Applied Deep Learning

¢
"

Assignment 1 Brief Tutorial

@ March 24th, 2020

http://adl.miulab.tw/

(2) Assignment 1

@ Extractive Summarization
Aligned Sequential Pairs

@® Abstractive Summarization
Unaligned Sequential Pairs

@ PyTorch Tutorial
® Feedback Responses

(5 Assignment 1

@ Extractive Summarization
Aligned Sequential Pairs

@® Abstractive Summarization
Unaligned Sequential Pairs

@ PyTorch Tutorial
® Feedback Responses

©® POS Tagging

@ Tag a word at each timestamp
Input: word sequence
Output: corresponding POS tag sequence

N VA AD
0

i—1 Ot

F

S
W Ot—l Ot — Ot "

w
TU U TU
X X

t—1 xt t+1

o8

+1

4+H:

©® Extractive Summarization

® Tag a sentence at each timestamp
Input: a document (sentence sequence)
Output: corresponding tag indicating whether the sentence should be

extracted
0
J]
S S

114 1 t t+1
W s

=
o

Sentence 1 Sentence 2 Sentence 3

(&) Assignment 1

@ Extractive Summarization
Aligned Sequential Pairs

® Abstractive Summarization
Unaligned Sequential Pairs

@ PyTorch Tutorial
® Feedback Responses

Q Machine Translation

@ cCascade two RNNSs, one for encoding and one for decoding
Input: word sequences in the source language
Output: word sequences in the target language

(Awesome sauch
Y1

decoder

/’r encoder ‘\\
h, EE \th>ﬂ§1 hy PE1 |§| ‘E}
[>|.} O

r[ij\ J

(0o00e| (ecee| (eceo]

\ B 50 4234 /

© Abstractive Summarization

@ cCascade two RNNSs, one for encoding and one for decoding
Input: word sequences in the document
Output: word sequences in the summary

us -n‘te-::h-nl is

IR
0-0-8-0-0-0-0-0-8-08.
The L.lantE-d Str:['_esa beche TI‘Tue largest teTc" T <:bETqi'“;~

Encoder Decoder

(o Assignment 1

@ Extractive Summarization
Aligned Sequential Pairs

@® Abstractive Summarization
Unaligned Sequential Pairs

@ PyTorch Tutorial
® Feedback Responses

@ PyTorch RNN/LSTM Tutorial

® Prepare the data

def prepare_sequence(seq, to_ix):
idxs = [to_ix[w] for w in seq]
return torch.tensor(idxs, dtype=torch.long)

training_data = [

("The dog ate the apple".split(), ["DET", "NN", "V", "DET", "NN"]),

("Everybody read that book".split(), ["NN", "V", "DET", "NN"])
]
word to ix = §t
for sent, tags in training_data:

for word in sent:

if word not in word to ix:
word_to_ix[word] = len(word_to_ix)

print (word_to_ix)
tag_to_ix = {"DET": @, "NN": 1, "V": 2%

These will usually be more like 32 or 64 dimensional.

We will keep them small, so we can see how the weights change as we train.
EMBEDDING_DIM = 6

HIDDEN_DIM = 6

i'The': 0, 'dog': 1, 'ate': 2, 'the': 3, 'apple': 4, 'Everybody': 5, 'read': 6, 'that': 7,
'book': 8%

https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html

PyTorch RNN/LSTM Tutorial

Create the model

class LSTMTaggexr (nn.Module):

def

def

__init__ (self, embedding dim, hidden_dim, vocab_size, tagset size):
super (LSTMTagger, self).__init__()

self.hidden _dim = hidden dim

self.word_embeddings = nn.Embedding(vocab_size, embedding_dim)

The LSTM takes word embeddings as inputs, and outputs hidden states
with dimensionality hidden_dim.

self.hidden2tag = nn.Linear(hidden_dim, tagset size)
forward(self, sentence):

embeds = self.word _embeddings(sentence)

1stm out, = self.lstm(embeds.view(len(sentence), 1, -1))
tag_space = self.hidden2tag(lstm_out.view(len(sentence), -1))

tag_scores = F.log softmax(tag space, dim=1)
return tag _scores

https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html

@ PyTorch RNN/LSTM Tutorial

@ Train the model

model = LSTMTagger (EMBEDDING_DIM, HIDDEN_DIM, len(word_to_ix), len(tag_to_ix))
loss_function = nn.NLLLoss()
optimizer = optim.SGD{model.parameters(), 1lr=0.1)

