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o Sequence Encoding
Basic Attention



© Representations of Variable Length Data

Input: word sequence, Image pixels, audio signal, click logs
Property: continuity, temporal, importance distribution
Example

Basic combination: average, sum
Neural combination: network architectures should consider input domain properties
CNN (convolutional neural network)

RNN (recurrent neural network): temporal information



© Recurrent Neural Networks

Learning variable-length representations

Fit for sentences and sequences of values
Sequential computation makes parallelization difficult
No explicit modeling of long and short range dependencies
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© cConvolutional Neural Networks

Easy to parallelize
Exploit local dependencies

Long-distance dependencies require many layers
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© Attention

Encoder-decoder model Is important in NMT
RNNs need attention mechanism to handle long dependencies
Attention allows us to access any state
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€@ Machine Translation with Attention
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© Dot-Product Attention

Input: a query g and a set of key-value (k-v) pairs to an output

Output: weighted sum of values

Inner product of
guery and corresponding key

Alq, K, V) = Z/ exp(q - k;) \v-

()

Query q is a d;-dim vector
Key k Is a d;-dim vector

Value v Is a d,-dim vector



© Dot-Product Attention in Matrix

Input: multiple queries g and a set of key-value (k-v) pairs to an output
Output: a set of weighted sum of values

Alq, K, V) = Z e.}(p(q ' kz) ~;

A(Q,K,V) = softmax(QK" )V

Q] X dy| X |dy x | K| X [| K| X dy

softmax
row-wise

= [|Q] X dy]




Sequence Encoding
o Self-Attention



@ Attention

Encoder-decoder model Is important in NMT
RNNs need attention mechanism to handle long dependencies
Attention allows us to access any state



@ self-Attention

Constant “path length” between two positions
Easy to parallelize
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® Transformer Idea
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Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.



Encoder Self-Attention (vaswani+, 2017)
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Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.



@ Decoder Self-Attention (vaswani+, 2017)
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Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.



o Sequence Encoding
Multi-Head Attention



€@ cConvolutions
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who to whom
did
what

I kicked the ball



@ self-Attention
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@ Attention Head: who
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€ Attention Head: did what
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@ Attention Head: to whom




@ Multi-Head Attention
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@ Comparison

Convolution: different linear transformations by relative positions
kicked,_

|

| kicked the ball
Attention: a weighted average
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Multi-Head Attention: parallel attention layers with different linear transformations
on Input/output klcked
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o Sequence Encoding
Transformer 4 o




@ Transformer Overview

Non-recurrent encoder-decoder for MT

PyTorch explanation by Sasha Rush
http://nlp.seas.harvard.edu/2018/04/03/attention.html

Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.
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€@ Transformer Overview

Non-recurrent encoder-decoder for MT

PyTorch explanation by Sasha Rush
http://nlp.seas.harvard.edu/2018/04/03/attention.html

Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.

Qutput
Probabilities

| Softtmax |

| Li nLar ]

(’
Add & Norm
Feed
Forward
\
™~ Add & Norm
.

0 o Multi-Head

Attention

} ) N x
Nix Add & Norm
Add &INorm Masked |
Multi-Head Multi-Head
Attention Attention |
J
Positional Positional
Encoding A Encoding
Input OQutput

Embedding Embedding

Inputs Qutputs

(shifted right)


http://nlp.seas.harvard.edu/2018/04/03/attention.html

€@ Multi-Head Attention

ldea: allow words to interact with one another

Model
Map V, K, Q to lower dimensional spaces

Apply attention, concatenate outputs

Linear transformation
anstormatio Scaled Dot-Product l -

Attention /
MultiHead(Q, K, V) i
— Concat(heady, - - - , head)W© Lin
head; = Attention(QWiQ, KW VW) ' '

Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.



