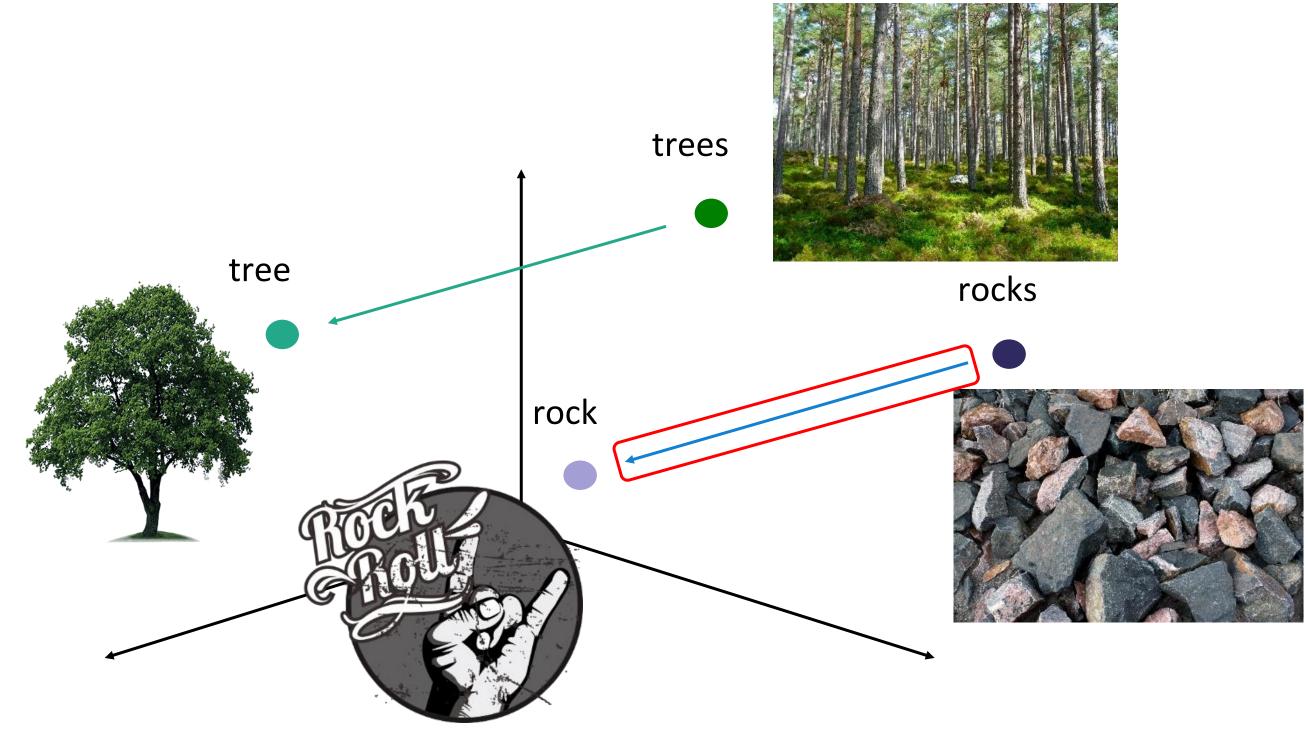
Applied Deep Learning

Contextualized Word Embeddings

March 31st, 2020 http://adl.miulab.tw

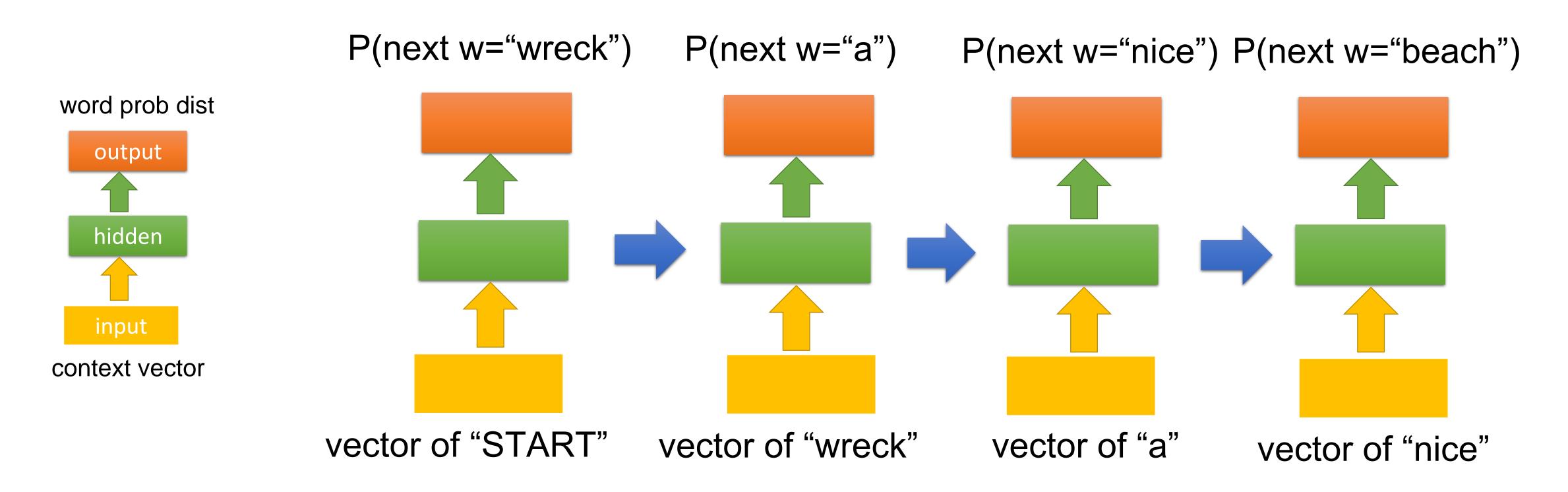
Word Embedding Polysemy Issue

- Words are polysemy
 - An apple a day, keeps the doctor away.
 - ✓ Smartphone companies including apple, ...
- However, their embeddings are NOT polysemy
- Issue
 - Multi-senses (polysemy)
 - Multi-aspects (semantics, syntax)



