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©® POS Tagging

@ Tag a word at each timestamp
Input: word sequence
Output: corresponding POS tag sequence
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©® Extractive Summarization

® Tag a sentence at each timestamp
Input: a document (sentence sequence)
Output: corresponding tag indicating whether the sentence should be

extracted
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Q Machine Translation

@ cCascade two RNNSs, one for encoding and one for decoding
Input: word sequences in the source language
Output: word sequences in the target language
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© Abstractive Summarization

@ cCascade two RNNSs, one for encoding and one for decoding
Input: word sequences in the document
Output: word sequences in the summary
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@ PyTorch RNN/LSTM Tutorial

® Prepare the data

def prepare_sequence(seq, to_ix):
idxs = [to_ix[w] for w in seq]
return torch.tensor(idxs, dtype=torch.long)

training_data = [

("The dog ate the apple".split(), ["DET", "NN", "V", "DET", "NN"]),

("Everybody read that book".split(), ["NN", "V", "DET", "NN"])
]
word to ix = §t
for sent, tags in training_data:

for word in sent:

if word not in word to ix:
word_to_ix[word] = len(word_to_ix)

print (word_to_ix)
tag_to_ix = {"DET": @, "NN": 1, "V": 2%

# These will usually be more like 32 or 64 dimensional.

# We will keep them small, so we can see how the weights change as we train.
EMBEDDING_DIM = 6

HIDDEN_DIM = 6

i'The': 0, 'dog': 1, 'ate': 2, 'the': 3, 'apple': 4, 'Everybody': 5, 'read': 6, 'that': 7,
'book': 8%


https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html

PyTorch RNN/LSTM Tutorial

Create the model

class LSTMTaggexr (nn.Module):

def

def

__init__ (self, embedding dim, hidden_dim, vocab_size, tagset size):
super (LSTMTagger, self).__init__()

self.hidden _dim = hidden dim

self.word_embeddings = nn.Embedding(vocab_size, embedding_dim)

# The LSTM takes word embeddings as inputs, and outputs hidden states
# with dimensionality hidden_dim.

self.hidden2tag = nn.Linear(hidden_dim, tagset size)
forward(self, sentence):

embeds = self.word _embeddings(sentence)

1stm out, = self.lstm(embeds.view(len(sentence), 1, -1))
tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1))

tag_scores = F.log softmax(tag space, dim=1)
return tag _scores


https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html

@ PyTorch RNN/LSTM Tutorial

@ Train the model

model = LSTMTagger (EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix))
loss_function = nn.NLLLoss()
optimizer = optim.SGD{model.parameters(), 1lr=0.1)

# See what the scores are before training
# Note that element i,j of the output is the score for tag j for word 1i.
# Here we don't need to train, so the code is wrapped in torch.no_grad()
with torch.no_grad():
inputs = prepare_sequence(training_datal[@][@], word_to_ix)
tag_scores = model (inputs)
print (tag_scores)

for epoch in range(300): # again, normally you would NOT do 300 epochs, it is toy data
for sentence, tags in training_data:
# Step 1. Remember that Pytorch accumulates gradients.
# We need to clear them out before each instance
model.zero_grad()

# Step 2. Get our inputs ready for the network, that is, turn them into
# Tensors of word indices.

sentence_in = prepare_sequence(sentence, word_to_ix)

targets = prepare_sequence(tags, tag_to_ix)

# Step 3. Run our forward pass.
tag_scores = model (sentence_in)

# Step 4. Compute the loss, gradients, and update the parameters by
# calling optimizer.step()

loss = loss_function(tag_scores, targets)

loss.backward()

optimizer.step()


https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html

@ PyTorch RNN/LSTM Tutorial

@® Check the scores after training

# See what the scores are after training
with torch.no_grad():

inputs = prepare_sequence(training_datal[0][0], word_to_ix)
tag_scores = model(inputs)
# The sentence is "the dog ate the apple”. 1i,j corresponds to score for tag j

# for word 1. The predicted tag is the maximum scoring tag.
# Here, we can see the predicted seguence below is 0 1 2 0 1
# since 0 is index of the maximum value of row 1,

# 1 is the index of maximum value of row 2, eftc.

# Which is DET NOUN VERB DET NOUN, the correct sequence!
print(tag_scores)

tensor ([[-0.0462, -4.0106, -3.6096],
[-4.8205, -0.0286, -3.9045],
[-3.7876, -4.1355, -0.0394],
[-0.0185, -4.7874, -4.6013],
[-5.7881, -0.0186, -4.177811)


https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html

@ PyTorch Attentional Seq2Seq Tutorial

® Seq2Seq (+Attention) for MT

"le chat est noir"
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https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

@) Assignment 1

@ Extractive Summarization
Aligned Sequential Pairs

@® Abstractive Summarization
Unaligned Sequential Pairs

@ PyTorch Tutorial
® Feedback Responses



@ Feedback Responses
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@ Feedback Responses
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@ ML: 15 HW
@ ADL: 3 HW (difficulty: 5x)




@ Feedback Responses

hwl is for ppl familiar in DL/NLP. Requirement is too much.
Guidance is useless for ppl who have no experience(the
target students the teacher claimed, ironic.)

® HWL1 is to allow students to

practice how to do text preprocessing
find related materials/code for practical usage

@ You can wait for the preprocessing code release
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@ Concluding Remarks

® Cores of Assighment 1
Text Preprocessing (Tokenization, Embeddings, etc.)
Vanilla RNN
Attention Mechanism

® Tips
Using Google to find the related tutorials
Asking more questions in COOL
You can suggest TAs provide sample codes/pages for reference

@® ADL is the advanced course for senior CS students!
You should be able to write the code from scratch
You should have the capability of finding needed resources



