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Ernie and Bert




ERNIE: Enhanced Representation
through kNowledge IntEgration

* Developed by Baidu Research
* No paper published yet, only an aritcle on their website (3/16)

* claim that it outperforms BERT in Chinese language tasks including
natural language inference, semantic similarity, named entity
recognition, sentiment analysis, and question-answer matching.

* Methods like Cove, ELMo, GPT or BERT mainly focus on building models
to solve problems based on original language signals instead of
semantic units in the text.

*Unlike BERT, ERNIE features knowledge integration enhancement, which
learns semantic relations in the real world through massive data.



ERNIE: Enhanced Representation
through kNowledge IntEgration

* In BERT, we randomly mask 15% tokens to train masked LM
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ERNIE: Enhanced Representation
through kNowledge IntEgration

It directly models prior semantic knowledge units, which enhances the
ability to learn semantic representation.

* ERNIE learns the semantic representation of complete concepts by
masking semantic units such as words and entities. ERNIE directly
models priori semantic knowledge units and, as a result, enhances the
model's ability to learn semantic representation.

* Entities: in information extraction, a named entity is a real-world object,
such as persons, locations, organizations, products, etc.



ERNIE: Enhanced Representation
through kNowledge IntEgration

* BERT can identify the character “/X(er)” through the local co-occurring

characters 15 (ha) and J&(bin), but fails to learn any knowledge related
to the word “Harbin (E57XE)”.

* ERNIE can extrapolate the relationship between Harbin (}57]3)&) and
Heilongjiang (2£ Jv.;T.) by analyzing implicit knowledge of words and

entities.
Learned by BERT Learned by ERNIE
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Closer Look...

* Maybe it resembles the leading model “BERT+N-Gram Masking” on

SQuAD2.0?
3 BERT + N-Gram Masking + Synthetic Self- 86.673 89.147
Training (ensemble)

Google Al Language
https:/github.com/google-research/bert
* Granularity: masking short sentences?
» Keep the Transformer structure untouched and change masking?
* Dataset are different.

* “For every plus there is a minus.”, more factors: granularity, quality of
segmentation systems..., and etc.
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Human Performance 86.831 89.452
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(Rajpurkar & Jia et al. "18)
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https:/github.com/google-research/bert
BERT + DAE + AoA (single model) 85.884 88.621
Joint Labaratory of HIT and iIFLYTEK Research
BERT + MMFT + ADA (ensemble) 85.082 87.615
Microsoft Research Asia
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https:/github.com/google-research/bert
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ERNIE: Enhanced Representation
through kNowledge IntEgration

* Pretrained models/code available:
https://github.com/PaddlePaddle/LARK/tree/develop/ERNIE



https://github.com/PaddlePaddle/LARK/tree/develop/ERNIE

Transformer-XL: Attentive Language
Models Beyond a Fixed-Length Context

* from Google

* The third generation (Transformer-XL): recurrence in length
* The second generation (Universal Transformer): recurrence in depth

* The original Transformer: no recurrence
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Transformer for LM

* in language modeling, Transformers are currently implemented with a
fixed-length context, i.e. a long text sequence is truncated into fixed-
length segments of a few hundred characters, and each segment is
processed separately.




Transformer for LM

* This introduces two critical limitations:

* The algorithm is not able to model dependencies that are longer than a
fixed length.

* The segments usually do not respect the sentence boundaries,
resulting in context fragmentation which leads to inefficient
optimization.
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Transformer-XL:
Segment-level Recurrence

* During training, the representations computed for the previous
segment are fixed and cached to be reused as an extended context
when the model processes the next new segment.




Transformer-XL:
Segment-level Recurrence

* Moreover, this recurrence mechanism also resolves the context
fragmentation issue, providing necessary context for tokens in the front
of a new segment.




Transformer-XL:
Relative Positional Encodings

* Naively applying segment-level recurrence does not work, however,
because the positional encodings are not coherent when we reuse the
previous segments.

* For example, consider an old segment with contextual positions [0, 1, 2,
3]. When a new segment is processed, we have positions [0, 1, 2, 3,0, 1,
2, 3] for the two segments combined, where the semantics of each
position id is incoherent through out the sequence.

* parameterization to only encode the relative positional information
based on content



Transformer-XL:
Overview

* segment-level recurrence + relative positional encoding
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Transformer-XL:
Results

* Transformer-XL learns dependency that is about 80% longer than RNNs
and 450% longer than vanilla Transformers, which generally have better
performance than RNNs, but are not the best for long-range
dependency modeling due to fixed-length contexts.

* Transformer-XL is up to 1,800+ times faster than a vanilla Transformer
during evaluation on language modeling tasks, because no re-
computation is needed.

* Transformer-XL has better performance in perplexity (more accurate at
predicting a sample) on long sequences because of long-term
dependency modeling, and also on short sequences by resolving the
context fragmentation problem.



Transformer-XL: Attentive Language
Models Beyond a Fixed-Length Context

* code available (TF and PyTroch):
https://github.com/kimiyoung/transformer-xl
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