RNNLM

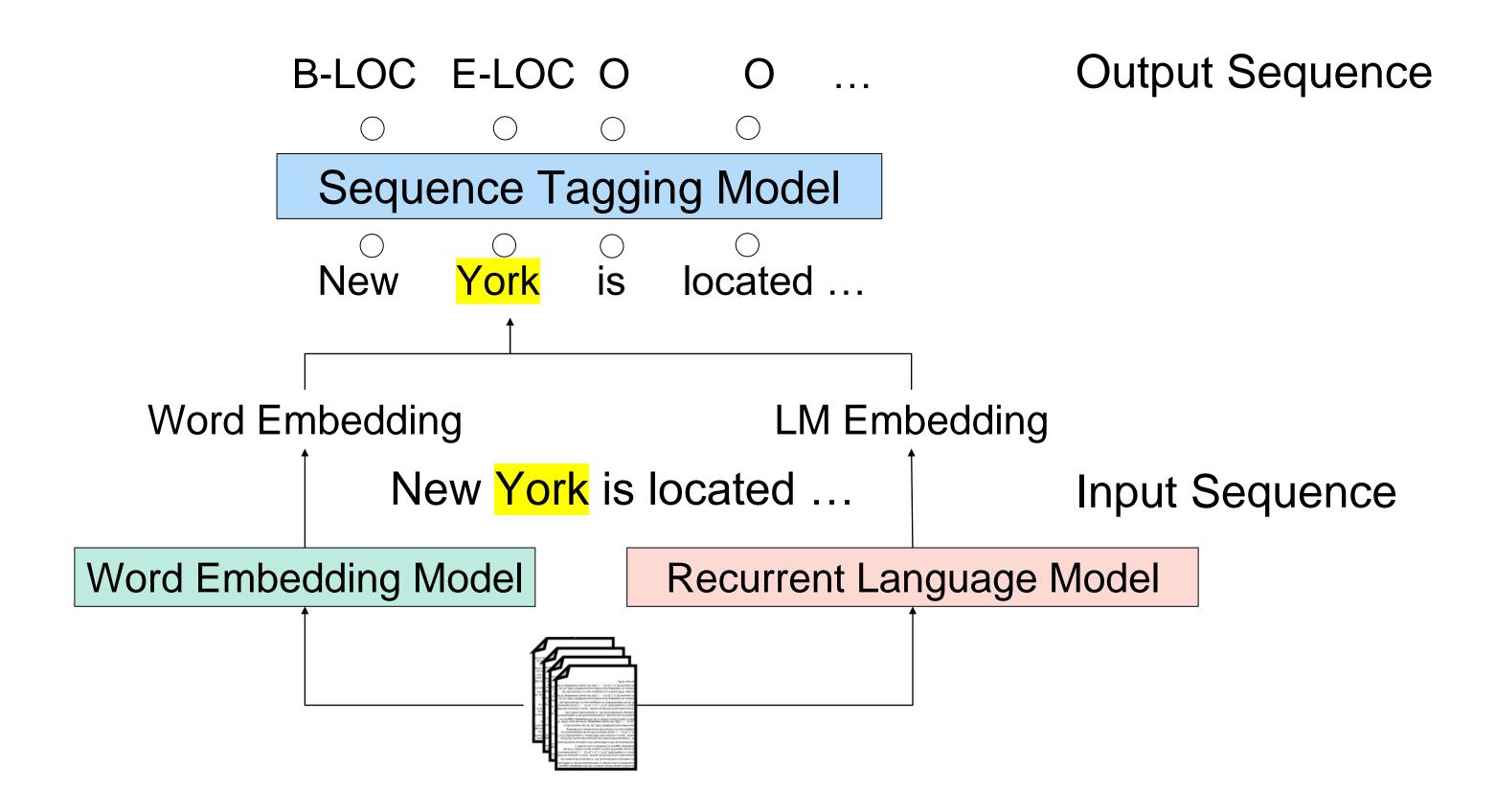
• Idea: condition the neural network on <u>all previous words</u> and <u>tie the weights</u> at each time step



