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Sequence Encoding
Basic Attention
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Representations of Variable Length Data

◉ Input: word sequence, image pixels, audio signal, click logs

◉ Property: continuity, temporal, importance distribution

◉ Example

✓ Basic combination: average, sum

✓ Neural combination: network architectures should consider input domain properties

− CNN (convolutional neural network)

− RNN (recurrent neural network): temporal information

Network architectures should consider the input domain properties
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Recurrent Neural Networks

◉ Learning variable-length representations

✓ Fit for sentences and sequences of values

◉ Sequential computation makes parallelization difficult

◉ No explicit modeling of long and short range dependencies
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Convolutional Neural Networks

◉ Easy to parallelize

◉ Exploit local dependencies

✓ Long-distance dependencies require many layers
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Attention

◉ Encoder-decoder model is important in NMT 

◉ RNNs need attention mechanism to handle long dependencies

◉ Attention allows us to access any state
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Machine Translation with Attention
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Dot-Product Attention

◉ Input: a query 𝑞 and a set of key-value (𝑘-𝑣) pairs to an output

◉ Output: weighted sum of values

✓ Query 𝑞 is a 𝑑𝑘-dim vector

✓ Key 𝑘 is a 𝑑𝑘-dim vector

✓ Value 𝑣 is a 𝑑𝑣-dim vector

Inner product of 

query and corresponding key
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Dot-Product Attention in Matrix

◉ Input: multiple queries 𝑞 and a set of key-value (𝑘-𝑣) pairs to an output

◉ Output: a set of weighted sum of values

softmax

row-wise

9



Sequence Encoding
Self-Attention
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Attention

◉ Encoder-decoder model is important in NMT 

◉ RNNs need attention mechanism to handle long dependencies

◉ Attention allows us to access any state

Using attention to replace recurrence architectures

11



Self-Attention

◉ Constant “path length” between two positions

◉ Easy to parallelize

FFNN

cmp

have

FFNN

a

FFNN

cmp

nice

+
××

FFNN

cmp

×

day

12



Transformer Idea
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Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.

Encoder-Decoder Attention
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Encoder Self-Attention (Vaswani+, 2017)
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Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.
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Decoder Self-Attention (Vaswani+, 2017)
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Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.
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Sequence Encoding
Multi-Head Attention
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Convolutions
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Self-Attention
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Attention Head: who
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Attention Head: did what

I kicked the ball

kicked

did 

what

20



Attention Head: to whom
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Multi-Head Attention
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Comparison 

◉ Convolution: different linear transformations by relative positions

◉ Attention: a weighted average

◉ Multi-Head Attention: parallel attention layers with different linear transformations 

on input/output

I kicked the ball

kicked

I kicked the ball

kicked

I kicked the ball

kicked

23



Sequence Encoding
Transformer
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Transformer Overview

◉ Non-recurrent encoder-decoder for MT

◉ PyTorch explanation by Sasha Rush

http://nlp.seas.harvard.edu/2018/04/03/attention.html

Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.
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Transformer Overview

◉ Non-recurrent encoder-decoder for MT

◉ PyTorch explanation by Sasha Rush

http://nlp.seas.harvard.edu/2018/04/03/attention.html

Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.
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Multi-Head Attention

◉ Idea: allow words to interact with one another

◉ Model

− Map V, K, Q to lower dimensional spaces

− Apply attention, concatenate outputs

− Linear transformation

Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.
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Scaled Dot-Product Attention

◉ Problem: when 𝑑𝑘 gets large, the variance of 𝑞𝑇𝑘 increases

→ some values inside softmax get large

→ the softmax gets very peaked 

→ hence its gradient gets smaller

◉ Solution: scale by length of query/key vectors

Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.
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Transformer Overview

◉ Non-recurrent encoder-decoder for MT

◉ PyTorch explanation by Sasha Rush

http://nlp.seas.harvard.edu/2018/04/03/attention.html

Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.

Add & Norm

Multi-Head 

Attention

Feed 

Forward

Add & Norm

29

http://nlp.seas.harvard.edu/2018/04/03/attention.html


Transformer Encoder Block

◉ Each block has

− multi-head attention

− 2-layer feed-forward NN (w/ ReLU)

◉ Both parts contain

− Residual connection

− Layer normalization (LayerNorm)

Change input to have 0 mean and 1 variance per layer & per training point

→ LayerNorm(x + sublayer(x))
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https://medium.com/@bgg/seq2seq-pay-attention-to-self-attention-part-2-中文版-ef2ddf8597a4
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Encoder Input

◉ Problem: temporal information is missing

◉ Solution: positional encoding allows words at different locations to have 

different embeddings with fixed dimensions
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https://medium.com/@bgg/seq2seq-pay-attention-to-self-attention-part-2-中文版-ef2ddf8597a4
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Multi-Head Attention Details

https://medium.com/@bgg/seq2seq-pay-attention-to-self-attention-part-2-中文版-ef2ddf8597a4
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Training Tips

◉ Byte-pair encodings (BPE) 

◉ Checkpoint averaging

◉ ADAM optimizer with learning rate changes

◉ Dropout during training at every layer just before adding residual

◉ Label smoothing

◉ Auto-regressive decoding with beam search and length penalties
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MT Experiments

Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.
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Parsing Experiments

Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.
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Concluding Remarks

◉ Non-recurrence model is easy to parallelize

◉ Multi-head attention captures different aspects by 

interacting between words

◉ Positional encoding captures location information

◉ Each transformer block can be applied to diverse tasks
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