
More on Embeddings

Applied Deep Learning

April 7th, 2020 http://adl.miulab.tw

http://adl.miulab.tw/

Handling Out-of-Vocabulary

• One of the main problems of using pre-trained word

embeddings is that they are unable to deal with out-of-

vocabulary (OOV) words, i.e. words that have not been

seen during training.

• Typically, such words are set to the UNK token and are

assigned the same vector, which is an ineffective choice if

the number of OOV words is large.

2

Subwords and characters

Below Words3

Subword Embeddings

• separating unseen or rare words into common subwords,

potentially address OOV issue

• “AppleCare” = “Apple” + “Care”, “iPhone11” = “iPhone” +

“11”

4

Why Subwords?

• “台灣大學生喜歡深度學習”

• suboptimal word segmentation system

• ambiguity in word segmentation: “深度學習” or “深度” “學習”

• informal spelling: ”So goooooooood.”, “lollllllllll”

5

Subword Embeddings

◉ Possibility of leveraging morphological information

◉ In speech, we have phonemes; in language, we have

morphemes.

◉ Morphemes (語素): smallest semantic units

◉ -s: noun plural, -ed: verb simple past tense, pre-, un-…

6

Subword Embeddings

◉ Morphological Recursive Neural Network

7

How to Decide Subwords?

◉ by simple n-gram: Apple = [App, ppl, ple]

◉ Byte Pair Encoding: an algorithm to build the vocabulary

8

Byte Pair Encoding

◉ Originally a compression algorithm: most frequent byte pair

↦ a new byte.

◉ Used as a word segmentation algorithm

◉ Start with a unigram vocabulary of all (Unicode) characters

in data

◉ Most frequent ngram pairs ↦ a new ngram

9

Byte Pair Encoding

◉ Start with a unigram vocabulary of all (Unicode) characters

in data

◉ Most frequent ngram pairs ↦ a new ngram

10

Byte Pair Encoding

◉ Start with a unigram vocabulary of all (Unicode) characters

in data

◉ Most frequent ngram pairs ↦ a new ngram

11

Byte Pair Encoding

◉ Start with a unigram vocabulary of all (Unicode) characters

in data

◉ Most frequent ngram pairs ↦ a new ngram

12

Byte Pair Encoding

◉ Have a target vocabulary size and stop when you reach it

◉ Automatically decides vocab for system

13

Character-Level Embeddings

◉ modeling word-level representation by character-level

information

◉ completely solve OOV problem

◉ dynamically infer representation

14

Character-Level Embeddings

◉ compositional character to word (C2W) model

15

MIMICK

◉ Optimizing towards pretrained

embeddings

◉ no need to access the originating

corpus

16

FastText

◉ An extension of the word2vec skip-gram model with

character n-grams

◉ Represent word as char n-grams augmented with boundary

symbols and as whole word: Apple = [<Ap, App, ppl, ple,

le>, Apple]

◉ Prefix, suffixes and whole words are special

◉ supervised objective: text classification

17

Sentences and documents

Beyond Words18

Sentence/Document Embedding

◉ How to extend to sentence/document-level?

◉ simply averaging word embeddings, inferring by trained

models, … etc.

◉ training objective?

19

Skip-Thought

◉ extend skip-gram concept to sentence-level

◉ inspired by the distributional hypothesis: sentences that

have similar surrounding context are likely to be both

semantically and syntactically similar

20

Quick-Thought

◉ change the objective to classification problem

◉ the model can choose to ignore aspects of the sentence

that are irrelevant in constructing a semantic embedding

space

21

InferSent

◉ trained on natural language inference (NLI) task

◉ NLI is the task of determining whether a “hypothesis” is true

(entailment), false (contradiction), or undetermined (neutral)

given a “premise”.

22

InferSent23

References

◉ https://www.aclweb.org/anthology/W13-3512.pdf

◉ http://web.stanford.edu/class/cs224n/slides/cs224n-2019-

lecture12-subwords.pdf

◉ http://www.aclweb.org/anthology/D15-1176

◉ https://arxiv.org/pdf/1508.07909.pdf

◉ https://arxiv.org/pdf/1707.06961.pdf

◉ https://github.com/Separius/awesome-sentence-embedding

◉ https://openreview.net/pdf?id=rJvJXZb0W

◉ https://arxiv.org/pdf/1607.01759.pdf

24

https://www.aclweb.org/anthology/W13-3512.pdf
http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture12-subwords.pdf
http://www.aclweb.org/anthology/D15-1176
https://arxiv.org/pdf/1508.07909.pdf
https://arxiv.org/pdf/1707.06961.pdf
https://github.com/Separius/awesome-sentence-embedding
https://openreview.net/pdf?id=rJvJXZb0W
https://arxiv.org/pdf/1607.01759.pdf

References

◉ https://arxiv.org/pdf/1705.02364.pdf

25

https://arxiv.org/pdf/1705.02364.pdf