This LM producing context-specific word representations at each position

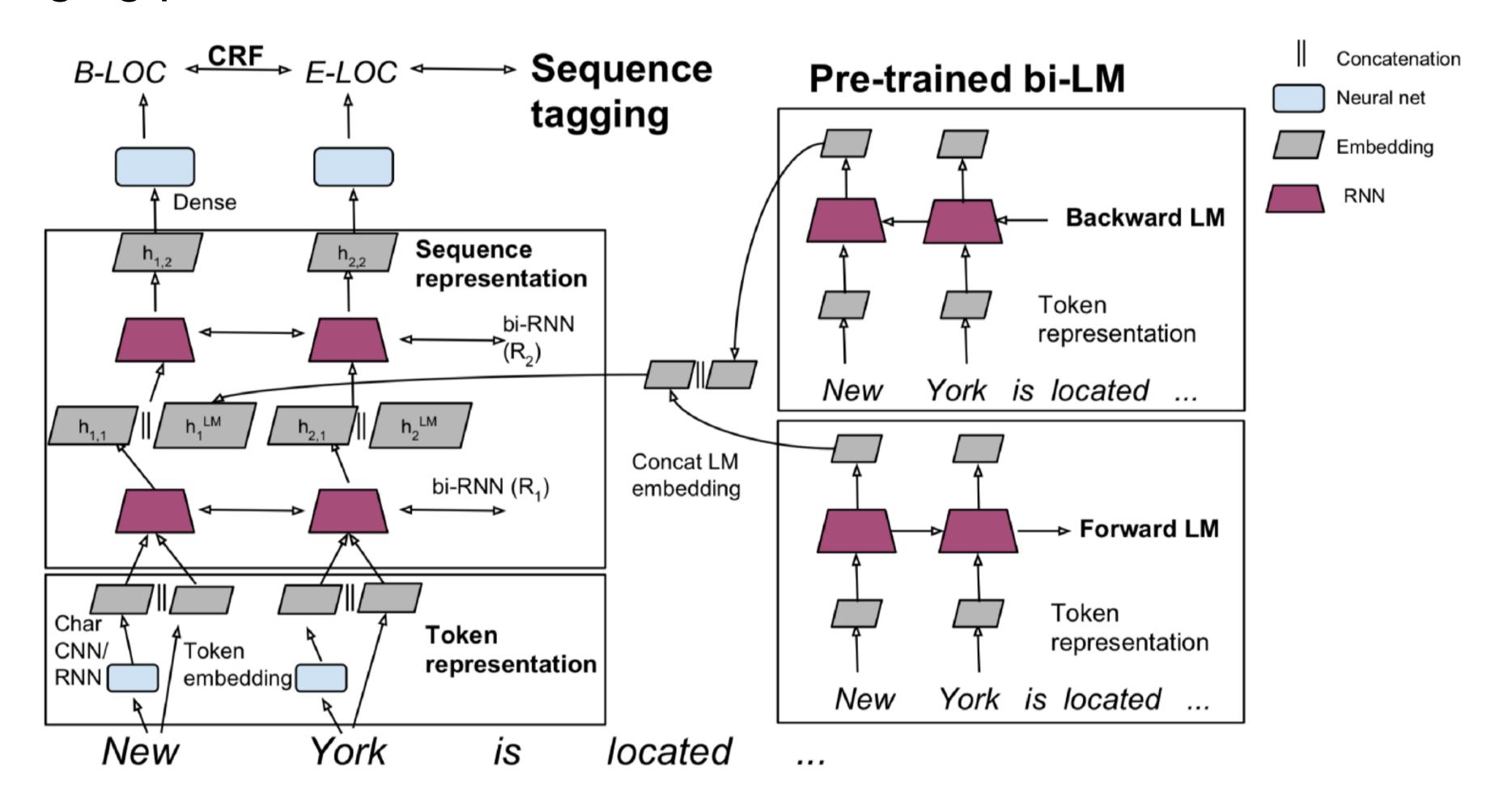
TagLM - "Pre-ELMo"

Idea: train NLM on big unannotated data and provide the <u>context-specific</u> <u>embeddings</u> for the target task → <u>semi-supervised learning</u>



TagLM Model Detail

Leveraging pre-trained LM information



Peters et al., "Semi-supervised sequence tagging with bidirectional language models," in ACL, 2017.

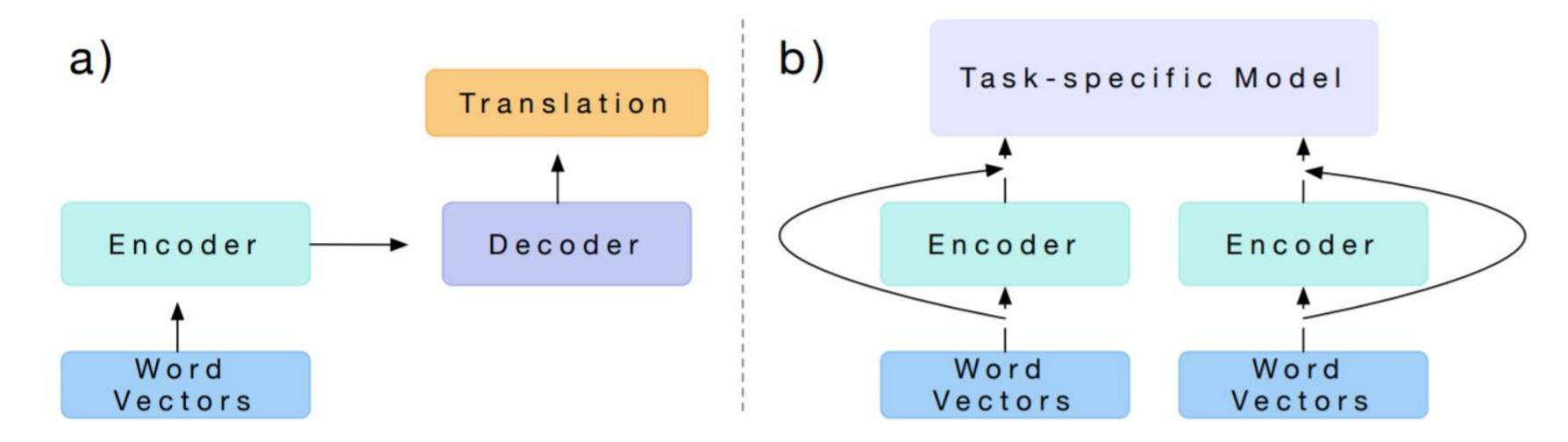
TagLM on Name Entity Recognition

The decision by the independent MP Andrew Wilkie to withdraw his support for the minority Labor government sounded dramatic but it should not further threaten its stability. When, after the 2010 election, Wilkie, Rob Oakeshott, Tony Windsor and the Greens agreed to support Labor, they gave just two guarantees: confidence and supply.