€@ Scaled Dot-Product Attention

Problem: when d,, gets large, the variance of g’ k increases

. exp(q - k;
- some values inside softmax get large Alq, K, V) = Z p(q - ki) V;
0

(
- the softmax gets very peaked { 5 : Zj exp(q - kj)
- hence its gradient gets smaller
SRR
Solution: scale by length of query/key vectors
Vdy

Q KV

A(Q, K,V) = softmax(

Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.
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http://nlp.seas.harvard.edu/2018/04/03/attention.html

€ Transformer Encoder Block

r Add & Norm w

Each block has —

Feed Forward

multi-head attention
2-layer feed-forward NN (w/ RelLU)

H(x) = g(x) = x + F(x) \
. Add & Norm J
Both parts contain —
_ _ 1 f00 + x M'Al\Jltl-H.ead
Residual connection X F(x)J @ :  Attention

Layer normalization (LayerNorm)
Change input to have 0 mean and 1 variance per layer & per training point

- LayerNorm(x + sublayer(x)) it = %il ol = \ %fxag—m? hi = F(2 (a5 — i) + bs)

Batch normalization =1

Layer normalization Layer normalization Layer normalization

Sample 1 Sample 2 Sample 3

https://medium.com/@bgg/seg2seq-pay-attention-to-self-attention-part-2-4 X iR-ef2ddf8597a4



€ Encoder Input

Problem: temporal information is missing

Solution: positional encoding allows words
different embeddings with fixed dimensions

PE(pos,2i) = Sin(pos/l()()()()Q’i/dmodez )
PE(pO.9,27L—|—1) — COS(pOS/]_OOOOQi/dmodeZ)

doder = 312, pos = [0, 20), i = [0, d,,,, 401 :
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€ Multi-Head Attention Details

encoder self attention

1. Multi-head Attention

2. Query:Key:Value

decoder self attention

1. Masked Multi-head Attention

2. Query:Key:Value

encoder-decoder attention

1. Multi-head Attention
2. Encoder Self attention:Key:Value

3. Decoder Self attention=0Q uery

https://medium.com/@bgg/seq2seq-pay-attention-to-self-attention-part-2- -
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€ Training Tips

Byte-pair encodings (BPE)

Checkpoint averaging

ADAM optimizer with learning rate changes

Dropout during training at every layer just before adding residual
Label smoothing

Auto-regressive decoding with beam search and length penalties



€ MT Experiments

Model BLEU Training Cost (FLOPsS)
o EN-DE EN-FR EN-DE  EN-FR

ByteNet [18] 23.775

Deep-Att + PosUnk [39] 39.2 1.0 - 10%°
GNMT + RL [38] 24.6 39.92 2.3-10  1.4-10%
ConvS2S [9] 25.16  40.46 9.6-10% 1.5-10%
MoE [32] 26.03  40.56 2.0-10" 1.2-102%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 - 102"
GNMT + RL Ensemble [38] 26.30  41.16 1.8-10%°  1.1-10%t
ConvS2S Ensemble [9] 26.36 41.29 7.7-10 1.2-10%
Transformer (base model) 27.3 38.1 3.3-10'°

Transformer (big) 28.4 41.8 2.3 - 10

Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.



Parsing Experiments

Parser Training WSJ 23 F1
Vinyals & Kaiser el al. (2014) [37] | WSJ only, discriminative 88.3
Petrov et al. (2006) [29] WSJ only, discriminative 90.4
Zhu et al. (2013) [40] WSJ only, discriminative 90.4
Dyer et al. (2016) [8] WSJ only, discriminative 01.7
Transformer (4 layers) WSJ only, discriminative 91.3
Zhu et al. (2013) [40] semi-supervised 901.3
Huang & Harper (2009) [14] semi-supervised 91.3
McClosky et al. (2006) [26] semi-supervised 92.1
Vinyals & Kaiser el al. (2014) [37] semi-supervised 92.1
Transformer (4 layers) semi-supervised 92.7
Luong et al. (2015) [23] multi-task 93.0
Dyer et al. (2016) [8] generative 93.3

Vaswani et al., “Attention Is All You Need”, in NIPS, 2017.



@ Concluding Remarks

Non-recurrence model Is easy to parallelize

Multi-head attention captures different aspects by
Interacting between words

Positional encoding captures location information

Each transformer block can be applied to diverse tasks
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