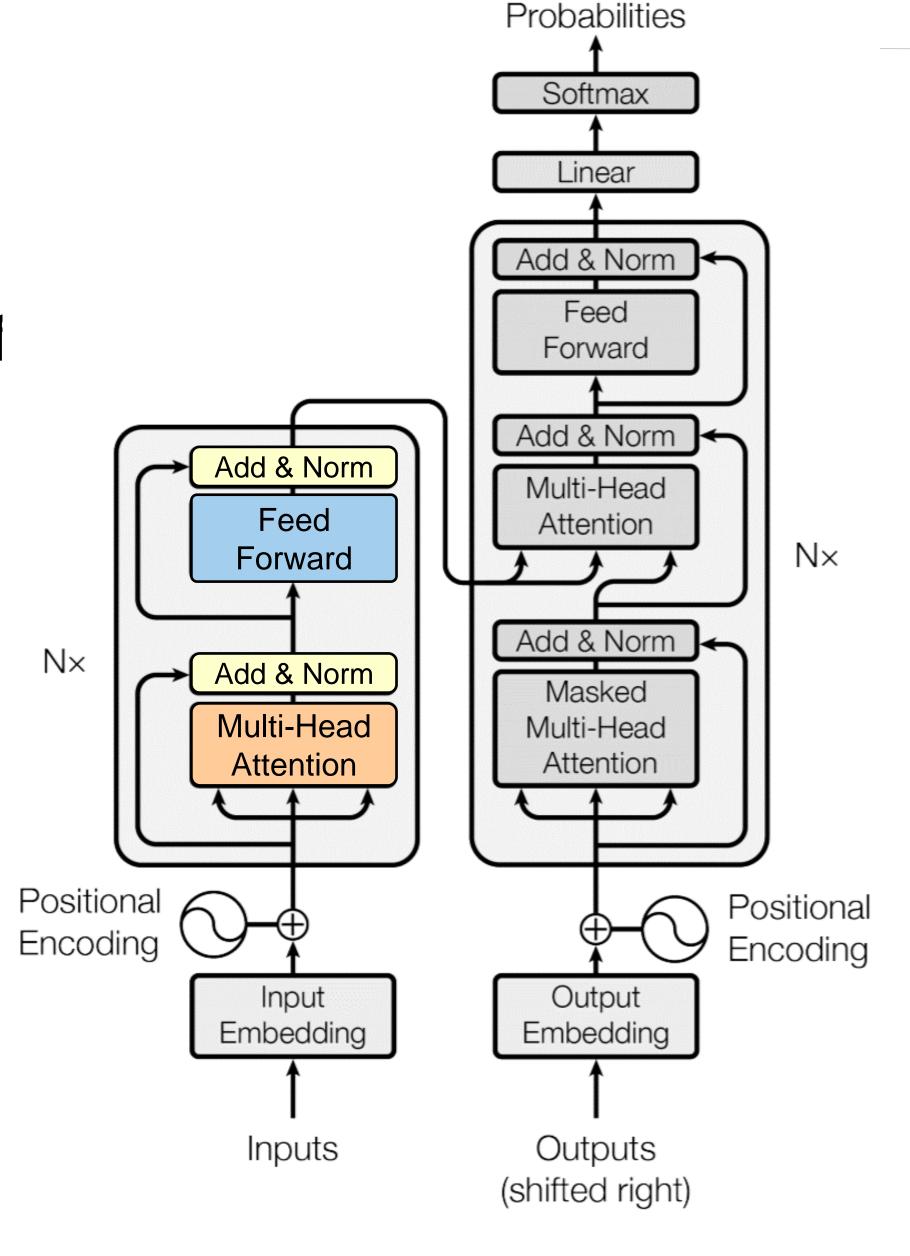
## Encoder Input

- Problem: temporal information is missing
- Solution: positional encoding allows words at diff different embeddings with fixed dimensions