Model	Description	CONLL 2003 F1
Klein+, 2003	MEMM softmax markov model	86.07
Florian+, 2003	Linear/softmax/TBL/HMM	88.76
Finkel+, 2005	Categorical feature CRF	86.86
Ratinov and Roth, 2009	CRF+Wiki+Word cls	90.80
Peters+, 2017	BLSTM + char CNN + CRF	90.87
Ma and Hovy, 2016	BLSTM + char CNN + CRF	91.21
TagLM (Peters+, 2017)	LSTM BiLM in BLSTM Tagger	91.93

CoVe

- Idea: use trained sequence model to provide contexts to other NLP tasks
- a) MT is to capture the meaning of a sequence
- b) NMT provides the context for target tasks

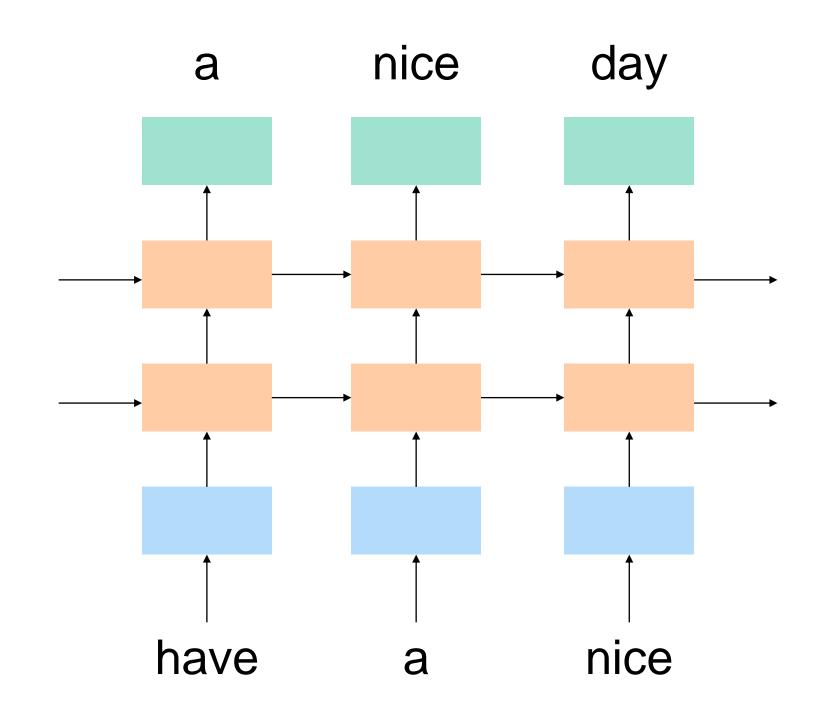


CoVe vectors outperform GloVe vectors on various tasks

The results are not as strong as the simpler NLM training

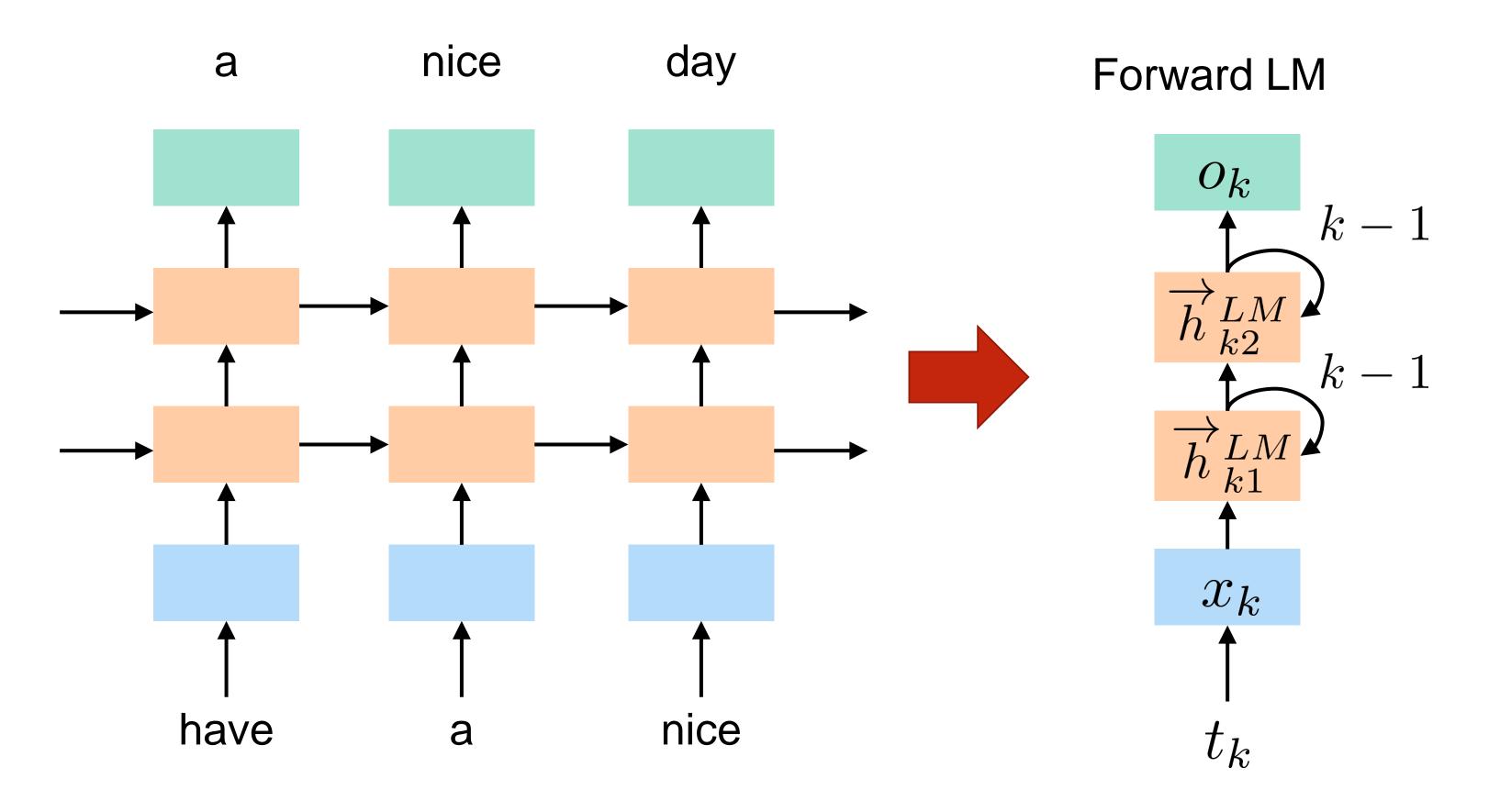
Contextualized Word Embeddings ELMo

- Idea: contextualized word representations
- Learn word vectors using long contexts instead of a context window