See what the scores are before training
Note that element i,j of the output is the score for tag j for word 1i.
Here we don't need to train, so the code is wrapped in torch.no_grad()
with torch.no_grad():
inputs = prepare_sequence(training_datal[@][@], word_to_ix)
tag_scores = model (inputs)
print (tag_scores)

for epoch in range(300): # again, normally you would NOT do 300 epochs, it is toy data
for sentence, tags in training_data:
Step 1. Remember that Pytorch accumulates gradients.
We need to clear them out before each instance
model.zero_grad()

Step 2. Get our inputs ready for the network, that is, turn them into
Tensors of word indices.

sentence_in = prepare_sequence(sentence, word_to_ix)

targets = prepare_sequence(tags, tag_to_ix)

Step 3. Run our forward pass.
tag_scores = model (sentence_in)

Step 4. Compute the loss, gradients, and update the parameters by
calling optimizer.step()

loss = loss_function(tag_scores, targets)

loss.backward()

optimizer.step()

https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html

@ PyTorch RNN/LSTM Tutorial

@® Check the scores after training

See what the scores are after training
with torch.no_grad():

inputs = prepare_sequence(training_datal[0][0], word_to_ix)
tag_scores = model(inputs)
The sentence is "the dog ate the apple”. 1i,j corresponds to score for tag j

for word 1. The predicted tag is the maximum scoring tag.
Here, we can see the predicted seguence below is 0 1 2 0 1
since 0 is index of the maximum value of row 1,

1 is the index of maximum value of row 2, eftc.

Which is DET NOUN VERB DET NOUN, the correct sequence!
print(tag_scores)

tensor ([[-0.0462, -4.0106, -3.6096],
[-4.8205, -0.0286, -3.9045],
[-3.7876, -4.1355, -0.0394],
[-0.0185, -4.7874, -4.6013],
[-5.7881, -0.0186, -4.177811)

https://pytorch.org/tutorials/beginner/nlp/sequence_models_tutorial.html

@ PyTorch Attentional Seq2Seq Tutorial

® Seq2Seq (+Attention) for MT

"le chat est noir"
[02 85 03 12

Encoder

]

"the cat is black”
[42 82 16 04] -

L

Decoder

L

L) L) L) L L)

[42 82 16 04]

"the cat is black”

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

@) Assignment 1

@ Extractive Summarization
Aligned Sequential Pairs

@® Abstractive Summarization
Unaligned Sequential Pairs

@ PyTorch Tutorial
® Feedback Responses

@ Feedback Responses

BEABSERAZEH" MEE -~ F# - X EFTFETB0L
focusE4FEET - 55w I BB TE (S X Babstractive, extractive,
seq2seq, attention.. EEXZEHE X - E2BAENLPEREN
AIRIBELRAIE) - B2 13N - SEEFAER ; N2
D S E &/ NMESE -

® KAEFEDRNNARE - FhAtasksERHR— R T
® ARIZER | AXOLIETEER” - FFE S RYformulation

@ Feedback Responses

Z MR EPIF =45 2 A1 deep learning E#EpV[E £ &I Y
J: B\ ZENIFRE Y IBER—H(RZAN) EEEHE
zsample code - ERTFE—E E ZFrattentiondImode{BEIR X
L&%Uﬂ ZHIEE QQ

@ ML: 15 HW
@ ADL: 3 HW (difficulty: 5x)

@ Feedback Responses

hwl is for ppl familiar in DL/NLP. Requirement is too much.
Guidance is useless for ppl who have no experience(the
target students the teacher claimed, ironic.)

® HWL1 is to allow students to

practice how to do text preprocessing
find related materials/code for practical usage

@ You can wait for the preprocessing code release

@ Feedback Responses

HKEABSE—RIFEREZEM, BIERAEERZN T B —

{Eearly bird bonusl} ZEMzE = F—EBEAXAAE, £_8

i’\sample code (?), ERMBEB = oA E preprocessing, &
EE’J%KEHX’@&E%% 2% _ —#@Asample codet] follow,

TL,{?E/L,\ERNNE’FIM

® BBHHB MBS BARTYUSRY B

FI?E ﬁA Eﬁ Ju ° t._‘

® FEMATAFELYEETIES
COOLEI# A T EEIR |

@ Concluding Remarks

® Cores of Assighment 1
Text Preprocessing (Tokenization, Embeddings, etc.)
Vanilla RNN
Attention Mechanism

® Tips
Using Google to find the related tutorials
Asking more questions in COOL
You can suggest TAs provide sample codes/pages for reference

@® ADL is the advanced course for senior CS students!
You should be able to write the code from scratch
You should have the capability of finding needed resources