$$PE_{(pos,2i)} = sin(pos/10000^{2i/d_{model}})$$

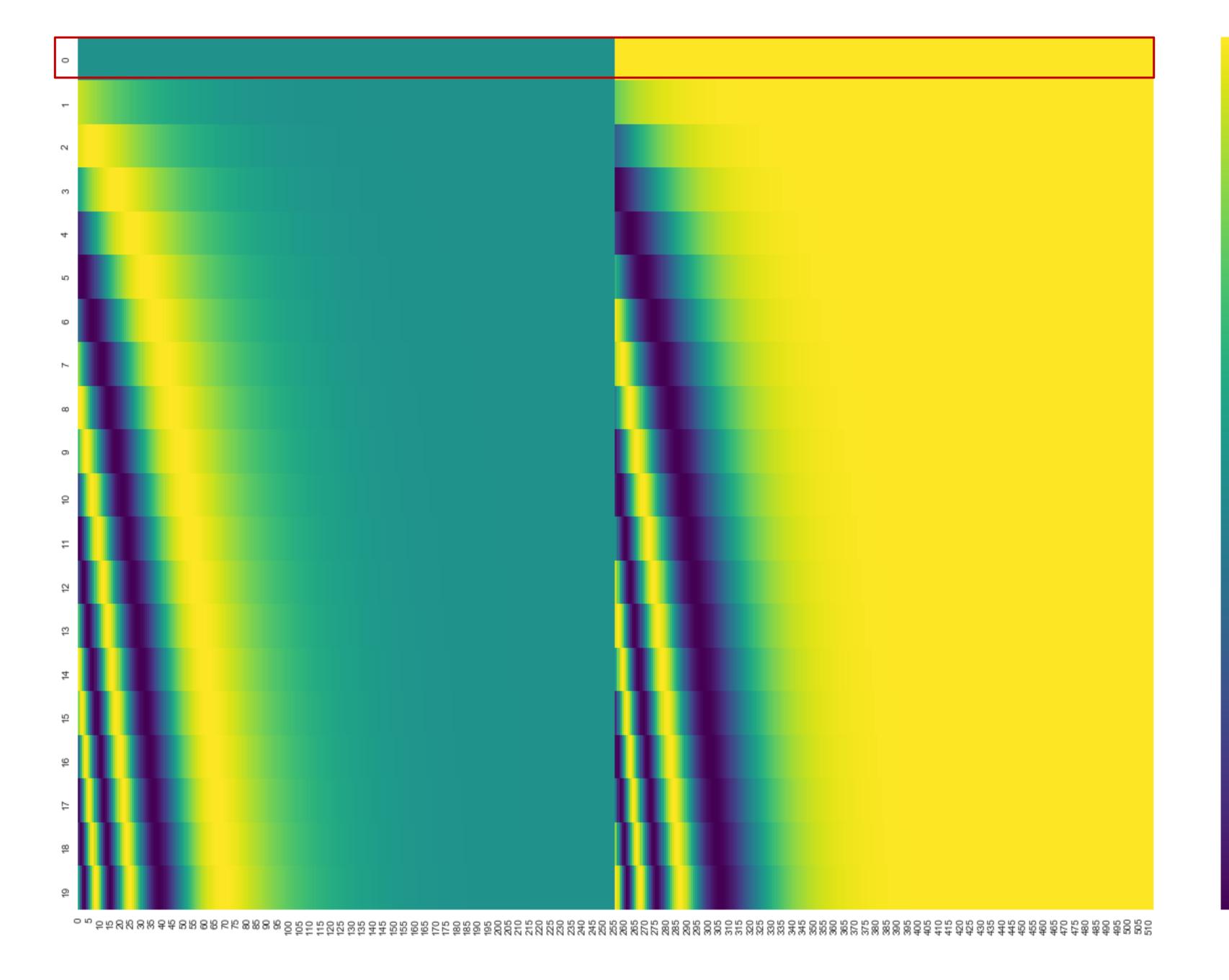
$$PE_{(pos,2i+1)} = cos(pos/10000^{2i/d_{model}})$$





Output

https://medium.com/@bgg/seq2seq-pay-attention-to-self-attention-part-2-中文版-ef2ddf8597a4



#### Multi-Head Attention Details

#### encoder self attention

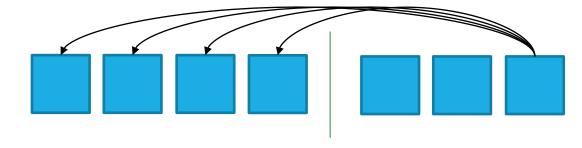
- 1. Multi-head Attention
- 2. Query=Key=Value