- Learn a deep Bi-NLM and use all its layers in prediction



1) Bidirectional LM

$$p(t_1, t_2, \dots, t_N) = \prod_{k=1}^{N} p(t_k \mid t_1, \dots, t_{k-1})$$



Peters et al., "Deep Contextualized Word Representations", in NAACL-HLT, 2018.

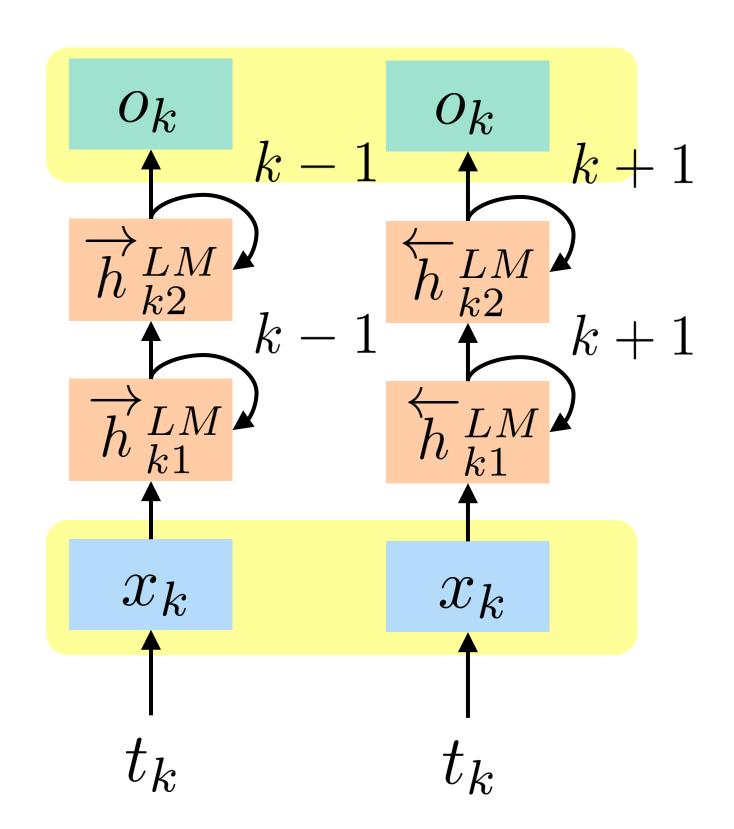
Bidirectional LM

$$p(t_1, t_2, \dots, t_N) = \prod_{\substack{k=1 \ N}}^{N} p(t_k \mid t_1, \dots, t_{k-1})$$
$$p(t_1, t_2, \dots, t_N) = \prod_{\substack{k=1 \ N}}^{N} p(t_k \mid t_{k+1}, \dots, t_N)$$

- Character CNN for initial word embeddings 2048 n-gram filters, 2 highway layers, 512 dim projection
- 2 BLSTM layers
- Parameter tying for input/output layers

$$O = \sum_{k=1}^{N} \left(\log p(t_k \mid t_1, \dots, t_{k-1}; \Theta_x, \overrightarrow{\Theta}_{LSTM}, \Theta_s) + \log p(t_k \mid t_{k+1}, \dots, t_N; \Theta_x, \overleftarrow{\Theta}_{LSTM}, \Theta_s) \right)$$

Forward LM Backward LM



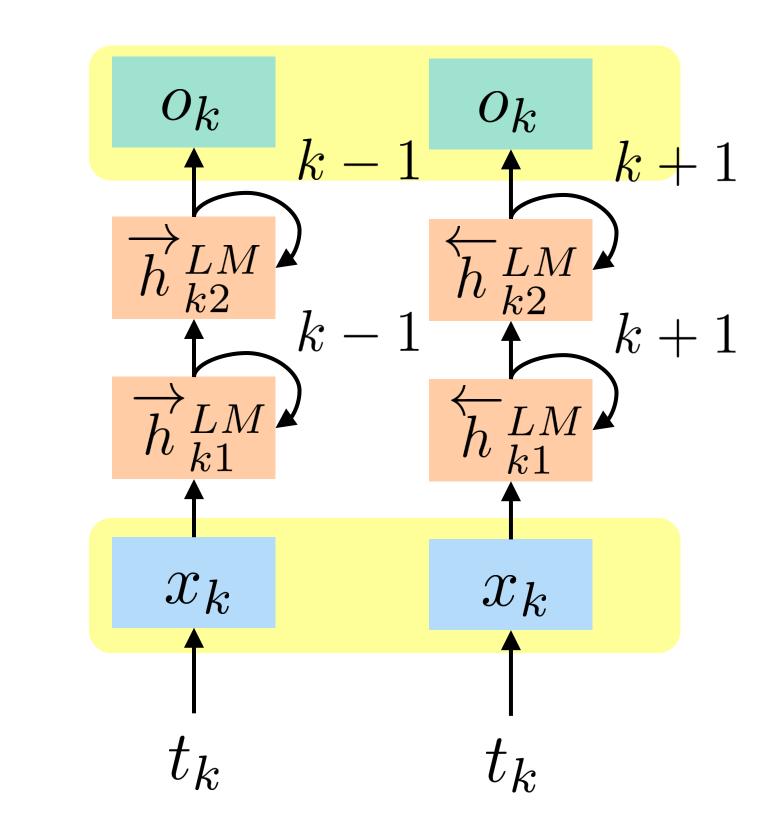
ELMo

- Learn task-specific linear combination of LM embeddings
- Use multiple layers in LSTM instead of top one

$$\text{ELMo}_{k}^{\text{task}} = \gamma^{\text{task}} \times \sum \left\{ \begin{array}{c|c} s_{2}^{\text{task}} \times h_{k2}^{LM} & \overrightarrow{h}_{k2}^{LM} & \overleftarrow{h}_{k2}^{LM} \\ \hline s_{1}^{\text{task}} \times h_{k1}^{LM} & \overrightarrow{h}_{k1}^{LM} & \overleftarrow{h}_{k1}^{LM} \\ \hline s_{0}^{\text{task}} \times h_{k0}^{LM} & x_{k} & x_{k} \end{array} \right.$$

- $\gamma^{\rm task}$ scales overall usefulness of ELMo to task
- s^{task} are softmax-normalized weights
- optional layer normalization