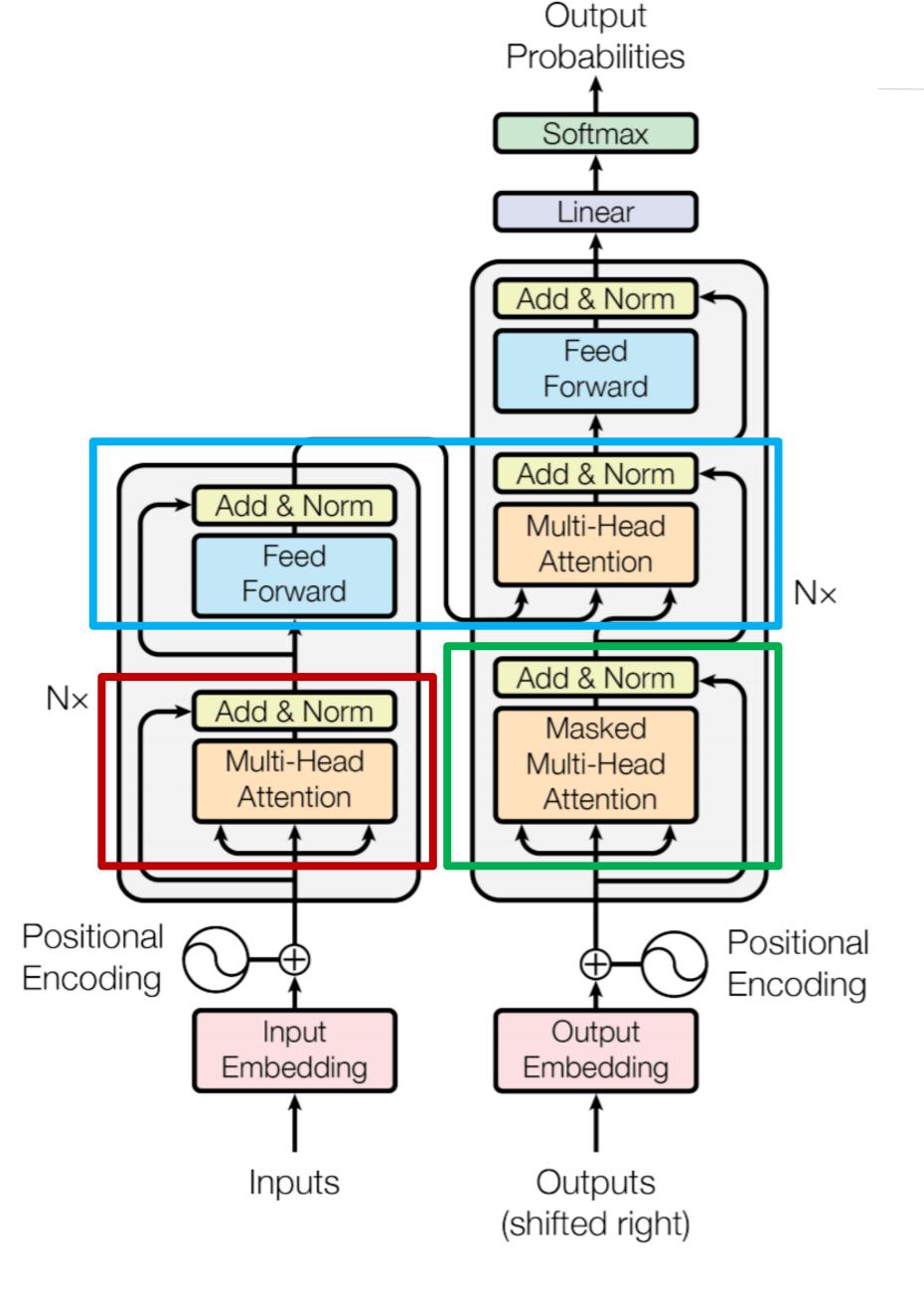
#### decoder self attention

- 1. Masked Multi-head Attention
- 2. Query=Key=Value

#### encoder-decoder attention

- 1. Multi-head Attention
- 2. Encoder Self attention=Key=Value
- 3. Decoder Self attention=Query





## Training Tips

- Byte-pair encodings (BPE)
- Checkpoint averaging
- ADAM optimizer with learning rate changes
- Dropout during training at every layer just before adding residual
- Label smoothing
- Auto-regressive decoding with beam search and length penalties