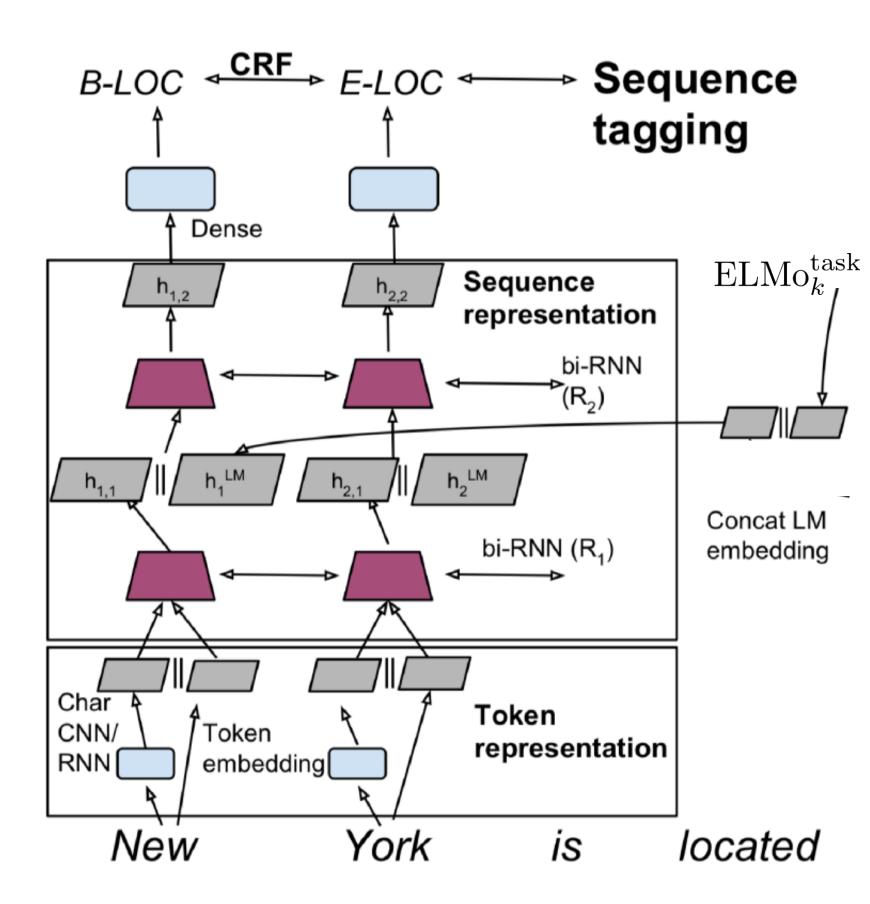
Forward LM Backward LM



A task-specific embedding with combining weights learned from a downstream task

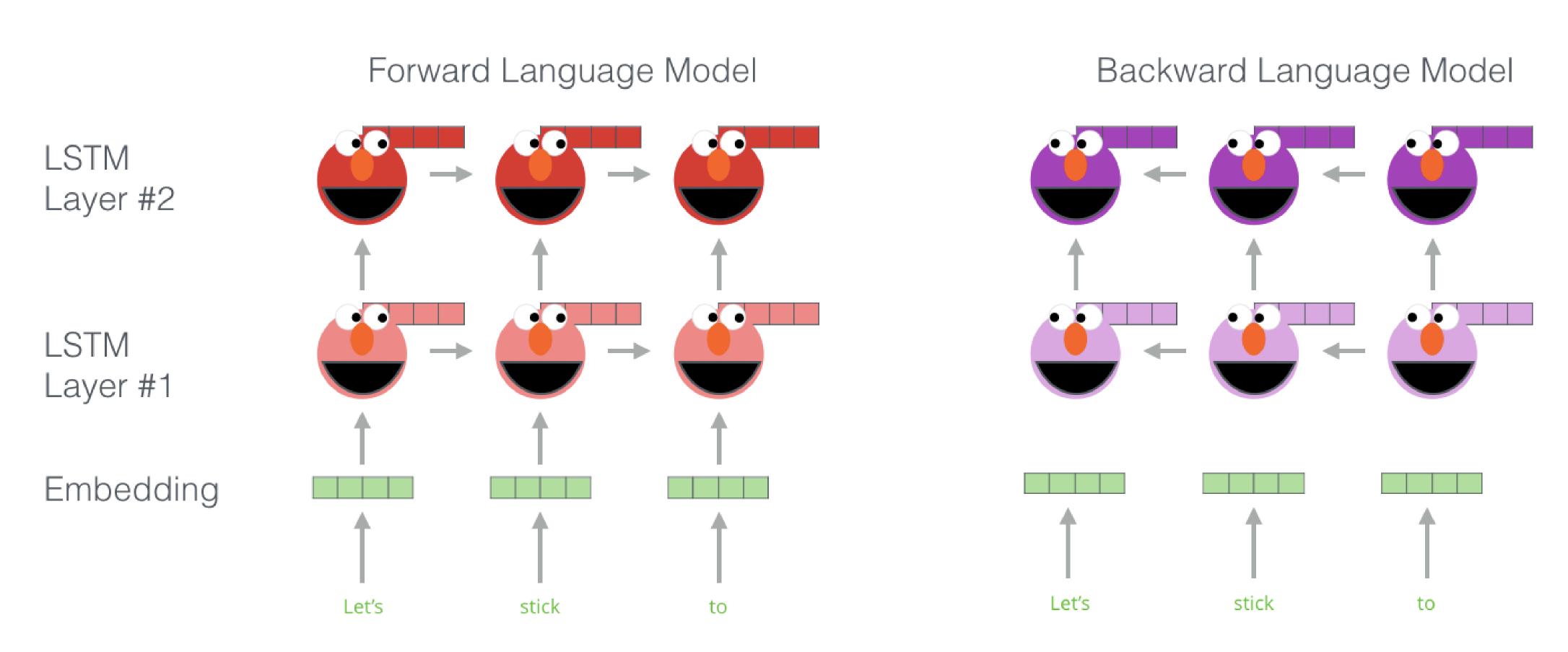
- 3) Use ELMo in Supervised NLP Tasks
 - Get LM embedding for each word
 - Freeze LM weights to form ELMo enhanced embeddings $[h_k; \mathrm{ELMo}_k^{\mathrm{task}}]$: concatenate ELMo into the intermediate layer $[x_k; \mathrm{ELMo}_k^{\mathrm{task}}]$: concatenate ELMo into the input layer
 - Tricks: dropout, regularization

The way for concatenation depends on the task



ELMo Illustration

Embedding of "stick" in "Let's stick to" - Step #1

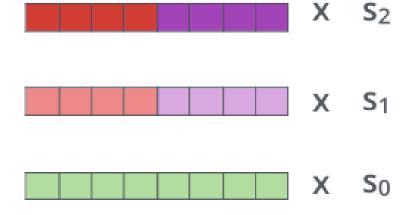


ELMo Illustration

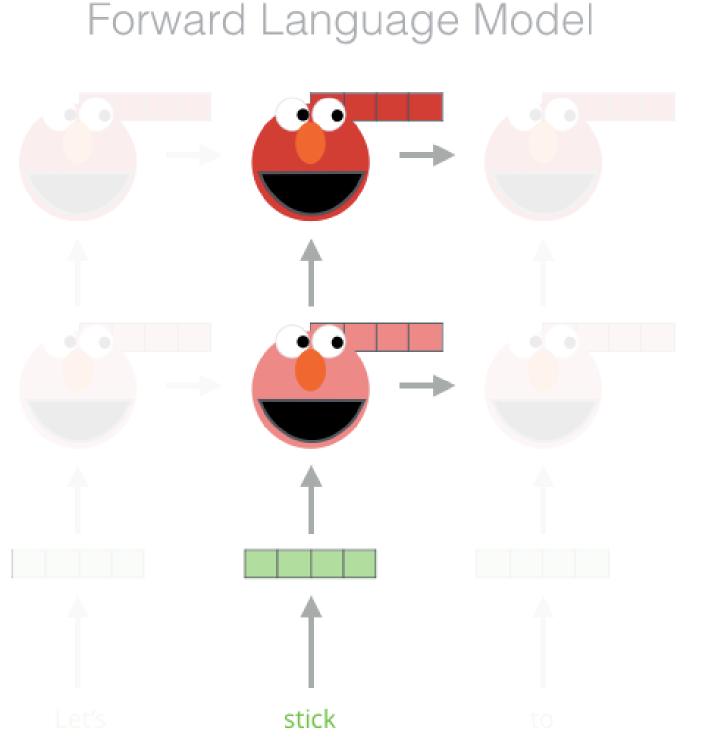
Embedding of "stick" in "Let's stick to" - Step #2

1- Concatenate hidden layers

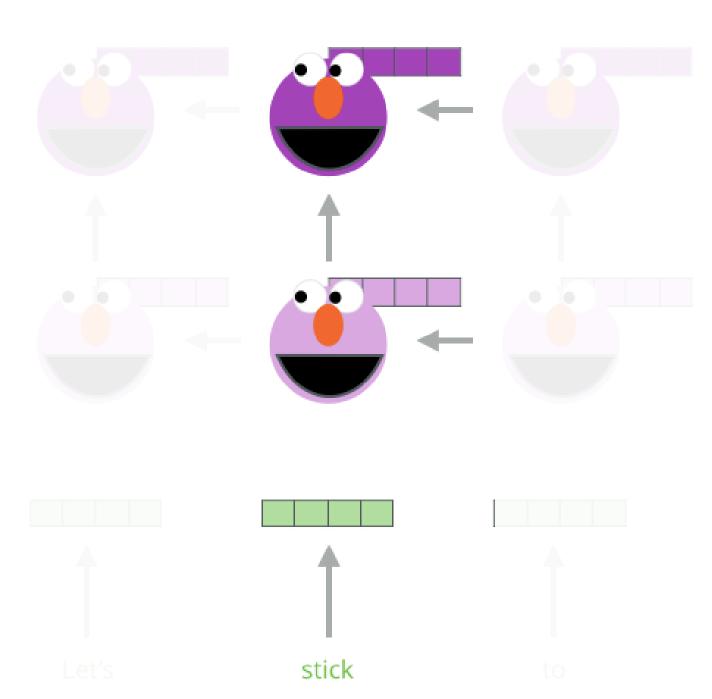
2- Multiply each vector by a weight based on the task



3- Sum the (now weighted) vectors



Backward Language Model



ELMo embedding of "stick" for this task in this context

Peters et al., "Deep Contextualized Word Representations", in NAACL-HLT, 2018.

ELMo on Name Entity Recognition

Model	Description	CONLL 2003 F1
Klein+, 2003	MEMM softmax markov model	86.07
Florian+, 2003	Linear/softmax/TBL/HMM	88.76
Finkel+, 2005	Categorical feature CRF	86.86
Ratinov and Roth, 2009	CRF+Wiki+Word cls	90.80
Peters+, 2017	BLSTM + char CNN + CRF	90.87
Ma and Hovy, 2016	BLSTM + char CNN + CRF	91.21
TagLM (Peters+, 2017)	LSTM BiLM in BLSTM Tagger	91.93
ELMo (Peters+, 2018)	ELMo in BLSTM	92.22

ELMo Results

• Improvement on various NLP tasks

	TASK	PREVIOUS SOTA		OUR BASELINE	ELMO + BASELINE	INCREASE (ABSOLUTE/ RELATIVE)
Machine Comprehension	SQuAD	Liu et al. (2017)	84.4	81.1	85.8	4.7 / 24.9%
Textual Entailment	SNLI	Chen et al. (2017)	88.6	88.0	88.7 ± 0.17	0.7 / 5.8%
Semantic Role Labeling	SRL	He et al. (2017)	81.7	81.4	84.6	3.2 / 17.2%
Coreference Resolution	Coref	Lee et al. (2017)	67.2	67.2	70.4	3.2 / 9.8%
Name Entity Recognition	NER	Peters et al. (2017)	91.93 ± 0.19	90.15	92.22 ± 0.10	2.06 / 21%
Sentiment Analysis	SST-5	McCann et al. (2017)	53.7	51.4	54.7 ± 0.5	3.3 / 6.8%

Good transfer learning in NLP (similar to computer vision)

ELMo Analysis

Word embeddings v.s. contextualized embeddings

	Source	Nearest Neighbors
GloVe	play	playing, game, games, played, players, plays, player, Play, football, multiplayer
biLM	Chico Ruiz made a spec-	Kieffer, the only junior in the group, was commended
	tacular play on Alusik 's	for his ability to hit in the clutch, as well as his all-round
	grounder {}	excellent play.
	Olivia De Havilland	{} they were actors who had been handed fat roles in
	signed to do a Broadway	a successful play, and had talent enough to fill the roles
	\underline{play} for Garson $\{\dots\}$	competently, with nice understatement.

The biLM is able to disambiguate both the PoS and word sense in the source sentence

ELMo Analysis

- The two NLM layers have differentiated uses/meanings
 - Lower layer is better for lower-level syntax, etc. (e.g. Part-of-speech tagging, syntactic dependencies, NER)
 - ✓ Higher layer is better for higher-level semantics (e.g. sentiment, semantic role labeling, question answering, SNLI)

PoS Tagging

Model	Acc.
Collobert et al. (2011)	97.3
Ma and Hovy (2016)	97.6
Ling et al. (2015)	97.8
CoVe, First Layer	93.3
CoVe, Second Layer	92.8
biLM, First Layer	97.3
biLM, Second Layer	96.8

Word Sense Disambiguation

Model	\mathbf{F}_1
WordNet 1st Sense Baseline	65.9
Raganato et al. (2017a)	69.9
Iacobacci et al. (2016)	70.1
CoVe, First Layer	59.4
CoVe, Second Layer	64.7
biLM, First layer	67.4
biLM, Second layer	69.0

Concluding Remarks

- Contextualized embeddings learned from LM provide informative cues
- ELMo a general approach for learning high-quality deep context-dependent representations from biLMs

1- Concatenate hidden layers

- ✓ Pre-trained ELMo: https://allennlp.org/elmo
- ELMo can process the character-level inputs