## MT Experiments

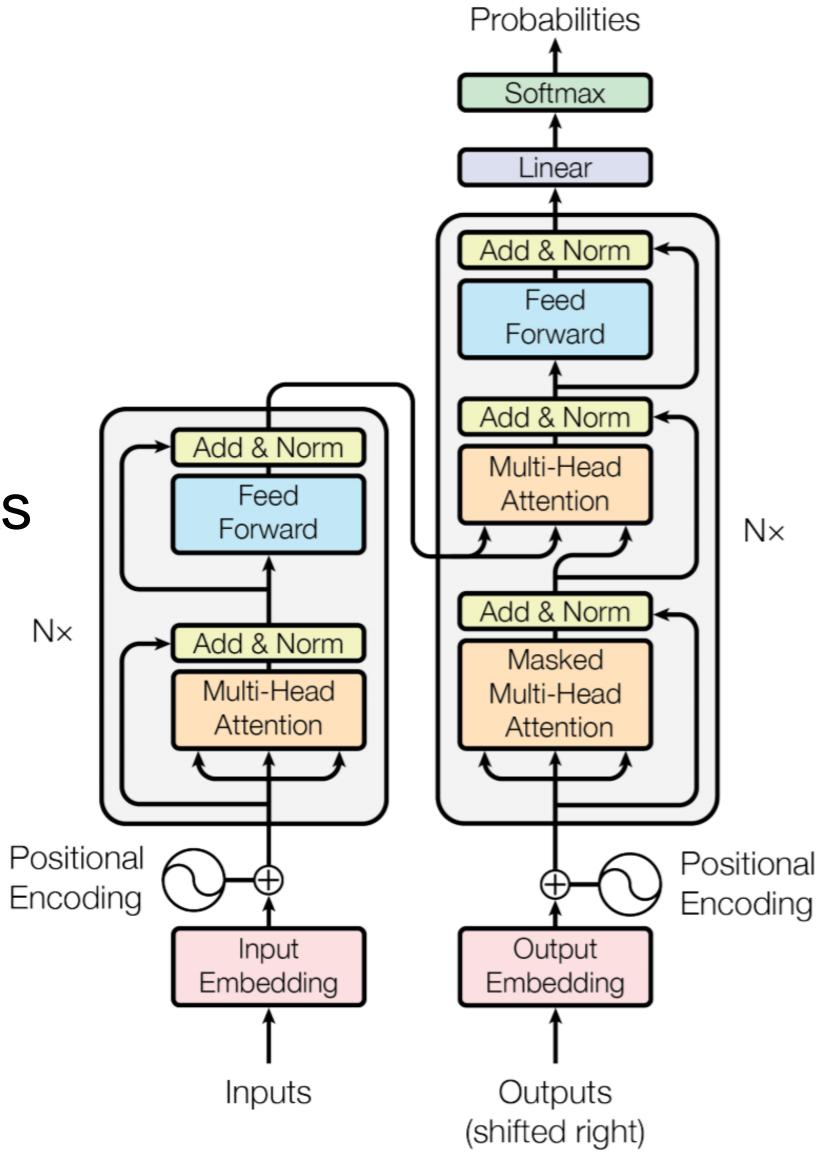
| Model                           | BLEU  |       | Training Cost (FLOPs)           |                     |
|---------------------------------|-------|-------|---------------------------------|---------------------|
|                                 | EN-DE | EN-FR | EN-DE                           | EN-FR               |
| ByteNet [18]                    | 23.75 |       |                                 |                     |
| Deep-Att + PosUnk [39]          |       | 39.2  |                                 | $1.0 \cdot 10^{20}$ |
| GNMT + RL [38]                  | 24.6  | 39.92 | $2.3 \cdot 10^{19}$             | $1.4 \cdot 10^{20}$ |
| ConvS2S [9]                     | 25.16 | 40.46 | $9.6 \cdot 10^{18}$             | $1.5 \cdot 10^{20}$ |
| MoE [32]                        | 26.03 | 40.56 | $2.0 \cdot 10^{19}$             | $1.2 \cdot 10^{20}$ |
| Deep-Att + PosUnk Ensemble [39] |       | 40.4  |                                 | $8.0 \cdot 10^{20}$ |
| GNMT + RL Ensemble [38]         | 26.30 | 41.16 | $1.8 \cdot 10^{20}$             |                     |
| ConvS2S Ensemble [9]            | 26.36 | 41.29 | $7.7 \cdot 10^{19}$             | $1.2 \cdot 10^{21}$ |
| Transformer (base model)        | 27.3  | 38.1  | $\boldsymbol{3.3\cdot 10^{18}}$ |                     |
| Transformer (big)               | 28.4  | 41.8  | $2.3\cdot 10^{19}$              |                     |

## Parsing Experiments

| Parser                              | Training                 | WSJ 23 F1 |
|-------------------------------------|--------------------------|-----------|
| Vinyals & Kaiser el al. (2014) [37] | WSJ only, discriminative | 88.3      |
| Petrov et al. (2006) [29]           | WSJ only, discriminative | 90.4      |
| Zhu et al. (2013) [40]              | WSJ only, discriminative | 90.4      |
| Dyer et al. (2016) [8]              | WSJ only, discriminative | 91.7      |
| Transformer (4 layers)              | WSJ only, discriminative | 91.3      |
| Zhu et al. (2013) [40]              | semi-supervised          | 91.3      |
| Huang & Harper (2009) [14]          | semi-supervised          | 91.3      |
| McClosky et al. (2006) [26]         | semi-supervised          | 92.1      |
| Vinyals & Kaiser el al. (2014) [37] | semi-supervised          | 92.1      |
| Transformer (4 layers)              | semi-supervised          | 92.7      |
| Luong et al. (2015) [23]            | multi-task               | 93.0      |
| Dyer et al. (2016) [8]              | generative               | 93.3      |

## Concluding Remarks

- Non-recurrence model is easy to parallelize
- Multi-head attention captures different aspects by interacting between words
- Positional encoding captures location information
- Each transformer block can be applied to diverse tasks



Output